Stochastic Differential Equations
Problem Set 4
Stochastic differential equations, Dynkin formula,
Girsanov theorem

4.1 Check that the following processes solve the corresponding SDE’s, where B(t) is

1-dimensional standard Brownian motion:
(a) X(t) = ePW with B(0) = b solves

dX(t) = %X(t)dt +X()dB(t),  X(0)=é".
(b) X(t) = 329 with By = b, solves

14+t

X(t 1
® g 4 LB, X(0)=b,

dX(t):_lth 1+

(¢) X(t) =sinB(t), with B(0) =b € (—n/2,7/2), and t < min{t : | B(t) | = 7/2},
solves

X (t) = —%X(t)dt + I X(®2dB,  X(0) = sinb.

(d) (Xi(t), X5(t)) = (cosh B(t),sinh B(t)), with B(0) — b, solves
dXi(t)\ _ 1 (Xui(t) Xo(t)
(ng(t)) =3 (Xg(t)) at+ (Xl(t)) 4B(2).
4.2 Let B(t) be astandard 1-dimensional Brownian motion with B(0) = b, and (U(t), V(1)) =

(cos B(t), sin B(t)). Write down in vectorial notation the SDE driving the 2-dimensional
process (U(t), V().

4.3 Solve the following SDE’s, where B(t) is 1-dimensional standard Brownian motion
starting from B(0) = 0:



dX(t) = =X (t)dt + e "dB(t).
(b)
dX(t) =rdt+aX(t)dB(t),
with 7, € R constants.
Hint: Multiply by exp ( — aB(t) + O‘;t)
(c) Now, X(t) = (Xi(t), X2(t)) € R?, and B(t) = (Bi(t), Ba(t)) is standard 2-

dimensional Brownian motion.

dX\(t) =  Xo(t)dt + adBy (1)
dX5(t) = =X, (t)dt + BdBa(1),

or in vector notation,

dX(t) = JX(1)dt + AdB(t),  where J — (_01 (1)) L A= (‘8‘ g) .

Hint: Multiply by left by e=7t.
4.4 The Ornstein-Uhlenbeck process:

(a) Solve explicitly the stochastic differential equation
dX(t) = =X (t)dt + adB(t), X (0) = xy,

and show that the process X () is Gaussian.
Hint: Multiply by €.
(b) Compute E (X (t)) and Cov (X (s), X (t)).
(c) Let Yk(") be the Markov chain on the state space S™ := {0,1,...,n} with

transition matrix

Pi(J) = —0i-1; + —0iy1, 1,] € S
n n

The Markov chain Yk(") is called Fhrenfest’s Urn Model (or Dogs and Fleas).
Define the sequence of continuous time processes
v = (n/2)

Xty = L
Vi

t>0.



4.5

4.6

4.7

Write down an approzimate stochastic differential equation for X ™ (t), with time

1

increments dt = -~ and conclude (non-rigorously) that the Ornstein-Uhlenbeck

process is — in some sense — the limit of the processes X (™ (¢) (that is: the scaling
limit of Ehrenfest’s Urn Model.)

Write down the infinitesimal generator as elliptic differential operator for the follow-

ing Ito diffusions:

(a) dX(t) = Bdt + aX ()dB(t).
dt

(b) dY (t) = (dX(t)) , where dX (t) = —y X (t)dt + adB(t).
X1 t
2 t

0 (32) = (i) + (o0 200
@ (i) = () 6 %) (@)

Find an It6 diffusion (i.e., write down the SDE for it) whose infinitesimal generator

is the following:

(a) Af(z) = f'(x) + f"(x), | € CF(R).
_l’_

() Af(t) = Dt x4 LoD ]

pe 22’ f € C3(R?).

Let X (t) be a geometric Brownian motion, i.e. strong solution of the following SDE
dX(t) = X (t)dt + aX (t)dB(t), Xo=1z>0,
where a > 0, § € R are fixed parameters.

(a) Find the generator A of the diffusion ¢ — X (¢) and compute Af(x) when f :
R, — Ris f(z) = 27, v constant.

(b) Let 0 <r < R < 0o, and r < 2 < R. using Dynkin’s formula, compute
P(r. <7 | X(0) =),

where 7., and 7g are the first hitting times of r, respectively, R.
Hint: Solve the boundary value problem Af(x) = 0 for r < = < R, with

flr) =1, f(R) =
(c) Assume 3 < a?/2. What is P (X (¢) ever hits R | X(0) = z)?
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(d) Assume 8 > a?/2. What is P(X(t) ever hits r | X(0) = z)?
4.8 (a) Find the generator of the j-dimensional Bessel process, BES(0)

-1
YO@) = — B
dY'(t) 4Gl dt + dB(t)
on R,.

(b) Let 0 <r < R < 0o, and r < x < R. using Dynkin’s formula, compute
P(7. < g | Y©®(0) = z),

where 7., and 7g are the first hitting times of r, respectively, R.

Hint: Solve the boundary value problem Af(zx) = 0 for r < = < R, with
f(r) = 1, f(R) = 0. Note that the solutions are qualitatively different for
0 €10,2), 6 =2, respectively, § > 2.

(c) Show that BES(J) is transient if 0 > 2.
(d) Show that BES(2) almost surely hits all points in (0, 00), but never hits 0.
(e) Show that for 6 € [0,2) BES(J) almost surely hits 0 (no matter where it starts).

4.9 Show that the solution u(t, z) of the initial value problem

ou
5 (h2) =
u(0,z) = f($)> (f € C%(R) given)

Baz—(t x)+aa:g$(t ), t>0, zeR,

can be expressed as follows:

u(t,x) =E (f(x exp{AB(t) + (o — 52/2)t}))

1 2 2
= — Tex + (a0 — 2)t}) exp(— 2t))dy, t>0.
= [ Saeso{By+ (@ = #/208) expl=y?/20)dy
In this expression ¢ — B(t) is standard 1-dimensional Brownian motion with B(0) =
0.

4.10 [Change of conditional expectation]
Let Q and P be two probability measures on (£, F), with Q < P, and Radon-
Nikodym derivative Z—g(w) = o(w). Let G C F a sub-g-algebra. Show that, for any

F-measurable random variable X, we have

Ep(0X|G)

EQ(X}Q) - Ep(g]g)

(1)



4.11 [A discrete version of Girsanov’s formula]

Let €, := {H, T}", P be the probability measure on €, given by tossing a biased
coin n times independently which gives probability 2/3 to H, and Q the probability
measure given by tossing a fair coin n times independently. Let Z,(w) := %(w),
and consider the martingale (with respect to the measure P) Z,, := Ep(Zn } fm)

for m <n.
(a) Give explicitly the distribution of Z,, . given Z,,, ..., Z;.

(b) Note that (1) of the previous exercise translates to Eq ( X ‘ Fm ) = (Z,) 'Ep ( XZ, ‘ Fm )
Check this numerically for n = 3, m = 2, X = #{heads in (w1, ws, w3)}.

(c) Interpret this exercise as a discrete version of Girsanov’s theorem.

4.12 [Cameron-Martin theorem/

(a) Let f € L?[0,1] be a deterministic function and F(t) := ) f(u)du, t € [0,1].
Show that, if ¢ — B(t) is standard 1d Brownian motion, then the laws of the
processes {t — F(t)+ B(t) : t € [0,1]} and {¢t — B(¢) : t € [0,1]} are mutually

absolutely continuous w.r.t. each other. Compute the Radon-Nikodym derivatives.

(b) If F(t) is such that the above f(¢) does not exist, then the laws of the two

processes are mutually singular.

4.13 Let B(t) = (Bi(t), B2(t)), t < T, be a 2-dimensional standard Brownian motion
on the probability space (€2, Fr,P). Find a probability measure Q on Fr that is
mutually absolutely continuous w.r.t. P, and under which the following process

t — Y (t) becomes a martingale:

T e @)

(0 1 3 dB(t)
= (O (1 ) (B0, ex
4.14 Let B(t) be standard 1-dimensional Brownian motion on the probability space

(Q,F,P) and Y(t) = t + B(t). For each T" > 0, find Qr ~ P on Fr such that

{t = Y (t) }+<r becomes a Brownian motion under Qr.



(a) Show that there exists a probability measure Q on F such that Q|z. = Qr for
all ' > 0.

(b) Show that P (limy . Y () = oo) = 1, while Q(limy_,» Y (t) = 00) = 0. Why

does not this contradict Girsanov’s theorem?

4.15 Let b : R — R be Lipschitz, and ¢t — X(¢) be the unique strong solution of the
1-dimensional SDE

dX(t) = b(X(t))dt + dB(t), X(0)=z€R.
(a) Use Girsanov’s theorem to prove that for any M < oo, x € R, and t > 0, we
have P (X (t) > M) > 0.

(b) Choose b(z) = —r, where r > 0 is a constant. Prove that, for all x, we have

limy o X (t) = —00, a.s. Compare this fact with the result in part (a).



