
Sto
hasti
 Di�erential Equations

Problem Set 1

Brownian Motion: Constru
tion and Basi
 Properties

1.1 Let

ϕ : R → R+, ϕ(x) :=
1√
2π
e−x2/2, be the standard normal density fun
tion,

Φ : R → [0, 1], Φ(x) :=

∫ x

−∞
ϕ(y)dy, be the standard normal distribution fun
tion.

Prove that for any x > 0

(

1

x
− 1

x3

)

ϕ(x) < 1− Φ(x) <
1

x
ϕ(x).

Hint: Compare the derivatives.

1.2 For every n ∈ N let X
(n)
1 , X

(n)
2 , . . . , X

(n)
n be i.i.d. normal random variables with

E

(

X
(n)
j

)

= 0, Var
(

X
(n)
j

)

=
1

n
, j = 1, . . . , n.

De�ne the sto
hasti
 pro
ess t 7→ B(n)(t), t ∈ [0, 1] as follows:

B(n)(t) :=

⌊nt⌋
∑

j=1

X
(n)
j .

(a) Compute the expe
tations and 
ovarian
es

E
(

B(n)(t)
)

=?, Cov
(

B(n)(t), B(n)(s)
)

=?, s, t ∈ [0, 1],

and their limits as n→ ∞.

(b) What is the joint distribution of the random variables {B(n)(t) : t ∈ [0, 1]}?
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(
) Let

δn := max
{
∣

∣B(n)(t+)− B(n)(t−)
∣

∣ : t ∈ [0, 1]
}

.

(In plain words: δn is the largest jump dis
ontinuity of the pro
ess {B(n)(t) : t ∈
[0, 1]}.)
Prove that for any �xed ε > 0,

lim
n→∞

P (δn ≥ ε) = 0.

Hint: Note that δn = max1≤j≤n

∣

∣

∣
X

(n)
j

∣

∣

∣
and use the upper bound from problem 1.1.

1.3 For every n ∈ N let Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
n be i.i.d. Poisson random variables with

parameter 1/n. So,

E

(

Y
(n)
j

)

=
1

n
, Var

(

Y
(n)
j

)

=
1

n
, j = 1, . . . , n.

De�ne the sto
hasti
 pro
ess t 7→ B(n)(t), t ∈ [0, 1] as follows:

Z(n)(t) :=

⌊nt⌋
∑

j=1

(

Y
(n)
j − 1

n

)

.

(a) Compute the expe
tations and 
ovarian
es

E
(

Z(n)(t)
)

=?, Cov
(

Z(n)(t), Z(n)(s)
)

=?, s, t ∈ [0, 1],

and their limits as n→ ∞.

(b) What is the joint distribution of the random variables {Z(n)(t) : t ∈ [0, 1]}?
Explain in plain words.

(
) Let

δn := max
{
∣

∣Z(n)(t+)− Z(n)(t−)
∣

∣ : t ∈ [0, 1]
}

.

(In plain words: δn is the largest jump dis
ontinuity of the pro
ess {Z(n)(t) : t ∈
[0, 1]}.)
Compute, for ε > 0 �xed,

lim
n→∞

P (δn ≥ ε) .

Hint: Note that δn = max1≤j≤n

∣

∣

∣
Y

(n)
j

∣

∣

∣
and use all you know about Poisson random

variables.
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1.4 Interpret the results of problems 1.2, respe
tively, 1.3.

1.5 (a) Let Y1, Y2, . . . , Yn be random variables with E (Yj) = 0 and Cov
(

Yi, Yj
)

=: ci,j.

Assume that the 
ovarian
e matrix C := (ci,j)
n
i,j=1 is non-degenerate, det(C) 6=

0. Prove that the random variables Y1, Y2, . . . , Yn are jointly Gaussian if and only

if there exist i.i.d. N (0, 1)-distributed random variables X1, X2, . . . , Xn and real


oe�
ients (ai,j)
n
i,j=1 su
h that

Yi =
n

∑

j=1

aijXj.

Hint: Express the matrix A = (ai,j)
n
i,j=1 from the 
ovarian
e matrix C = (ci,j)

n
i,j=1.

(b) Let t 7→ B(t) be standard 1d Brownian motion and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn.

Explain why it follows from the de�nition of Brownian motion (i.e. independent and

Gaussian in
rements) that the random variables B(t1), B(t2), . . . , B(tn) have jointly

Gaussian distribution.

(
) Determine the 
ovarian
e matrix of the random variables B(t1), B(t2), . . . , B(tn).

1.6 Let t 7→ B(t) be standard 1d Brownian motion. Prove that the following pro
esses

are also standard 1d Brownian motions:

(a) The res
aled pro
ess: X(t) := a−1/2B(at), where a > 0 is �xed parameter.

(b) The time reversed pro
ess: Y (t) := tB(1/t).

(
) The ba
kwards pro
ess: Z(t) := B(T ) − B(T − t), where T > 0 is �xed and

t ∈ [0, T ].

Hint: Prove that the pro
esses X(t), Y (t), Z(t) are Gaussian and 
ompute their


ovarian
es.

1.7 For j = 1, . . . , n, let t 7→ Bj(t), be independent 1d Brownian motions with varian
e

σ2
j , and aj �xed real numbers. Prove that the pro
ess t 7→ Z(t) :=

∑n
j=1 ajBj(t) is

also a 1d Brownian motion. Determine the varian
e of the pro
ess Z(t).

1.8 Let t 7→ B(t) be standard 1d Brownian motion. Determine (without painful 
ompu-

tations) the 
onditional probability

P
(

B(2) > 0
∣

∣ B(1) > 0
)

.
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1.9 Show that 1d Brownian motion 
hanges sign in�nitely many times in any time in-

terval [0, δ] of positive length δ.

1.10 Let t∗ ∈ [0, 1] be arbitrary but �xed. Let

1
2
< α ≤ 1. Show that B(t) is almost

surely not α-Hölder 
ontinuous at t∗, meaning that there are no δ > 0 and C <

∞ su
h that |B(t∗ + h) − B(t∗)| ≤ C|h|α whenever |h| ≤ δ. (Hint: look at the

proof of non-di�erentiability at deterministi
 t � or just 
al
ulate the probablity of

|B(t∗ + h)−B(t∗)| ≤ C|h|α for a given h.)

1.11 Show that almost surely there is no point t ∈ [0, 1] where B is

2
3
-Hölder 
ontinuous.

(Hint: mimi
 the proof of nowhere-di�erentiability.)

1.12 (Based on Exer
ise 8.1.3. from [1℄.) Let B(t) be a standard Brownian motion

(Wiener pro
ess). Fix t > 0 and for n = 0, 1, 2, . . . let

Vn =
2n−1
∑

m=0

(

B

(

m+ 1

2n
t

)

−B
(m

2n
t
)

)2

.

Cal
ulate the expe
tation and the varian
e of Vn. Use the Borel-Cantelli lemma to

show that Vn → t almost surely as n→ ∞.

1.13 For α ≥ 0 Let mα = E (|ξ|α) and cα = Var
(

|ξ|α
)

, where ξ is standard Gaussian.

Express cα using mα and m2α.

1.14 Let X1, X2, . . . be random variables su
h that E (Xn) → ∞ and

Var

(

Xn

)

(E(Xn))
2 → 0 as

n → ∞. Show that Xn → ∞ in probability � that is: P (Xn ≤M) → 0 for any

M <∞.

1.15 Find eigenvalues and eigenve
tors of K : L2([0, 1]) → L2([0, 1]) where (Kf)(t) =
∫ 1

0
K(t, s)f(s)ds and K(t, s) = min{t, s}. (Hint 1: the solution is given in the next

exer
ise. If you are tough, don't look at it. Che
king the solution is mu
h easier than

�nding it. Hint 2: try f(s) = eλs �rst. It will not work, but you will see how to �x

it.)

1.16 On the Hilbert spa
e L2([0, 1], dx) de�ne the self-adjoint 
ompa
t (a
tually: Hilbert-

S
hmidt) operator

Kf(t) :=

∫ 1

0

min{t, s}f(s)ds.

Prove that

λn =
4

π2(2n− 1)2
, ψn(t) =

√
2 sin

(

π(2n− 1)

2
t

)

, n = 1, 2, . . .
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are eigenvalues and eigenve
tors of the operator K.

1.17 Che
k that for t, s ∈ [0, 1]

min{t, s} =

∞
∑

n=1

λnψn(t)ψn(s)

where

λn =
4

π2(2n− 1)2
, ψn(t) =

√
2 sin

(

π(2n− 1)

2
t

)

, n = 1, 2, . . .

(Hint: �x t ∈ [0, 1], and look at both sides of the equation as a fun
tion of s. Then

the RHS is the Fourier series of a fun
tion on R whi
h is periodi
 with some period

l (and it happens that l 6= 1). This fun
tion is odd. So extend the LHS from [0, 1]

to R to get an odd, l-periodi
 and 
ontinuous fun
tion to make sure that its equal to

its Fourier series poitwise. Now just 
al
ulate the Fourier expansion.)

1.18 For n = 1, 2, . . . let cn = 2
π(2n−1)

and ψn(t) =
√
2 sin

(

π(2n−1)
2

t
)

. Let ξ1, ξ2, . . . be

independent standard Gaussian random variables.

a.) Prove that the series

B(t) =

∞
∑

n=1

cnξnψn(t)

is almost surely 
onvergent for every �xed t ∈ [0, 1]. (Hint 1 (overshooting): the

Kolmogorov three series theorem 
an be applied. Hint 2: The partial sum is a

martingale. Apply a martingale 
onvergen
e theorem.)

b.) Prove that the series

B =
∞
∑

n=1

cnξnψn

is 
onvergent in L2([0, 1]).

1.19 Show that the fun
tion

φ : R+ × R → R, φ(t, x) :=
1√
t
ϕ

(

x√
t

)

solves the heat equation

∂tφ(t, x) =
1

2
∂2xφ(t, x).
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1.20 Exer
ise 1 implies that if ξ is a standard Gaussian random variable and x ≥ 1, then

P (|X| ≥ x) ≤
√

2

π
e−

x
2

2 .

Use this to show that if ξ1, ξ2, . . . are i.i.d. standard Gaussian, then, with probability

1, the event {|ξn| > 2 lnn} o

urs for at most �nitely many n-s.

1.21 Fix t > 0 and let Y ∼ N (0, t). Let ξ ∼ N (0, σ2) with some σ > 0 be independent of

Y and let X = Y
2
+ ξ.

a.) How should σ be 
hosen for X and Y −X to be independent?

b.) In this 
ase, what is the varian
e of X?

1.22 Paul Lévy's 
onstru
tion of the Wiener pro
ess. In a possible 
onstru
tion of the

Wiener pro
ess (or Brownian motion) on [0, 1] we de�ne a sequen
e of pie
ewise

linear 
ontinuous random fun
tions so that we �rst de�ne fn at dyadi
 rationals

that are multiples of

1
2n
, inheriting every se
ond value (at multiples of

1
2n−1 ) form

fn−1, and setting the values at the remaining points (of the form

2k−1
2n

) to be the

average of the two neighbouring values, plus an independent Gaussian random value

with mean 0 and varian
e

1
2n+1 . Then we extend fn to [0, 1] pie
ewise linearly.

Formally: we take independent standard Gaussian random variables ξ0 and ξn,k

where n = 1, 2, . . . and k = 1, 2, . . . , 2n−1
. Then

• In the 0th step we �x f0(0) = 0 and f0(1) = ξ0. We 
onne
t these two values

linearly.

• In the 1st step we leave f1(0) = f0(0) and f1(1) = f0(1), but also set f1(
1
2
) =

f0(
1
2
) + 1

2
ξ1,1. We 
onne
t these three values linearly.

• . . . in the nth step we leave fn
(

k
2n−1

)

= fn−1

(

( k
2n−1

)

for k = 0, 1, . . . , 2n−1
, but

also set fn

(

k− 1

2

2n−1

)

= fn−1

(

k− 1

2

2n−1

)

+ 1√
2n+1

ξn,k for k = 1, . . . , 2n−1
. We 
onne
t

these 2n + 1 values linearly.

Noti
e that, in this 
onstru
tion, the di�eren
e gn := fn+1 − fn is the sum of 2n

�tent� maps with disjoint supports and i.i.d. Gaussian �heights�.

(a) Use the statement of Exer
ise 20 to show that, with probability 1, the series

lim
n→∞

fn = f0 +

∞
∑

n=0

gn

is uniformly absolutely 
onvergent.
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(b) Che
k that the limit is a Wiener pro
ess.
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