Stochastic Processes CEU Budapest, winter semester 2013/14 Imre Péter Tóth Homework sheet 1

- 1. The random vector $Y = (Y_1, Y_2, \ldots, Y_n)^T$ (think of it as a column vector) is said to have multivariate normal distribution if there are independent standard normal random variables $X = (X_1, X_2, \ldots, X_k)^T$ (think of this as a column vector as well), a vector $b \in \mathbb{R}^n$ and an $n \times k$ real matrix A such that Y = b + AX.
 - a.) Show that if $Y = (Y_1, Y_2, ..., Y_n)^T$ is multivariate normal, K is an $m \times n$ real matrix and $c \in \mathbb{R}^m$, then Z := c + KY is also multivariate normal.
 - b.) Calculate the expectation vector m and the covariance matrix C of the random vector Y. (Meaning $m_i = \mathbb{E}Y_i$ and $C_{ij} = Cov(X_i, X_j)$.)
 - c.) Suppose that n = k and A is invertible. Calculate the (joint) density of Y (w.r.t. Lebesgue measure on \mathbb{R}^n). Conclude that a multivariate normal distribution is characterized entirely by its expectation vector and covariance matrix. (This is true in general, but this calculation only shows it in the "nondegenerate" case.)
- 2. Consider the family of measures

$$H = \{ \mu_{t_1, t_2, \dots, t_n} \mid n \in \mathbb{N}, \ 0 \le t_k \le 1 \text{ for every } k = 1, 2, \dots, n \},\$$

where for every $n \in \mathbb{N}$ and every $t_1, \ldots, t_n \in [0, 1]$, $\mu_{t_1, t_2, \ldots, t_n}$ is the *n*-dimensional normal distribution on \mathbb{R}^n with mean zero and covariance matrix elements $C_{ij} = \min t_i, t_j - t_i t_j$.

Show that there exists a (real-valued) stochastic process on the timne interval [0, 1] with this family of measures H as its finite dimensional marginals.

3. Let I = [0, 1] and consider the (uncountably infinite) product set $\Omega := \mathbb{R}^{I}$, which is nothing else than the set of all real valued functions on [0, 1], that is, $\Omega = \{f : I \to \mathbb{R}\}$. Let \mathcal{F} be the product sigma-algebra on Ω , where each factor \mathbb{R} was equipped with the Borel sigma-algebra.

Show that the set of continuous functions is not measurable:

 $\{f: I \to \mathbb{R} \mid f \text{ is continuous}\} \notin \mathcal{F}.$

- 4. Let ξ_1, ξ_2, \ldots be independent random variables having the same exponential distribution with parameter λ (meaning expectation $1/\lambda$) and let $\tau_n = \xi_1 + \cdots + \xi_n$.
 - a.) Calculate the distribution of τ_n . (Calculate the density or the distribution function, as you like.)
 - b.) For every $t \in \mathbb{R}^+$, define $X_t = \sup n : \tau_n \leq t$. For each n and t, calculate the probability $\mathbb{P}(X_t \geq n)$.
 - c.) What is the distribution of X_t ?
 - d.) For $a \leq b \in \mathbb{R}^+$ let $X_{[a,b]} = \#\{n \mid \tau_n \in [a,b]\}$. Calculate the distribution of $X_{[a,b]}$.
 - e.) Let $[a_1, b_1], [a_2, b_2], \ldots, [a_k, b_k]$ be disjoint intervals in \mathbb{R}^+ . Describe the joint distribution of $(X_{[a_1,b_1]}, X_{[a_2,b_2]}, \ldots, X_{[a_k,b_k]})$.
- 5. Let X and Y be independent random variables, $X \sim Poi(\lambda)$ and $Y \sim Poi(\mu)$. What is the distribution of Z := X + Y?

- 6. Joe generates a random variable N with $Poi(\lambda)$ distribution. Then he rolls a die N times. (The die is biased, so the *i*th face turning up has probability p_i in each roll.) Let X_i be the number of rolls when the *i*th face turns up.
 - a.) Calculate the distribution of X_1 .
 - b.) Describe the joint distribution of (X_1, \ldots, X_k) .
- 7. For every $k \in \mathbb{N}$ let $N_k \sim Poi(\lambda)$ and let the N_k be independent. On each unit interval [k, k+1) we place N_k points, uniformly, independently of each other and the values $\{N_i\}$. (More precisely: conditionally independently, given N_k .)
 - a.) Let τ_1 be the place of the leftmost point. Calculate the distribution of τ_1 .
 - b.) Let τ_2 be the place of the second leftmost point. Calculate the distribution of $\xi_2 = \tau_2 \tau_1$.
 - c.) Describe the joint disjoint of (τ_1, ξ_2) .
 - d.) Let $X_{[a,b]}$ be the number of points in the interval [a,b]. What is the distribution of $X_{[a,b]}$?
 - e.) What is the joint distribution of $(X_{[a_1,b_1]}, X_{[a_2,b_2]}, \ldots, X_{[a_k,b_k]})$ if $[a_1, b_1], [a_2, b_2], \ldots, [a_k, b_k]$ are disjoint intervals in \mathbb{R}^+ ?
- 8. Let i and j be two states in the state space of a discrete time, discrete state space, time homogeneous Markov chain. Show that if i and j communicate (that is: it's possible to get from i to j and also from j to i), then their periods are the same.
- 9. Let X_n be a discrete time, discrete state space, time homogeneous Markov chain. A state i is said to be *recurrent* if $\mathbb{P}(\exists n > 0 : X_n = i | X_0 = i) = 1$. (Otherwise it is called transient.) Show that if i and j communicate and i is recurrent, then j is also recurrent.
- 10. Let X_n be a discrete time, discrete state space, time homogeneous Markov chain. A recurrent state *i* is said to be *positive recurrent* if there exists a stationary distribution π for which $\pi_i > 0$. (Otherwise it is called null-recurrent.) Show that if *i* and *j* communicate and *i* is positive recurrent, then *j* is also positive recurrent.
- 11. Let P be the transition matrix of a discrete time, finite state space, time homogeneous Markov chain. Show that if the Markov chain is irreducible and aperiodic, then there is an n for which all elements of P^n are positive.
- 12. Let P be the transition matrix of a discrete time, finite state space, time homogeneous Markov chain. We have seen that if all elements of P are positive, then the Markov chain has a unique invariant distribution. Show (as a consequence) that the same is true if the Markov chain is irreducible and aperiodic.