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A possible exam could consist of any 5 of the exercises below.

1. Consider the probability space (Ω,F ,P) with Ω = [0, 1]; F the Borel σ-algebra and P the
Lebesgue measure on [0, 1] (resticted to F). Let X : Ω → R be given by X(ω) = cot(πω).

a.) Describe the push-forward µ of P by X (defined by µ(A) := P(X−1(A))).

b.) What is the distribution of the random variable X?

Solution:

a.) The measure µ is absolutely continuous w.r.t. Lebesgue measure on R, and has the
density ϕ(x) = 1

π
1

1+x2 .

b.) This µ is exactly the distribution of X and is called the Cauchy distribution.

2. Is there a sequence of events A1, A2, . . . on the same probability space such that

∞
∑

i=1

P(Ai) = ∞ and P(Ai infinitely often) = 0 ?

Solution: Yes. For example (Ω,F ,P) = ([0, 1],B, Leb) and An := [0, 1

n
] will do.

Remark: Note that these Ai are not independent. Such a sequence of independent events

cannot exist according to the Borel-Cantelli lemma.

3. Durrett, Exercise 2.4.3

Solution: Let Y be uniformly distributed on the unit disk of R2 and let ξ = log |Y |. Then
for r ∈ [0, 1] we have P(|Y | ≤ r) = r2π

12π
= r2, so |Y | has density f(r) = d

dr
r2 = 2r (w.r.t.

Lebesgue measure on [0, 1]). Now we can calculate c := Eξ =
∫

1

0
log(r)f(r) dr = −1

2
.

Now if Y1, Y2, . . . are i.i.d. distributed as Y and ξi = log |Yi|, then the suquence Xi

of the exercise can be obtained as Xi := |Xi−1|Yi for i = 1, 2, . . . , which implies that
log |Xn| =

∑n

i=1
ξi. Since the ξi are i.i.d., the strong law of large numbers gives 1

n
log |Xn| =

1

n

∑n

i=1
ξi → c = −1

2
almost surely.

4. Let X1, X2, . . . be random variables on the same probability space such that EXi = 0,
VarXi = 1, Cov(Xi, Xj) =

1

2
when |i− j| = 1 and Cov(Xi, Xj) = 0 when |i− j| > 1. Let

Sn = X1 + · · ·+Xn. Show that Sn

n
→ 0 in probability.

Solution: VarSn =
∑n

i,j=1
Cov(Xi, Xj) = nVar(X1) + 2(n − 1)Cov(X1, X2) = 2n − 1,

so VarSn

n
= 2n−1

n2 → 0 as n → ∞. Now, since E
Sn

n
= 0, Chebyshev’s inequality gives

P(|Sn

n
− 0| > ε) ≤

Var
Sn

n

ε2
→ 0 for every ε > 0.

5. Let Y ∼ Poi(λ) for some λ > 0 and for n = 1, 2, . . . let Xn ∼ Bin(n, pn) such that
npn → λ. Show that Xn → Y weakly.

Solution: Calculate the characteristic function of Xn, take the (pointwise) limit and refer
to the continuity theorem.

6. Let X be an integrable random variable and F1 ⊂ F2 ⊂ . . . a filtration on the same
probability space. Show that the process Xn = E(X | Fn) is a martingale.

Solution: Check the definition using the basic properties of conditional expectation.
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7. Durrett, Exercise 5.1.11

Solution: We know from the geometric interpretation of conditional expectation for L2

functions that if X = E(Y | G), then EY 2 = EX2 +E[(Y −X)2]. So the assumption of the
exercise gives E[(Y −X)2] = 0, which implies that Y −X = 0 almost surely.

8. Bob arrives to a casino with a million dollars and starts to gamble. Unfortunately, there
are no favourable games at the casino: whatever he plays, is fair or unfavourable. He is
allowed to risk (and lose) all his money, but there is no credit. Let Xn denote Bob’s fortune
after n games. Show that Xn is almost surely convergent, whatever strategy Bob follows.

Solution: Since all games are unfavourable or fair, −Xn is a submartingale. Since there
is no credit, −Xn ≤ 0, which can also be written as X+

n = 0, so EX+
n = 0. Now the

martingale convergence theorem states that −Xn converges almost surely.

9. Let Bt be a Brownian motion (Wiener process). What is the value of the arclength

s(ω) := sup

{

n
∑

i=1

√

(ti − ti−1)2 + (Bti(ω)− Bti−1
(ω))2 : 0 = t0 < t1 < t2 < · · · < tn = 1

}

for a typical ω ∈ Ω?

Solution: The arclength is at least as much as the total variation

v = v(ω) := sup

{

n
∑

i=1

|Bti(ω)−Bti−1
(ω)| : 0 = t0 < t1 < t2 < · · · < tn = 1

}

,

which we know is almost surely infinite (since even the quadratic variation is nonzero).
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