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Problem Set 6
Strongly Continuous Contraction Semigroups and their
Infinitesimal Generators

Let

o= {f 1N R ¢ | £ = swp]| f(w)] < oo},

o= {f oo s lim [J@)| =0, | []:=sup|f)]}

Let t — n; € N be a time-homogeneous continuous time Markov chain on N. Its transition

operators are
Pl — s, P f(x) ::E(f(nt) ‘nozx).

(a) Show that the one parameter family of operators t — P; form a semigroup of contractions

on fop.
(b) Give examples when P; : ¢g — co, and when P, : ¢y /4 ¢p.

(c) Prove that if P, : ¢ — c¢o then by force the semigroup t — P : ¢y — ¢ is strongly

continuous.

(d) Give an example when P; : ¢y /4 ¢o and the semigroup ¢t — P} : {oo — ls is strongly

continuous.

(e) Give an example when the semigroup ¢ +— P; : £oo — lo is not strongly continuous.

Let B be a Banach space and C C B a dense subspace. Recall that we call the densely
defined operator A : C — B to be dissipative (or —A to be accretive) if Vo € C there exists a
normalized tangent functional £, € B* to the vector ¢, such that £,(—Ap) > 0. We showed
in class that this implies that

A=Al =Xl el, for all p € C, and A > 0. (1)

Conversely, if A is the infinitesimal generator of a strongly continuous contraction semigroup,

then it is dissipative.

(a) Show that (1) implies that A : C — B is closable.
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(b) Let

B ZC()[O, OO)

:={f :]0,00) = R : f continuous, xli)rgolf(ac) | =0, with || f|| := 0<sui) | f(z) ]|}

Consider Af = 1 f” defined on

C := Cp[0,00) N CE[0, c0).
Show that A defined on C does not satisfy (1).
(c) Show that, on the other hand, Af = 1 f” defined on
C := Cp[0,00) N CE[0,00) N {f'(0) = 0}

does satisfy (1). The closure of this operator is the infinitesimal generator of Brownian

motion on [0, co) reflecting at 0.
Young’s inequality for convolutions says that if 1 < p,q,r < oo satisfy % + % = % + 1, then

I *gll, <1 lpllglly-

At

Using this, show that ¢ — e300 g g strongly continuous contraction semigroup on £P, 1 <

p < oQ.

Hint: Use the explicit form of the heat-kernel:

A0 f(2) = (2mt) /2 / ol 7=uP/2 )y
]Rd

In this problem we consider the infinitesimal generator of Brownian motion in R?, that is:

the Laplaciam A on the Banach space

B =Cp(RY)
={f:R? =R : f continuous, llim | f(z)| =0, with || f|| := sup | f(z)

| | —o0 z€R4

1.

In d = 1 we have seen that the domain Dom(A) = Cy(R) N C2(R), i.e., vanishing value and
vanishing 2nd derivative at infinity. We have also seen that on R%, d > 2, the Schwarz space
S(RY) is a good core: the operator —A defined on S(RY) is dissipative, hence closable, and
{p—Ap : pc SR} = Cy(RY), and thus A is indeed an infinitesimal generator, as we

already knew. But what is Dom(A) obtained this way, in R'? I.e., what domain do we get
when we close the operator from S(R!)? It certainly contains Co(R) N CZ(R), but isn’t it

larger?
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(a) Let 1 be a bounded continuous function on R% and A > 0. Find a bounded solution u
of the equation .
Au — §Au =1 on R%.

Prove that the solution is unique.

(b) Let B(t) be d-dimensional Brownian motion (d > 1) and let I be a Borel set in R?. Let
Trp:=|{t<1:B(t) e F}|,
where |...| denotes Lebesgue measure. Prove that E (TF) = 0 if and only if | F'| = 0.

Hint: Consider the resolvent Ry for A > 0 and then let A — 0.)

In connection with the derivation of the Black-Scholes formula for the price of an option, the

following partial differential equation appears for u = u(t, z), t € [0,00), z € R:

ou B ou 1 5 50%u
E(a,x) = —pu(t,z) + a:p%(t,@ + 55 x @(t, x) t>0, zeR
u(0,2) = (r — K)+ z €R,

where p > 0, a € R, § € R, K > 0 are constants.

Use the Feynman-Kac formula to prove that the solution wu(t, ) of this initial value problem

is given by
u(t,x) = c (me(a_ﬁ2/2)t+ﬁy - K) eV /D gy, t>0.
V2nt Jr +
The elliptic Feynman-Kac formula, with Dirichlet boundary conditions.

Let D ¢ R? be a bounded domain with piecewise smooth boundary, ¢, f : R* — R smooth
functions and ¢ > 0. Prove the following statement:

The unique solution of the elliptic boundary value problem

1
§Au—cu:f in D
u=0 on 0D,

is given by

u(z) = E(/OT f(B(t))eXp{—/o c(B(s))ds} | B(0) = z), z €D,

where B(t) is Brownian motion starting from = € D and 7 is the first hitting time of 0D.



