Stochastic Differential Equations Problem Set 2

Filtrations, Stopping Times, Markov Property, Martingales, ...

2.1 Let $t \mapsto X(t)$ be a stochastic process in a complete separable metric space S. Prove that the following two formulations of the Markov property are actually equivalent. (Note that formulation (b) is a priori stronger than (a).)
a.) For any $0 \leq t, 0 \leq u$ and $F: S \rightarrow \mathbb{R}$ bounded and measurable

$$
\mathbf{E}\left(F(X(t+u)) \mid \mathcal{F}_{t}^{X}\right)=\mathbf{E}\left(F(X(t+u)) \mid \sigma\left(X_{t}\right)\right)
$$

b.) For any $0 \leq t, n \in \mathbb{N}, 0 \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n}$ and $F: S^{n} \rightarrow \mathbb{R}$ bounded and measurable

$$
\begin{aligned}
\mathbf{E}\left(F \left(X\left(t+u_{1}\right), X\left(t+u_{2}\right)\right.\right. & \left.\left.\ldots, X\left(t+u_{n}\right)\right) \mid \mathcal{F}_{t}^{X}\right)= \\
& \mathbf{E}\left(F\left(X\left(t+u_{1}\right), X\left(t+u_{2}\right), \ldots, X\left(t+u_{n}\right)\right) \mid \sigma\left(X_{t}\right)\right)
\end{aligned}
$$

Hint: Apply the "tower rule" of conditional probabilities.
2.2 a.) Prove that $t \mapsto B(t)$ is a martingale and $t \mapsto B(t)^{2}$ is a submartingale (with respect to the filtration $\left.\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}\right)$.
b.) Let $t \mapsto M(t)$ be a martingale (w.r.t. a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$) and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ a convex function. Let

$$
Y(t):=\psi(M(t))
$$

Assuming that $\mathbf{E}(|\psi(M(t))|)<\infty$ for all $t \geq 0$, prove that $t \mapsto Y(t)$ is a submartingale. Hint: Use Jensen's inequality.
2.3 Show that the processes $t \mapsto B(t), t \mapsto B(t)^{2}-t$ and $t \mapsto B(t)^{3}-3 t B(t)$ are martingales adapted to the filtration $\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq 0}$.
2.4 Check whether the following processes are martingales with respect to the filtration $\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}:$
(a) $\quad X(t)=B(t)+4 t$,
(b) $\quad X(t)=B(t)^{2}$,
(c) $X(t)=t^{2} B(t)-2 \int_{0}^{t} s B(s) d s$,
(d) $\quad X(t)=B_{1}(t) B_{2}(t)$,
where B_{1} and B_{2} are two independent Brownian motions.
2.5 Let $-a<0<b$ and denote

$$
\begin{aligned}
\tau_{\text {left }} & :=\inf \{s>0: B(s)=-a\}, \\
\tau_{\text {right }} & :=\inf \{s>0: B(s)=b\}, \\
\tau & :=\min \left\{\tau_{\text {left }}, \tau_{\text {right }}\right\} .
\end{aligned}
$$

a.) By applying the Optional Stopping Theorem compute $\mathbf{P}\left(\tau_{\text {left }}<\tau_{\text {right }}\right)$ and $\mathbf{E}(\tau)$.
b.) By "applying" the Optional Stopping Theorem it would "follow" that $\mathbf{E}\left(B\left(\tau_{a}\right)\right)=$ 0 . However, clearly $B\left(\tau_{a}\right)=a$ by definition (and continuity of the Brownian motion). What is wrong with the argument?
2.6 a.) Let $\theta \in \mathbb{R}$ be a fixed parameter. Show that the processes $t \mapsto \exp \left\{\theta B(t)-\theta^{2} t / 2\right\}$ is a martingale with respect to the filtration $\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq 0}$.
b.) By differentiating with respect to θ and letting then $\theta=0$ derive a martingale which is a fourth order polynomial expression of $B(t)$
c.) For any $n \in \mathbb{N}$ let

$$
H_{n}(x):=e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}
$$

Show that $H_{n}(x)$ is a polynomial of order n in the variable x. (It is called the Hermite polynomial of order n.). Compute $H_{n}(x)$ for $n=1,2,3,4$.
d.) Show that for any $n \in \mathbb{N}$ the process $t \mapsto t^{n / 2} H_{n}(B(t) / \sqrt{t})$ is a martingale.
2.7 Let $t \mapsto B(t)$ be standard $1 d$ Brownian motion and $\tau:=\inf \{t>0:|B(t)|=1\}$. Prove that

$$
\mathbf{E}\left(e^{-\lambda \tau}\right)=\cosh (\sqrt{2 \lambda})^{-1}, \quad \lambda \geq 0 .
$$

Hint: Apply the Optional Stopping Theorem to the exponential martingale defined in problem 2.6.
2.8 Denote

$$
J: \mathbb{R} \rightarrow \mathbb{R}, \quad J(\lambda):=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} e^{\lambda \cos \theta} d \theta
$$

Let $B(t)=\left(B_{1}(t), B_{2}(t)\right)$ be a two-dimensional Brownian motion and

$$
\tau:=\inf \{t:|B(t)|=1\} .
$$

That is: τ is the first hitting time of the circle centred at the origin, with radius 1. Prove that

$$
\mathbf{E}\left(e^{-\lambda \tau}\right)=J(\sqrt{2 \lambda})^{-1}, \quad \lambda \geq 0
$$

Hint: Apply the Optional Stopping Theorem to the martingale $t \mapsto \exp \{\theta \cdot B(t)-$ $\left.|\theta|^{2} t / 2\right\}$, where $\theta \in \mathbb{R}^{2}$, with the stopping time τ.
2.9 Let $B(t)$ be a standard Brownian motion and let ξ be a random variable with Bernoulli $\left(\frac{1}{2}\right)$ distribution, independent of $B(t)$. Let $X(t)=\xi(1+B(t))$. Show that $X(t)$ is Markov but not strongly Markov (w.r.t. the natural filtration).

Solution: First the interpretation: we toss a fair coin. If the result is "tails" (denoted as $\xi=0$), then $X(t)$ is constant 0 . If the result is "heads" (denoted as $\xi=1$), then $X(t)$ is a Brownian motion starting from 1 .
a.) This $X(t)$ is clearly not strongly Markov: if $\tau:=\inf \{t \geq 1 \mid X(t)=0\}$ is the first hitting time of 0 after time 1 , then $X(\tau)=0$ deterministically, so $\sigma(X(\tau))$ is the trivial (indiscrete) σ-algebra, containing no information, so

$$
\mathbf{E}(F(X(\tau+u)) \mid \sigma(X(\tau)))=\mathbf{E}(F(X(\tau+u)))
$$

is a constant for any bounded and measurable $F: \mathbb{R} \rightarrow \mathbb{R}$. As an example, let $F: \mathbb{R} \rightarrow \mathbb{R}$ be the indicator function of 0 . Then, for any $u>0$

$$
\mathbf{E}(F(X(\tau+u)) \mid \sigma(X(\tau)))=\mathbf{E}(F(X(\tau+u)))=\mathbf{P}(X(\tau+u)=0)=\frac{1}{2}
$$

(since $\mathbf{P}(X(\tau+u)=0 \mid \xi=0)=1$ and $\mathbf{P}(X(\tau+u)=0 \mid \xi=1)=0)$. On the other hand \mathcal{F}_{τ} is not trivial: it definitely contains the events $\{\xi=0\}$ and $\{\xi=1\}$. (If you see the trajectory up to τ, you can tell the result of the coin
toss.) So $\mathbf{E}\left(F(X(\tau+u)) \mid \mathcal{F}_{\tau}\right)$ is not constant (in particular it is 1 on $\{\xi=0\}$ and 0 on $\{\xi=1\}$).
In summary: for this particular τ and F, and for any $u>0$

$$
\mathbf{E}\left(F(X(\tau+u)) \mid \mathcal{F}_{\tau}\right) \neq \mathbf{E}(F(X(\tau+u)) \mid \sigma(X(\tau)))
$$

so the process is not strongly Markov.
b.) The surprising part is that $X(t)$ is Markov. This is because, for every fixed deterministic $t \in \mathbb{R}, \mathbf{P}(1+B(t)=0)=0$. This way if we see that $X(t)=0$, then we know that $\xi=0$ (or a zero probability event has occured). So

$$
X(t+u)= \begin{cases}0 & \text { almost surely on }\{X(t)=0\} \\ 1+B(t+u) & \text { surely on }\{X(t) \neq 0\}\end{cases}
$$

This means

$$
\begin{aligned}
\mathbf{E}(F(X(t+u)) \mid X(t)) & = \begin{cases}F(0) & \text { a.s. on }\{X(t)=0\} \\
\mathbf{E}(F(1+B(t+u)) \mid B(t)) & \text { a.s. on }\{X(t) \neq 0\} .\end{cases} \\
& = \begin{cases}F(0) & \text { a.s. on }\{\xi=0\} \\
\mathbf{E}(F(1+B(t+u)) \mid B(t)) & \text { a.s. on }\{\xi=1\} .\end{cases}
\end{aligned}
$$

We need to see that $\mathbf{E}\left(F(X(t+u)) \mid \mathcal{F}_{t}\right)$ is the same. This can be seen by using that

- $\mathcal{F}_{t}=\sigma\left(\mathcal{F}_{t}^{B}, \xi\right)$,
- $X(t+u)=\xi(1+B(t+u))$ where ξ is \mathcal{F}_{t}-measurable,
- $B(t+u)$ is independent of ξ,
- and $B(t)$ is Markov.
2.10 a.) Show that if $X(t)$ is a submartingale, $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is convex and increasing such that $\mathbf{E}(\mid \psi(X(t) \mid)<\infty$ for every t, then $Y(t):=\psi(X(t))$ is also a submartingale.
b.) Give an example of a submartingale $X(t)$ such that $Y(t):=(X(t))^{2}$ is not a submartingale.

Solution:

a.) i.) Adaptedness is understood w.r.t the natural filtration, so it is automatic.
ii.) Integrability is assumed explicitly as $\mathbf{E}(|Y(t)|)=\mathbf{E}(|\psi(X(t))|)<\infty$.
iii.) The essence is the submartingale property: for $t, u \geq 0$

$$
\mathbf{E}\left(Y(t+u) \mid \mathcal{F}_{t}\right)=\mathbf{E}\left(\psi(X(t)) \mid \mathcal{F}_{t}\right) \stackrel{(1)}{\geq} \psi\left(\mathbf{E}\left(X(t) \mid \mathcal{F}_{t}\right)\right) \stackrel{(2)}{\geq} \psi(X(t))=Y(t) .
$$

In step (1) we used Jensen's inequality. In step (2) we used that $\mathbf{E}(X(t) \mid$ $\left.\mathcal{F}_{t}\right) \geq X(t)$ by the submartingale property of $X(t)$ and the monotonicity of ψ.
b.) Note that $t \in[0, \infty)$. The increasing deterministic function $X(t)=-\frac{1}{t}$ does the job, since it's a submartingle, but $Y(t):=(X(t))^{2}=\frac{1}{t^{2}}$ is (strictly) decreasing, so it's a supermartingale (and not a submartingale).
2.11 Let $B(t)$ be a standard Brownian motion and let $X(t)=B(t)-\frac{t}{2}$: a kind of "Brownian motion with drift to the left". Let $-a<0<b$, let $\tau_{\text {left }}=\inf \left\{t \in \mathbb{R}^{+} \mid X(t)=-a\right\}$ and $\tau_{\text {right }}=\inf \left\{t \in \mathbb{R}^{+} \mid X(t)=b\right\}$ be the first hitting times for $-a$ and b, and let $\tau=\inf \left\{\tau_{\text {left }}, \tau_{\text {right }}\right\}$. Let $p_{\text {left }}=p_{\text {left }}(a, b)=\mathbf{P}\left(\tau_{\text {left }}<\tau_{\text {right }}\right)$ be the probability that $-a$ is reached sooner than b, and $p_{\text {right }}=p_{\text {right }}(a, b)=\mathbf{P}\left(\tau_{\text {right }}<\tau_{\text {left }}\right)$ be the probability that b is reached sooner than $-a$.
a.) Show that $p_{\text {left }}+p_{\text {right }}=1$, which means exactly that either $-a$ or b is almost surely reached. (This is the same as saying that $\tau<\infty$ almost surely.)
b.) Find a number $q>0$ such that $M(t):=q^{X(t)}$ is a martingale.
c.) Apply the optional stopping theorem to $M(t)$ and τ to find $p_{\text {left }}$ and $p_{\text {right }}$.
d.) Find the probability that $X(t)$ ever reaches +1 . (Hint: set $b=1$, and look at $\lim p_{\text {right }}(a, b)$ as $a \rightarrow \infty$.)

Solution:

a.) Clearly $\tau \leq \tau_{\text {left }}$, and I claim that $\tau_{\text {left }}<\infty$ almost surely. Indeed, for $\operatorname{big} t$ the particle is very likely to be left of $-a$, because the expected position is $-\frac{t}{2}$, while the fluctuation around that is only around \sqrt{t}. With a rigorous calculation:

$$
\begin{aligned}
\mathbf{P}(X(t)>-a) & =\mathbf{P}\left(\mathcal{N}\left(-\frac{t}{2}, t\right)>-a\right)=1-\Phi\left(\frac{-a-\left(-\frac{t}{2}\right)}{\sqrt{t}}\right)= \\
& =1-\Phi\left(\frac{\sqrt{t}}{2}-\frac{a}{\sqrt{t}}\right) \rightarrow 0
\end{aligned}
$$

so

$$
\mathbf{P}(X(t)>-a \text { for every } t>0)=0
$$

b.) We see from Exercise 2.6 (with $\theta=1$) that $q=e$ does the job: $M(t):=e^{X(t)}=$ $\exp \left\{B(t)-\frac{t}{2}\right\}$ is a martingale.
c.) For $t \leq \tau$ we have $B(t) \leq b$, so $B(t \wedge \tau) \leq b$, implying that $0<M(t \wedge \tau) \leq e^{b}$, so the stopped martingale is bounded. In part a.) we have seen that $\tau<\infty$ almost surely, so the optional stoping theorem can be applied, and it gives that $\mathbf{E}(M(\tau))=M(0)=1$. But $X(\tau)=-a$ on $\left\{\tau_{\text {left }}<\tau_{\text {right }}\right\}$ and $X(\tau)=b$ on $\left\{\tau_{\text {right }}<\tau_{\text {left }}\right\}$, so $1=\mathbf{E}(M(\tau))=\mathbf{E}\left(e^{X(\tau)}\right)=p_{\text {left }} e^{-a}+p_{\text {right }} e^{b}$. Together with part a.) we have the system of equations

$$
\left\{\begin{array}{cc}
p_{\text {left }}+ & p_{\text {right }}=1 \\
e^{-a} p_{\text {left }}+e^{b} & p_{\text {right }}=1
\end{array} .\right.
$$

The unique solution is

$$
\begin{aligned}
p_{\text {left }} & =\frac{e^{b}-1}{e^{b}-e^{-a}} \\
p_{\text {right }} & =\frac{1-e^{-a}}{e^{b}-e^{-a}}
\end{aligned}
$$

d.) A fixed $b:=1>0$ is reached if and only if b is reached sooner than $-a$ for some $a>0$. So

$$
\mathbf{P}(\{b=1 \text { is reached }\})=\lim _{a \rightarrow \infty} p_{\text {right }}(a, b=1)=\lim _{a \rightarrow \infty} \frac{1-e^{-a}}{e-e^{-a}}=\frac{1}{e} .
$$

