CEU Budapest, fall semester 2013

Imre Péter Tóth

Homework sheet 3 - solutions

3.1 (homework) Poisson approximation of the binomial distribution. Fix $0<\lambda \in \mathbb{R}$. Show that if X_{n} has binomial distribution with parameters (n, p) such that $n p \rightarrow \lambda$ as $n \rightarrow \infty$, then X_{n} converges to $\operatorname{Poi}(\lambda)$ weakly.
Solution: Set $q_{n}=1-p_{n}$, so X_{n} has characteristic function

$$
\psi_{X_{n}}(t)=\left(q_{n}+p_{n} e^{i t}\right)^{n}=\left[\left(1+\frac{e^{i t}-1}{1 / p_{n}}\right)^{1 / p_{n}}\right]^{n p_{n}}
$$

The base of the power converges to $\exp \left(e^{i t}-1\right)$ as $p_{n} \rightarrow 0$ by standard elementary calculus, while the exponent converges to λ, so

$$
\psi_{X_{n}}(t) \rightarrow e^{\lambda\left(e^{i t}-1\right)},
$$

which is exactly the characteristic function of the $\operatorname{Poi}(\lambda)$ distribution, so the continuity theorem ensures that X_{n} converges to $\operatorname{Poi}(\lambda)$ weakly.
3.2 (homework) Let X be uniformly distributed on $[-1 ; 1]$, and set $Y_{n}=n X$.
a.) Calculate the characteristic function ψ_{n} of Y_{n}.
b.) Calculate the pointwise limit $\lim _{n \rightarrow \infty} \psi_{n}(t)$, if it exists.
c.) Does (the distribution of) Y_{n} have a weak limit?
d.) How come?

Solution:

a.) The characteristic function of X is

$$
\psi_{1}(t)=\int_{0}^{1} e^{i t x} \frac{1}{2} \mathrm{~d} x=\frac{1}{2}\left[\frac{e^{i t x}}{i t}\right]_{0}^{1}=\frac{\sin t}{t}
$$

so

$$
\psi_{n}(t)=\psi_{1}(n t)=\frac{\sin (n t)}{n t}
$$

(with $\psi_{n}(0)=1$, of course).
b.) So for every $t \neq 0$ we have $\left|\psi_{n}(t)\right| \leq \frac{1}{n|t|}$, which goes to 0 as $n \rightarrow \infty$, so

$$
\lim _{n \rightarrow \infty} \psi_{n}(t)=\left\{\begin{array}{l}
0, \text { if } t \neq 0 \\
1, \text { if } t=0
\end{array}\right.
$$

c.) No: $\mathbb{P}\left(Y_{n}<x\right) \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$ for every $x \in \mathbb{R}$, and the constant $\frac{1}{2}$ is not a distribution function. Another possible reasoning is that for any continuous $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ which is bounded by some K and supported on some bounded interval $[a, b]$ we have

$$
\left|\mathbb{E} \varphi\left(Y_{n}\right)\right| \leq \mathbb{E}\left|\varphi\left(Y_{n}\right)\right| \leq K \mathbb{P}\left(Y_{n} \in[a, b]\right) \leq K \frac{b-a}{2 n} \xrightarrow{n \rightarrow \infty} 0,
$$

so if Y_{n} would converge weakly to some Y, then we would have $\mathbb{E} \varphi(Y)=0$ for every such φ, but then the distribution of Y has to give zero weight to every interval, which is impossible.
d.) There is no contradiction with the continuity theorem, because the pointwise limit $\psi(t):=$ $\lim _{n \rightarrow \infty} \psi_{n}(t)$ of the sequence of characteristic functions is not continuous at 0 (and thus not a characteristic function).
3.3 Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}, \quad \mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}} .
$$

Show that $\mathbb{E} X_{n}=0$ for every n, but

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\ldots X_{n}}{n}=-1
$$

almost surely.
3.4 Exchangeability of integral and limit. Consider the sequences of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and $g_{n}:[0,1] \rightarrow \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$, such that $f_{n}(x) \rightarrow f(x)$ and $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x \in[0,1]$? What is $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right)$ and $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} g_{n}(x) d x\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
(a)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { if } 1 / n \leq x \leq 2 / n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Write n as $n=2^{k}+l$, where $k=0,1,2 \ldots$ and $l=0,1, \ldots, 2^{k}-1$ (this can be done in a unique way for every n). Now let

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{l}{2^{k}} \leq x<\frac{l+1}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

3.5 (homework) Exchangeability of integrals. Consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}1 & \text { if } \quad 0<x, 0<y \text { and } 0 \leq x-y \leq 1 \\ -1 & \text { if } \quad 0<x, 0<y \text { and } 0<y-x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y$ and $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x$. What's the situation with the Fubini theorem?

Solution: Sketching the function one easily sees that

$$
\int_{-\infty}^{\infty} f(x, y) \mathrm{d} x=\left\{\begin{array}{l}
1-y, \text { if } 0<y<1 \\
0, \text { if not }
\end{array}\right.
$$

so $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y=\int_{0}^{1}(1-y) d y=\frac{1}{2}$. Similarly

$$
\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y=\left\{\begin{array}{l}
-1+x, \text { if } 0<x<1 \\
0, \text { if not }
\end{array}\right.
$$

so $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x=\int_{0}^{1}(x-1) d x=-\frac{1}{2}$. The two double integrals are not equal, but this does not contradict the Fubini theorem, because f is not integrable (w.r.t. Lebesgue measure on \mathbb{R}^{2}). Indeed, $\iint_{\mathbb{R}^{2}}|f|=\infty$.
3.6 Weak convergence and densities.
(a) (homework) Prove the following

Theorem 1 Let μ_{1}, μ_{2}, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f_{1}, f_{2}, \ldots and f, respectively. Suppose that $f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_{n} \Rightarrow \mu$ (weakly).
(Hint: denote the cumulative distribution functions by F_{1}, F_{2}, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf _{n \rightarrow \infty} F_{n}(x)$. For the other direction, consider $G(x):=1-F(x)$.
Solution: $F_{n}(x)=\int_{-\infty}^{x} f_{n}(x) \mathrm{d} x$ and $f_{n}(x) \rightarrow f(x)$ for every x, so the Fatou lemma says that

$$
F(x)=\int_{-\infty}^{x} f(x) \mathrm{d} x=\int_{-\infty}^{x} \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} x \leq \liminf _{n \rightarrow \infty} \int_{-\infty}^{x} f_{n}(x) \mathrm{d} x=\liminf _{n \rightarrow \infty} F_{n}(x)
$$

Similarly,

$$
\begin{aligned}
1-F(x) & =\int_{x}^{\infty} f(x) \mathrm{d} x=\int_{x}^{\infty} \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} x \\
& \leq \liminf _{n \rightarrow \infty}^{\infty} \int_{x}^{\infty} f_{n}(x) \mathrm{d} x=\liminf _{n \rightarrow \infty}\left(1-F_{n}(x)\right)=1-\limsup _{n \rightarrow \infty} F_{n}(x)
\end{aligned}
$$

which implies $\lim \sup _{n \rightarrow \infty} F_{n}(x) \leq F(x)$, so $F_{n}(x) \rightarrow F(x)$ for every x, and we are done.
(b) Show examples of the following facts:
i. It can happen that the f_{n} converge pointwise to some f, but the sequence μ_{n} is not weakly convergent, because f is not a density.
ii. It can happen that the μ_{n} are absolutely continuous, $\mu_{n} \Rightarrow \mu$, but μ is not absolutely continuous.
iii. It can happen that the μ_{n} and also μ are absolutely continuous, $\mu_{n} \Rightarrow \mu$, but $f_{n}(x)$ does not converge to $f(x)$ for any x.

