Stochastic Analysis
Problem Set 2, some solutions
Filtrations, Stopping Times, Markov Property,
Martingales, . ..

2.9 Let B(t) be a standard Brownian motion and let £ be a random variable with
Bernoulli (1) distribution, independent of B(t). Let X(t) = &(1 + B(t)). Show
that X (¢) is Markov but not strongly Markov (w.r.t. the natural filtration).

Solution: First the interpretation: we toss a fair coin. If the result is “tails” (denoted
as £ = 0), then X (¢) is constant 0. If the result is “heads” (denoted as £ = 1), then

X(t) is a Brownian motion starting from 1.

a.) This X (t) is clearly not strongly Markov: if 7 := inf{t > 1| X (¢) = 0} is the
first hitting time of 0 after time 1, then X (7) = 0 deterministically, so o(X (7))
is the trivial (indiscrete) o-algebra, containing no information, so

E(F(X(t+u)) | o(X(1))) =E(F(X(1 4+ u)))
is a constant for any bounded and measurable F : R — R. As an example, let
F : R — R be the indicator function of 0. Then, for any u > 0
1
E(F(X(T+u)) } a(X(T))) =E(F(X(t4+u))=P((X(r+u)=0)= 3

(since P(X(7+u) =0 |&=0)=1land P(X(r+u) =0]&=1) =0). On
the other hand F, is not trivial: it definitely contains the events {{ = 0} and
{¢ = 1}. (If you see the trajectory up to 7, you can tell the result of the coin
toss.) So E(F(X(r+u)) | F;) is not constant (in particular it is 1 on {¢ = 0}
and 0 on {¢ =1}).

In summary: for this particular 7 and F', and for any u > 0
E(F(X(t+uw) | F) # E(F(X(T+u)) | o(X(7))),

so the process is not strongly Markov.
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b.) The surprising part is that X (¢) is Markov. This is because, for every fixed
deterministic t € R, P (1 + B(t) =0) = 0. This way if we see that X (¢) = 0,

then we know that £ = 0 (or a zero probability event has occured). So

almost surely on {X(¢) = 0}

M= {1 + B(t+u) surely on {X(t) # 0}.

This means

) F(0) a.s. on {X(t) =0}
B(F(X(t+w) | X(0) = {E(F 1+ B(t+u)) | B(t)) as. on {X(t)#0}.
) F(0) a.s. on {£ =0}
B E(F(14 B(t+u)) | B(t)) as. on{¢=1}.
We need to see that E(F(X (t+u)) } F;) is the same. This can be seen by using
that
o Fi= U(‘FtB7£>a
o X(t+u)=¢&(1+ B(t+u)) where £ is Fi-measurable,

B(t + u) is independent of &,
and B(t) is Markov.

2.10 a.) Show that if X (¢) is a submartingale, ¢ : R — R is convex and increasing such
that E (]2 (X (¢)]) < oo for every ¢, then Y (t) := ¢ (X (¢)) is also a submartingale.

b.) Give an example of a submartingale X (¢) such that Y(¢) := (X (¢))? is not a

submartingale.

Solution:

a.) 1.) Adaptedness is understood w.r.t the natural filtration, so it is automatic.
ii.) Integrability is assumed explicitly as E (|Y'(¢)|) = E (|J¢(X(¢))]) < oo.

iii.) The essence is the submartingale property: for ¢, u > 0

(Y (t+u) | F) = B@(X(0) | F) > ¢ (BX() | F)) 2 $(X (1) = Y(2).

In step (1) we used Jensen’s inequality. In step (2) we used that E(X(¢) |
.7-}) > X (t) by the submartingale property of X (¢) and the monotonicity of

.



2.11

b.) Note that ¢ € [0, 00). The increasing deterministic function X (f) = —1 does the
job, since it’s a submartingle, but Y (¢) := (X(t))? = % is (strictly) decreasing,

so it’s a supermartingale (and not a submartingale).

Let B(t) be a standard Brownian motion and let X (¢) = B(t) — %: a kind of “Brown-
ian motion with drift to the left”. Let —a < 0 < b, let 705 = inf{t € R* | X(¢) = —a}
and 7o = inf{t € R | X (¢) = b} be the first hitting times for —a and b, and let
T = inf{7e s, Trignt }- Let Prepe = Diese(a,b) = P (Tieqr < Trigne) be the probability
that —a is reached sooner than b, and p,ight = Prignt(a,b) = P (Tright < Tiest) be the

probability that b is reached sooner than —a.

a.) Show that piesr + prigne = 1, which means exactly that either —a or b is almost

surely reached. (This is the same as saying that 7 < oo almost surely.)
b.) Find a number ¢ > 0 such that M (t) := ¢*® is a martingale.
c.) Apply the optional stopping theorem to M (t) and 7 to find pje s and prighs.
d.) Find the probability that X (¢) ever reaches +1. (Hint: set b = 1, and look at

lim prigne(a, b) as a — 0.)
Solution:

a.) Clearly 7 < 7jcp, and I claim that 7.5, < 0o almost surely. Indeed, for big ¢ the
particle is very likely to be left of —a, because the expected position is —%, while

the fluctuation around that is only around v/¢. With a rigorous calculation:

P(X(t)>—a)=P (N(—%,t) > _a) 11— d (Lﬁ) _

_ —é(g—\%)—)o,

SO
P (X(t) > —a for every t > 0) = 0.

b.) We see from Exercise 2.6 (with § = 1) that ¢ = e does the job: M(t) := X(®) =
exp{B(t) — £} is a martingale.

c.) For t <7 we have B(t) < b, so B(t A7) < b, implying that 0 < M(t A1) < €,
so the stopped martingale is bounded. In part a.) we have seen that 7 < oo

almost surely, so the optional stoping theorem can be applied, and it gives that
E(M(r)) = M(0) = 1. But X(7) = —a on {7t < Trigne} and X(7) = b on



{Tvight < Tiepr}, 50 1 =E(M(7)) =E (eX(T)) = Dlesi€* + Drigne€’. Together with

part a.) we have the system of equations

pleft+ DPright = 1
eiapleft + eb Pright = 1

The unique solution is

et —1
Dieft = Py —

1—e¢
Pright = pryp—

d.) A fixed b:=1 > 0 is reached if and only if b is reached sooner than —a for some

a>0. So

l—e 1
P ({b = 1is reached}) = lim prigne(a,b=1) = lim ——— = -
a—o0 e

a—oo g — e~ 4



