Stochastic Processes

CEU Budapest, winter semester 2013/14

Imre Péter Tóth
Homework sheet 2

1. Let $t \mapsto X(t)$ be a stochastic process in a complete separable metric space S . Prove that the following two formulations of the Markov property are actually equivalent. (Note that formulation (b) is a priori stronger than (a).)
(a) For any $0 \leq t, 0 \leq u$ and $F: S \rightarrow \mathbb{R}$ bounded and measurable

$$
\mathbb{E}\left(F(X(t+u)) \mid \mathcal{F}_{t}^{X}\right)=\mathbb{E}(F(X(t+u)) \mid \sigma(X(t))) .
$$

(b) For any $0 \leq t, n \in N, 0 \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n}$ and $F: S^{n} \rightarrow \mathbb{R}$ bounded and measurable

$$
\begin{aligned}
\mathbb{E}\left(F\left(X\left(t+u_{1}\right), X\left(t+u_{2}\right), \ldots, X\left(t+u_{n}\right)\right) \mid \mathcal{F}_{t}^{X}\right)= \\
=\mathbb{E}\left(F\left(X\left(t+u_{1}\right), X\left(t+u_{2}\right), \ldots, X\left(t+u_{n}\right)\right) \mid \mathcal{F}(X(t))\right)
\end{aligned}
$$

2. Let W_{t} be a Wiener process. Prove that $t \mapsto W(t)$ is a martingale and $t \mapsto W(t)^{2}$ is a submartingale (with respect to the filtration $\left.\left(\mathcal{F}_{t}^{W}\right)_{t \leq 0}\right)$.
3. Let $t \mapsto M(t)$ be a martingale (w.r.t. a filtration $\left.\left(\mathcal{F}_{t}\right)_{t \geq 0}\right)$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ a convex function. Let $Y(t):=\psi(M(t))$. Assuming that $\mathbb{E}(|\psi(M(t))|)<\infty$ for all $t \geq 0$, prove that $t \mapsto Y(t)$ is a submartingale.
4. Show that if W is a Wiener process, then the processes $t \mapsto W(t), t \mapsto W(t)^{2}-t$ and $t \mapsto W(t)^{3}-3 t W(t)$ are martingales adapted to the natural filtration of W.
5. Let W and W_{1} be two independent Wiener processes. Check whether the following processes are martingales with respect to the natural filtration:
(a) $X(t)=W(t)+4 t$,
(b) $X(t)=W(t)^{2}$,
(c) $X(t)=t^{2} W(t)-2 \int_{0}^{t} s W(s) \mathrm{d} s$,
(d) $X(t)=W(t) W_{1}(t)$.
6. Let $s \mapsto v(s)$ be a smooth (say, twice continuously differentiable) deterministic function with $\sup _{0 \leq s \leq T}\left|v^{\prime}(s)\right| \leq C$. Prove directly from the definition of the Itô integral that (for $t \in[0, T])$

$$
\int_{0}^{t} v(s) \mathrm{d} W(s)=v(t) W(t)-\int_{0}^{t} v^{\prime}(s) W(s) \mathrm{d} s .
$$

Hint: Write

$$
\left.v\left(s_{i+1}\right) W\left(s_{i+1}\right)-v\left(s_{i}\right) W\left(s_{i}\right)=v\left(s_{i}\right)\left(W\left(s_{i+1}\right)-W\left(s_{i}\right)\right)+W\left(s_{i+1}\right)\left(v\left(s_{i+1}\right)\right)-v\left(s_{i}\right)\right) .
$$

7. Prove directly form the definition of the Itô integral that

$$
\int_{0}^{t} W(s) \mathrm{d} W(s)=\frac{1}{2} W(t)^{2}-\frac{t}{2}
$$

and

$$
\int W(s)^{2} \mathrm{~d} W(s)=\frac{1}{2} W(t)^{3}-\int^{t} W(s) \mathrm{d} s
$$

8. Let $v, w:[0, T] \rightarrow \mathbb{R}$ be progressively measurable and square integrable w.r.t. the product measure. Let $C, D \in \mathbb{R}$. Suppose that

$$
\int_{0}^{T} v(s) \mathrm{d} W(s)+C=\int_{0}^{T} w(s) \mathrm{d} W(s)+D
$$

Show that $C=D$ and $v=w(s, \omega)$-almost everywhere.

