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Problem Set 7
Girsanov’s Theorem and Some Applications

[Change of conditional expectation]
Let Q and P be two probability measures on (2, F), with Q <« P, and Radon-Nikodym
derivative %(w) = o(w). Let G C F a sub-o-algebra. Show that, for any F-measurable

random variable X, we have
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[A discrete version of Girsanov’s formula/
Let Q, := {H,T}", P be the probability measure on €, given by tossing a biased coin
n times independently which gives probability 2/3 to H, and Q the probability measure
given by tossing a fair coin n times independently. Let Z,(w) := %(w), and consider the

martingale (with respect to the measure P) Z,, := Ep(Zn | .Fm) for m < n.
(a) Give ezplicitly the distribution of Z,,11 given Z,,, ..., Z;.

(b) Note that (1) of the previous exercise translates to Eq (X | Fin ) = (Zm) 'Ep (X Zy | Fm ).
Check this numerically for n = 3, m = 2, X = #{heads in (w1, w2,ws3)}.

(c) Interpret this exercise as a discrete version of Girsanov’s theorem.

[Cameron-Martin theorem]

(a) Let f € L?[0,1] be a deterministic function and F(t) := fg f(u)du, t € [0,1]. Show that,
if t — B(t) is standard 1d Brownian motion, then the laws of the processes {t — F(t)+ B(t) :
t €[0,1]} and {t — B(t) : t € [0,1]} are mutually absolutely continuous w.r.t. each other.
Compute the Radon-Nikodym derivatives.

(b) If F(t) is such that the above f(t) does not exist, then the laws of the two processes are

mutually singular.

Let B(t) = (Bi(t),Ba(t)), t < T, be a 2-dimensional standard Brownian motion on the
probability space (2, Fr, P). Find a probability measure Q on Fr that is mutually absolutely

continuous w.r.t. P, and under which the following process ¢ — Y (t) becomes a martingale:
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dY (t) = <Z> dt + G _11> <Zg;8> . t<T.
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Let b : R™ — R™ be bounded measurable function. Construct a weak solution t — X (t) of

the SDE
dX(t) = b(X(t))dt + dB(t), Xo=z € R"

Let B(t) be standard 1-dimensional Brownian motion on the probability space (2, F,P) and
Y(t) =t+ B(t). For each T' > 0, find Q7 ~ P on Fr such that {t — Y (¢) };<7 becomes a

Brownian motion under Q7.
(a) Show that there exists a probability measure Q on F such that Q|z, = Qr for all T > 0.

(b) Show that P(limt_wo Y(t) = oo) = 1, while Q(limt_moY(t) = oo) = 0. Why does not

this contradict Girsanov’s theorem?

Let b: R — R be Lipschitz, and ¢ — X (t) be the unique strong solution of the 1-dimensional
SDE
dX(t) = b(X(t))dt + dB(t), X(0)=xz€R.

(a) Use Girsanov’s theorem to prove that for any M < oo, z € R, and ¢t > 0, we have
P(X(t)>M)>0.

(b) Choose b(x) = —r, where r > 0 is a constant. Prove that, for all z, we have lim;_,, X (t) =

—00, a.s. Compare this fact with the result in part (a).

[Feynman-Kac formual and killing rates/

Let B(t) denote standard Brownian motion in R", and consider the It6 diffusion
dX(t)t = Vh(X(t))dt + dB(t), Xo=2€R",

where h € C2

comp (R™). We are going to relate this process to a Brownian motion killed at a

certain rate V(x).

(a) Let
V(z) = % | Vh(z) 2 + %Ah(x).

Prove that, for any f € Ceomp(R™), we have

E.(f(X (1)) = E, (e o VEBEs ABO)-h@) ¢(B(1))). (2)



Hint: Use Girsanov’s theorem to express the left hand side of (2) as an expectation with

respect to B(t), then use It6’s formula.

(b) Assume V' > 0, and use Feynman-Kac with local killing rate V(x). Let Y (¢) be the
Brownian motion B(t) killed with local rate V (x). Reinterpret (2) as

PtXf(JB) = e_h(x)PtY(ehf)(x)y

where P/ f(z) := E,(f(X(t))) is the semigroup of conditional expectations for the diffusion
X(t), and similarly for Y.



