Stochastic Differential Equations
Problem Set 1
Brownian Motion: Construction and Basic Properties

1.1 Let
1 2
v:R=>Ry, ox):= \/Q_e’x /2 be the standard normal density function,
T
¢:R—[0,1], P(x):= / ©(y)dy, be the standard normal distribution function.

Prove that for any x > 0

(l _ i) p(z) < 1 B(x) < %w(x)-

x a3

Hint: Compare the derivatives.

1.2 For every n € N let Xf"), Xz(n), ..., X be i.i.d. normal random variables with

1
B(xO) -0 Var(x")-L -1
j ar( j ) 0 ] n

Define the stochastic process ¢t — B™(t), t € [0, 1] as follows:

[nt)
BMW(t) =) x".
j=1

(a) Compute the expectations and covariances
E (B™(t)) =?,  Cov(B™(t),B"(s)) =7,  s,te[0,1],
and their limits as n — oco.

(b) What is the joint distribution of the random variables {B™ () : t € [0,1]}?



1.3

(c) Let
Op i= max{} B™(t+) — B™(t—) ’ e [0,1]}.
(In plain words: &, is the largest jump discontinuity of the process {B™(t) : t €

[0,1]}.)

Prove that for any fixed ¢ > 0,

lim P (4, >¢) =0.

n—oo

x ™ ) and use the upper bound from problem 1.1.

Hint: Note that 0, = maxi<j<, | X;

For every n € N let Yl("),YQ("), ...,Y!" be ii.d. Poisson random variables with

parameter 1/n. So,

1 1
M\ _ (n)y _ _
E(Yj )_ﬁ’ Var (Y] )_E’ j=1,...,n.

Define the stochastic process t — B™(t), t € [0, 1] as follows:
ZM(t) .= vy — .
=3 (1)

(a) Compute the expectations and covariances
E(ZM(@®) =2,  Cov(Z"(t),Zz™(s)) =2,  s,tel0,1],
and their limits as n — oco.

(b) What is the joint distribution of the random variables {Z(™(t) : t € [0,1]}?

Explain in plain words.

(c) Let
Op 1= max{’ ZW(t4) — 2 (t-) } :te[0,1]}.
(In plain words: 6, is the largest jump discontinuity of the process {Z™(t) : t €

[0,1]}.)
Compute, for € > 0 fixed,
lim P (5, > ¢).

n—oo

Hint: Note that §,, = maxi<j<,

Yj(") ‘ and use all you know about Poisson random

variables.



1.4

1.5

1.6

1.7

1.8

Interpret the results of problems 1.2, respectively, 1.3.

(a) Let Y1,Ys,...,Y, be random variables with E (Y;) = 0 and Cov(Y;,Y;) =: ¢;;.

Assume that the covariance matrix C' := (¢;;)}',—; is non-degenerate, det(C) #

ij=
0. Prove that the random variables Y7, Y5, ... Y, are jointly Gaussian if and only
if there exist i.i.d. A(0, 1)-distributed random variables X, X5, ..., X, and real

coefficients (a;;);;_, such that

Y; = i OJZ']'X]'.
j=1

Hint: Express the matrix A = (a;;);,_, from the covariance matrix C' = (c¢;;); ,_,-

(b) Let ¢t — B(t) be standard 1d Brownian motion and 0 < t; < ¢y < -+ < £,
Explain why it follows from the definition of Brownian motion (i.e. independent and
Gaussian increments) that the random variables B(t;), B(ts), ..., B(t,) have jointly

Gaussian distribution.
(c) Determine the covariance matrix of the random variables B(t,), B(tz), ..., B(t,).

Let ¢ — B(t) be standard 1d Brownian motion. Prove that the following processes

are also standard 1d Brownian motions:
(a) The rescaled process: X(t) := a~'/?2B(at), where a > 0 is fixed parameter.
(b) The time reversed process: Y (t) := tB(1/t).

(c) The backwards process: Z(t) := B(T) — B(T — t), where T' > 0 is fixed and
t €10,7].

Hint: Prove that the processes X (t),Y (t), Z(t) are Gaussian and compute their

covariances.
For j =1,...,n, let t = Bj(t), be independent 1d Brownian motions with variance
03, and a; fixed real numbers. Prove that the process t — Z(t) := > i1 a;Bj(t) is

also a 1d Brownian motion. Determine the variance of the process Z(t).

Let t — B(t) be standard 1d Brownian motion. Determine (without painful compu-

tations) the conditional probability

P(B(2) > 0| B(1) > 0).



1.9

1.10

1.11

1.12

Show that 1d Brownian motion changes sign infinitely many times in any time in-

terval [0, 0] of positive length 0.

Let ¢, € [0,1] be arbitrary but fixed. Let 3 < a < 1. Show that B(t) is almost
surely not a-Hdélder continuous at t,, meaning that there are no § > 0 and C' <
oo such that |B(t, + h) — B(t.)] < Clh|* whenever |h| < §. (Hint: look at the
proof of non-differentiability at deterministic t — or just calculate the probablity of
|B(t. + h) — B(t.)| < Clh|* for a given h.)

Solution: Let Ac s denote the event that |B(t, + h) — B(t,)| < C|h|* for every h
with |h| < 4. First, let C' < oo and § > 0 be fixed. B(t, +h) — B(t.) ~ N(0,h), so
B(t, + h) — B(t,) = Vh& where € ~ N(0,1). So

P (|B(t. + k) - B(t.)| < CIhI) = P (J¢] < Clj*~+) < cmwh\a"

since o — % > 0, this goes to 0 as h — 0, so P (A¢s) = 0. Now let €, = n and

Op = % Then
P ({B(t) is a-Holder continuous at ¢,}) = (U Ac, 5n> < Z (Ac, s5,)

Show that almost surely there is no point ¢ € [0, 1] where B is %—Hélder continuous.

(Hint: mimic the proof of nowhere-differentiability.)

(Based on Ezxercise 8.1.3. from [1].) Let B(t) be a standard Brownian motion
(Wiener process). Fix ¢t > 0 and for n =0,1,2,... let
9n_1 2
m—+1 m
vV, = B(mTy —B(—t> .
> (#(%57) - ()
Calculate the expectation and the variance of V,,. Use the Borel-Cantelli lemma to

show that V,, — ¢ almost surely as n — oc.

Solution: For a given n, the squared increments X, ,, := (B (";ﬁlt) — B (Q%t))2
are independent and identically distributed (for m =0,1,...,2" — 1), with X, ,,, ~

2
< 2%&) = £¢&%, where £ ~ N(0,1), meaning that E (X, ) = % E (£?) = & and

Var (X,,») = (QL) Var (£2) = <22t This means that E (V},) = Zi:_ol E(X,nm) =t
and Var( ) = zn_o1 Var(Xn,m) = C‘m“ . Now Chebyshev’s inequality says that

2
P (|Vn — t| > l) < VL(‘Q/") = constn—,
n (l) 2"

n

4



1.13

1.14

1.15

1.16

1.17

which is summable. Now the first Borell-Cantelli lemma implies that almost surely
|V, — t| < £ for all but finitely many n, so V,, — ¢.

For o > 0 Let m, = E(|¢|*) and ¢, = Var(|¢|*), where £ is standard Gaussian.
Express ¢, using m, and ma,.

. Var(Xn)
Let X3, Xs,... be random variables such that E (X,) — oo and B 0 as

n — oo. Show that X, — oo in probability — that is: P (X,, < M) — 0 for any
M < oo.

Solution: We just use Chebyshev’s inequality. For any fixed M we have M <
E (X,) for large enough n, so

P (X, < M) <P (X, - E(X,)[ > E(X,) = M)
Var(X,)  Var(X,) / E(X,)
TEX) M) (X)) (E(Xn) —M> o

Find eigenvalues and eigenvectors of K : L?([0,1]) — L*([0,1]) where (K f)(t) =
fol K(t,s)f(s)ds and K(t,s) = min{t,s}. (Hint 1: the solution is given in the next
exercise. If you are tough, don’t look at it. Checking the solution is much easier than
finding it. Hint 2: try f(s) = e first. It will not work, but you will see how to fix

it.)

On the Hilbert space £2([0, 1], dz) define the self-adjoint compact (actually: Hilbert-
Schmidt) operator

Kf(t) ::/O min{¢, s} f(s)ds.

Prove that

4
An =

- ow2(2n — 1)

Pn(t) = V/2sin (@t) n=1,2,...

are eigenvalues and eigenvectors of the operator K.

Check that for ¢, s € [0, 1]

min{t, s} = Z Antn () Yn(s)

n=1



(Hint: fix t € [0,1], and look at both sides of the equation as a function of s. Then
the RHS is the Fourier series of a function on R which is periodic with some period
[ (and it happens that | # 1). This function is odd. So extend the LHS from [0, 1]

to R to get an odd, l-periodic and continuous function to make sure that its equal to

its Fourier series poitwise. Now just calculate the Fourier expansion.)

1.18 For n = 1,2,... let ¢, = ﬁ and v, (t) = v/2sin (@t) Let &,&,... be

independent standard Gaussian random variables.

a.)

Prove that the series
B(t) =) calnthn(t)
n=1

is almost surely convergent for every fixed ¢ € [0,1]. (Hint 1 (overshooting): the
Kolmogorov three series theorem can be applied. Hint 2: The partial sum is a
martingale. Apply a martingale convergence theorem.)

Solution: Fix t and let Let Xy = ZnNzl Cn€nthn(t). This is a sum of indepen-

dent random variables with zero expectation, so it’s clearly a martingale. Since

[hn(t)] < V2 for all n,

N N 00
Var(X,) = ZVar(cngn@/)n(t)) < Z cfl\/ﬁzvar(gn) = ZZ 2 =M < oo,
n=1 n=1 n=1

so the L? martingale convergence theorem implies that X converges almost
surely (and also in L?).
Alternatively: X% is a nonnegative submartingale with bounded expectation, so

the martingale convergence theorem implies that it converges almost surely.

Prove that the series

B = Z Cngnwn
n=1

is convergent in L*([0, 1]).

Solution: SORRY, this exercise was not formulated precisely. Actually, it
should have been “Consider Xy := S ¢, ¢,¢, as arandom element of L?(]0, 1])
(since it is a random function of ¢). Show that this sequence is almost surely

convergent in L?([0, 1]).”

So the solution: since vy,1s, ... are orthonormal in L?([0,1]), the convergence



of X is equivalent to the convergence of the sum Y >~  ¢2¢2 (see the footnote).

o0 2 2 . (R} .
Now > > c2&; < oo almost surely, since it’s a sum of nonnegative random

variables, and even its expectation is finite:

(3t ) - Dm() - <o
n=1 n=1 n=1

1.19 Show that the function
¢ R, xR—>R o(t )——1 (—x)
: , ,T) =
* \/ZSO \/Z

solves the heat equation

00(1,7) = 5080(1,).

1.20 Exercise 1 implies that if £ is a standard Gaussian random variable and x > 1, then

2 a2
P(X|>2)<y/-e 7.
T

Use this to show that if &1, &, ... arei.i.d. standard Gaussian, then, with probability

1, the event {|&,| > 2Inn} occurs for at most finitely many n-s.

1.21 Fixt > 0 and let Y ~ N(0,¢). Let £ ~ N(0,0?) with some o > 0 be independent of
Y and letX:%Jrf.

a.) How should o be chosen for X and Y — X to be independent?

b.) In this case, what is the variance of X7

1.22 Paul Lévy’s construction of the Wiener process. In a possible construction of the
Wiener process (or Brownian motion) on [0, 1] we define a sequence of piecewise
linear continuous random functions so that we first define f, at dyadic rationals

that are multiples of 2%, inheriting every second value (at multiples of W%l) form

fa—1, and setting the values at the remaining points (of the form 2:-1) to be the

average of the two neighbouring values, plus an independent Gaussian random value

with mean 0 and variance 5. Then we extend f, to [0, 1] piecewise linearly.

Formally: we take independent standard Gaussian random variables {, and &,
where n =1,2,... and k=1,2,...,2" ', Then

Indeed, for M > N we have || Xy — Xn||? = ZQ/I:NH 22, so Xy is Cauchy in L? if and only if

M 2 ¢2
YonenNt1nén — 0as N — oo.



e In the Oth step we fix fo(0) =0 and fo(1) = &. We connect these two values

linearly.

e In the Ist step we leave f1(0) = fo(0) and f1(1) = fo(1), but also set fi(3) =

fo(%) + %51,1. We connect these three values linearly.

e ...in the nth step we leave f, (%L_l) = fa1 ((zn%) for k=0,1,...,2" % but

1 _1
also set f, (%) = fu_1 <§n—}1> + ﬁfn,k for k =1,...,2" ', 'We connect

these 2" + 1 values linearly.

Notice that, in this construction, the difference g, := f,+1 — f. is the sum of 2"

“tent” maps with disjoint supports and i.i.d. Gaussian “heights”.

(a) Use the statement of Exercise 20 to show that, with probability 1, the series
lim f, = fo+ Z%gn

is uniformly absolutely convergent.

(b) Check that the limit is a Wiener process.
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