Stochastic Differential Equations Problem Set 2

Filtrations, Stopping Times, Markov Property, Martingales, . . .

- **2.1** Let $t \mapsto X(t)$ be a stochastic process in a complete separable metric space S. Prove that the following two formulations of the Markov property are actually equivalent. (Note that formulation (b) is a priori stronger than (a).)
 - a.) For any $0 \le t$, $0 \le u$ and $F: S \to \mathbb{R}$ bounded and measurable

$$\mathbf{E}(F(X(t+u)) \mid \mathcal{F}_t^X) = \mathbf{E}(F(X(t+u)) \mid \sigma(X_t)).$$

b.) For any $0 \le t$, $n \in \mathbb{N}$, $0 \le u_1 \le u_2 \le \cdots \le u_n$ and $F: S^n \to \mathbb{R}$ bounded and measurable

$$\mathbf{E}\big(F(X(t+u_1),X(t+u_2),\ldots,X(t+u_n))\mid \mathcal{F}_t^X\big) =$$

$$\mathbf{E}\big(F(X(t+u_1),X(t+u_2),\ldots,X(t+u_n))\mid \sigma(X_t)\big).$$

Hint: Apply the "tower rule" of conditional probabilities.

- **2.2** a.) Prove that $t \mapsto B(t)$ is a martingale and $t \mapsto B(t)^2$ is a submartingale (with respect to the filtration $(\mathcal{F}_t^B)_{t\geq 0}$).
 - b.) Let $t \mapsto M(t)$ be a martingale (w.r.t. a filtration $(\mathcal{F}_t)_{t\geq 0}$) and $\psi : \mathbb{R} \to \mathbb{R}$ a convex function. Let

$$Y(t) := \psi(M(t)).$$

Assuming that $\mathbf{E}(|\psi(M(t))|) < \infty$ for all $t \geq 0$, prove that $t \mapsto Y(t)$ is a submartingale. Hint: Use Jensen's inequality.

2.3 Show that the processes $t \mapsto B(t)$, $t \mapsto B(t)^2 - t$ and $t \mapsto B(t)^3 - 3tB(t)$ are martingales adapted to the filtration $\{\mathcal{F}_t^B\}_{t\geq 0}$.

- **2.4** Check whether the following processes are martingales with respect to the filtration $(\mathcal{F}_t^B)_{t\geq 0}$:
 - (a) X(t) = B(t) + 4t,
 - $(b) X(t) = B(t)^2,$
 - (c) $X(t) = t^2 B(t) 2 \int_0^t s B(s) ds,$
 - $(d) X(t) = B_1(t)B_2(t),$

where B_1 and B_2 are two independent Brownian motions.

2.5 Let -a < 0 < b and denote

$$\tau_{\text{left}} := \inf\{s > 0 : B(s) = -a\},$$

$$\tau_{\text{right}} := \inf\{s > 0 : B(s) = b\},$$

$$\tau := \min\{\tau_{\text{left}}, \tau_{\text{right}}\}.$$

- a.) By applying the Optional Stopping Theorem compute $\mathbf{P}\left(\tau_{left} < \tau_{right}\right)$ and $\mathbf{E}\left(\tau\right)$.
- b.) By "applying" the Optional Stopping Theorem it would "follow" that $\mathbf{E}(B(\tau_a)) = 0$. However, clearly $B(\tau_a) = a$ by definition (and continuity of the Brownian motion). What is wrong with the argument?
- **2.6** a.) Let $\theta \in \mathbb{R}$ be a fixed parameter. Show that the processes $t \mapsto \exp\{\theta B(t) \theta^2 t/2\}$ is a martingale with respect to the filtration $\{\mathcal{F}_t^B\}_{t\geq 0}$.
 - b.) By differentiating with respect to θ and letting then $\theta = 0$ derive a martingale which is a fourth order polynomial expression of B(t)
 - c.) For any $n \in \mathbb{N}$ let

$$H_n(x) := e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}.$$

Show that $H_n(x)$ is a polynomial of order n in the variable x. (It is called the Hermite polynomial of order n.). Compute $H_n(x)$ for n = 1, 2, 3, 4.

- d.) Show that for any $n \in \mathbb{N}$ the process $t \mapsto t^{n/2}H_n(B(t)/\sqrt{t})$ is a martingale.
- **2.7** Let $t \mapsto B(t)$ be standard 1d Brownian motion and $\tau := \inf\{t > 0 : |B(t)| = 1\}$. Prove that

$$\mathbf{E}\left(e^{-\lambda\tau}\right) = \cosh(\sqrt{2\lambda})^{-1}, \qquad \lambda \ge 0.$$

Hint: Apply the Optional Stopping Theorem to the exponential martingale defined in problem 2.6.

2.8 Denote

$$J: \mathbb{R} \to \mathbb{R}, \qquad J(\lambda) := \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} e^{\lambda \cos \theta} d\theta.$$

Let $B(t) = (B_1(t), B_2(t))$ be a two-dimensional Brownian motion and

$$\tau := \inf\{t : |B(t)| = 1\}.$$

That is: τ is the first hitting time of the circle centred at the origin, with radius 1. Prove that

$$\mathbf{E}\left(e^{-\lambda\tau}\right) = J(\sqrt{2\lambda})^{-1}, \qquad \lambda \ge 0.$$

Hint: Apply the Optional Stopping Theorem to the martingale $t \mapsto \exp\{\theta \cdot B(t) - |\theta|^2 t/2\}$, where $\theta \in \mathbb{R}^2$, with the stopping time τ .

2.9 Let B(t) be a standard Brownian motion and let ξ be a random variable with $Bernoulli\left(\frac{1}{2}\right)$ distribution, independent of B(t). Let $X(t) = \xi(1 + B(t))$. Show that X(t) is Markov but not strongly Markov (w.r.t. the natural filtration).

Solution: First the interpretation: we toss a fair coin. If the result is "tails" (denoted as $\xi = 0$), then X(t) is constant 0. If the result is "heads" (denoted as $\xi = 1$), then X(t) is a Brownian motion starting from 1.

a.) This X(t) is clearly not strongly Markov: if $\tau := \inf\{t \geq 1 \mid X(t) = 0\}$ is the first hitting time of 0 after time 1, then $X(\tau) = 0$ deterministically, so $\sigma(X(\tau))$ is the trivial (indiscrete) σ -algebra, containing no information, so

$$\mathbf{E}(F(X(\tau+u)) \mid \sigma(X(\tau))) = \mathbf{E}(F(X(\tau+u)))$$

is a constant for any bounded and measurable $F : \mathbb{R} \to \mathbb{R}$. As an example, let $F : \mathbb{R} \to \mathbb{R}$ be the indicator function of 0. Then, for any u > 0

$$\mathbf{E}(F(X(\tau+u)) \mid \sigma(X(\tau))) = \mathbf{E}(F(X(\tau+u))) = \mathbf{P}(X(\tau+u) = 0) = \frac{1}{2}$$

(since $\mathbf{P}(X(\tau+u)=0 \mid \xi=0)=1$ and $\mathbf{P}(X(\tau+u)=0 \mid \xi=1)=0$). On the other hand \mathcal{F}_{τ} is not trivial: it definitely contains the events $\{\xi=0\}$ and $\{\xi=1\}$. (If you see the trajectory up to τ , you can tell the result of the coin

toss.) So $\mathbf{E}(F(X(\tau+u)) \mid \mathcal{F}_{\tau})$ is not constant (in particular it is 1 on $\{\xi=0\}$ and 0 on $\{\xi=1\}$).

In summary: for this particular τ and F, and for any u > 0

$$\mathbf{E}(F(X(\tau+u)) \mid \mathcal{F}_{\tau}) \neq \mathbf{E}(F(X(\tau+u)) \mid \sigma(X(\tau))),$$

so the process is not strongly Markov.

b.) The surprising part is that X(t) is Markov. This is because, for every fixed deterministic $t \in \mathbb{R}$, $\mathbf{P}(1 + B(t) = 0) = 0$. This way if we see that X(t) = 0, then we know that $\xi = 0$ (or a zero probability event has occurred). So

$$X(t+u) = \begin{cases} 0 & \text{almost surely on } \{X(t) = 0\} \\ 1 + B(t+u) & \text{surely on } \{X(t) \neq 0\}. \end{cases}$$

This means

$$\mathbf{E}\big(F(X(t+u)) \mid X(t)\big) = \begin{cases} F(0) & \text{a.s. on } \{X(t) = 0\} \\ \mathbf{E}\big(F(1+B(t+u)) \mid B(t)\big) & \text{a.s. on } \{X(t) \neq 0\}. \end{cases}$$

$$= \begin{cases} F(0) & \text{a.s. on } \{\xi = 0\} \\ \mathbf{E}\big(F(1+B(t+u)) \mid B(t)\big) & \text{a.s. on } \{\xi = 1\}. \end{cases}$$

We need to see that $\mathbf{E}(F(X(t+u)) \mid \mathcal{F}_t)$ is the same. This can be seen by using that

- $\mathcal{F}_t = \sigma(\mathcal{F}_t^B, \xi),$
- $X(t+u) = \xi(1+B(t+u))$ where ξ is \mathcal{F}_t -measurable,
- B(t+u) is independent of ξ ,
- and B(t) is Markov.
- **2.10** a.) Show that if X(t) is a submartingale, $\psi : \mathbb{R} \to \mathbb{R}$ is convex and *increasing* such that $\mathbf{E}(|\psi(X(t)|) < \infty$ for every t, then $Y(t) := \psi(X(t))$ is also a submartingale.
 - b.) Give an example of a submartingale X(t) such that $Y(t) := (X(t))^2$ is not a submartingale.

Solution:

- a.) i.) Adaptedness is understood w.r.t the natural filtration, so it is automatic.
 - ii.) Integrability is assumed explicitly as $\mathbf{E}(|Y(t)|) = \mathbf{E}(|\psi(X(t))|) < \infty$.

iii.) The essence is the submartingale property: for $t, u \ge 0$

$$\mathbf{E}(Y(t+u) \mid \mathcal{F}_t) = \mathbf{E}(\psi(X(t)) \mid \mathcal{F}_t) \stackrel{(1)}{\geq} \psi(\mathbf{E}(X(t) \mid \mathcal{F}_t)) \stackrel{(2)}{\geq} \psi(X(t)) = Y(t).$$

In step (1) we used Jensen's inequality. In step (2) we used that $\mathbf{E}(X(t) \mid \mathcal{F}_t) \geq X(t)$ by the submartingale property of X(t) and the monotonicity of ψ .

- b.) Note that $t \in [0, \infty)$. The increasing deterministic function $X(t) = -\frac{1}{t}$ does the job, since it's a submartingle, but $Y(t) := (X(t))^2 = \frac{1}{t^2}$ is (strictly) decreasing, so it's a supermartingale (and not a submartingale).
- **2.11** Let B(t) be a standard Brownian motion and let $X(t) = B(t) \frac{t}{2}$: a kind of "Brownian motion with drift to the left". Let -a < 0 < b, let $\tau_{left} = \inf\{t \in \mathbb{R}^+ \mid X(t) = -a\}$ and $\tau_{right} = \inf\{t \in \mathbb{R}^+ \mid X(t) = b\}$ be the first hitting times for -a and b, and let $\tau = \inf\{\tau_{left}, \tau_{right}\}$. Let $p_{left} = p_{left}(a, b) = \mathbf{P}(\tau_{left} < \tau_{right})$ be the probability that -a is reached sooner than b, and $p_{right} = p_{right}(a, b) = \mathbf{P}(\tau_{right} < \tau_{left})$ be the probability that b is reached sooner than -a.
 - a.) Show that $p_{left} + p_{right} = 1$, which means exactly that either -a or b is almost surely reached. (This is the same as saying that $\tau < \infty$ almost surely.)
 - b.) Find a number q > 0 such that $M(t) := q^{X(t)}$ is a martingale.
 - c.) Apply the optional stopping theorem to M(t) and τ to find p_{left} and p_{right} .
 - d.) Find the probability that X(t) ever reaches +1. (Hint: set b=1, and look at $\lim p_{right}(a,b)$ as $a\to\infty$.)

Solution:

a.) Clearly $\tau \leq \tau_{left}$, and I claim that $\tau_{left} < \infty$ almost surely. Indeed, for big t the particle is very likely to be left of -a, because the expected position is $-\frac{t}{2}$, while the fluctuation around that is only around \sqrt{t} . With a rigorous calculation:

$$\mathbf{P}\left(X(t) > -a\right) = \mathbf{P}\left(\mathcal{N}\left(-\frac{t}{2}, t\right) > -a\right) = 1 - \Phi\left(\frac{-a - \left(-\frac{t}{2}\right)}{\sqrt{t}}\right) = 1 - \Phi\left(\frac{\sqrt{t}}{2} - \frac{a}{\sqrt{t}}\right) \to 0,$$

so

$$\mathbf{P}(X(t) > -a \text{ for every } t > 0) = 0.$$

- b.) We see from Exercise 2.6 (with $\theta=1$) that q=e does the job: $M(t):=e^{X(t)}=\exp\{B(t)-\frac{t}{2}\}$ is a martingale.
- c.) For $t \leq \tau$ we have $B(t) \leq b$, so $B(t \wedge \tau) \leq b$, implying that $0 < M(t \wedge \tau) \leq e^b$, so the stopped martingale is bounded. In part a.) we have seen that $\tau < \infty$ almost surely, so the optional stoping theorem can be applied, and it gives that $\mathbf{E}(M(\tau)) = M(0) = 1$. But $X(\tau) = -a$ on $\{\tau_{left} < \tau_{right}\}$ and $X(\tau) = b$ on $\{\tau_{right} < \tau_{left}\}$, so $1 = \mathbf{E}(M(\tau)) = \mathbf{E}(e^{X(\tau)}) = p_{left}e^{-a} + p_{right}e^{b}$. Together with part a.) we have the system of equations

$$\begin{cases} p_{left} + p_{right} = 1\\ e^{-a}p_{left} + e^{b} p_{right} = 1 \end{cases}$$

The unique solution is

$$p_{left} = \frac{e^b - 1}{e^b - e^{-a}}$$
$$p_{right} = \frac{1 - e^{-a}}{e^b - e^{-a}}.$$

d.) A fixed b := 1 > 0 is reached if and only if b is reached sooner than -a for some a > 0. So

$$\mathbf{P}(\{b=1 \text{ is reached}\}) = \lim_{a \to \infty} p_{right}(a, b=1) = \lim_{a \to \infty} \frac{1 - e^{-a}}{e - e^{-a}} = \frac{1}{e}.$$