Stochastic Differential Equations
Problem Set 2

Filtrations, Stopping Times, Markov Property,

Martingales, . ..

2.1 Let t — X(t) be a stochastic process in a complete separable metric space S. Prove

that the following two formulations of the Markov property are actually equivalent.

(Note that formulation (b) is a priori stronger than (a).)

a.)

b.)

2.2 a.)

For any 0 <t¢,0 <wu and F : S — R bounded and measurable
E(F(X(t+u)) | F) =E(F(X(t+u)) | o(Xy)).

Forany 0 <t,neN, 0<u; <wuy <---<wu,and F:S" — R bounded and

measurable
E(F(X(t+w), X(t+us),.... X(t+uw,)) | ) =

E(F(X(t+u), X(t+u), ..., X(t+u)) | o(Xy)).
Hint: Apply the "tower rule" of conditional probabilities.

Prove that ¢ — B(t) is a martingale and ¢ — B(¢)? is a submartingale (with
respect to the filtration (Ff);0).

Let ¢t — M(t) be a martingale (w.r.t. a filtration (F;);>0) and ¢ : R — R a

conver function. Let

Assuming that E (|¢(M(t))]) < oo for all t > 0, prove that ¢ — Y (¢) is a

submartingale. Hint: Use Jensen’s inequality.

2.3 Show that the processes t — B(t), t — B(t)> —t and t — B(t)* — 3tB(t) are
martingales adapted to the filtration {F7};0.
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2.4 Check whether the following processes are martingales with respect to the filtration

(F7)

t>0"

(a) X(t) = B(t) + 4t,
(b) X(t) = B(t),

(c) X(t) =t*B(t) — 2/0 sB(s)ds,

(d) X(t) = Bi(t)Ba(1),

where By and B, are two independent Brownian motions.

2.5 Let —a < 0 < b and denote

Tiety = inf{s > 0: B(s) = —a},
Tright 1= inf{s > 0 : B(s) = b},

7 := min{ T, Tright}-

a.) By applying the Optional Stopping Theorem compute P (7ier, < Tright) and E (7).
b.) By "applying" the Optional Stopping Theorem it would "follow" that E (B(7,)) =

0. However, clearly B(7,) = a by definition (and continuity of the Brownian mo-

tion). What is wrong with the argument?

2.6 a.) Let 6 € R be a fixed parameter. Show that the processes t — exp{0B(t) —6?t/2}

is a martingale with respect to the filtration {F};>o.

b.) By differentiating with respect to 6 and letting then # = 0 derive a martingale

which is a fourth order polynomial expression of B(t)

c.) For any n € N let

2 dn 2
Hy(x) =" P—e™™ /2,
(x) :=e e

Show that H,(x) is a polynomial of order n in the variable x. (It is called the
Hermite polynomial of order n.). Compute H,(x) for n =1,2,3, 4.

d.) Show that for any n € N the process t — t"/2H, (B(t)/\/t) is a martingale.
2.7 Let t — B(t) be standard 1d Brownian motion and 7 := inf{t > 0 : | B(t)| = 1}.

Prove that
E (e_/\T) = cosh(V2\) 7, A>0.



2.8

2.9

Hint: Apply the Optional Stopping Theorem to the exponential martingale defined
in problem 2.6.

Denote
1 7r/2
J:R =R, J(A) = —/ eres0dg.

T J—n/2

Let B(t) = (Bi(t), Ba2(t)) be a two-dimensional Brownian motion and
T:=inf{t:|B(t)| =1}.

That is: 7 is the first hitting time of the circle centred at the origin, with radius 1.
Prove that
E(e)=J(2)N)"" A>o.

Hint: Apply the Optional Stopping Theorem to the martingale t — exp{6 - B(t) —
10|*t/2}, where 6 € R?, with the stopping time 7.

Let B(t) be a standard Brownian motion and let £ be a random variable with
Bernoulli (1) distribution, independent of B(t). Let X(t) = £(1 + B(t)). Show
that X (¢) is Markov but not strongly Markov (w.r.t. the natural filtration).

Solution: First the interpretation: we toss a fair coin. If the result is “tails” (denoted
as & = 0), then X (¢) is constant 0. If the result is “heads” (denoted as £ = 1), then

X(t) is a Brownian motion starting from 1.

a.) This X (t) is clearly not strongly Markov: if 7 := inf{t > 1| X (¢) = 0} is the
first hitting time of 0 after time 1, then X (7) = 0 deterministically, so o(X (7))

is the trivial (indiscrete) o-algebra, containing no information, so
E(F(X(t+u)) | o(X(1))) =E(F(X(1 4+ u)))

is a constant for any bounded and measurable F' : R — R. As an example, let
F : R — R be the indicator function of 0. Then, for any v > 0

E(F(X(r+u) | o(X(7)) =E(F(X(T+u)) =P (X(t+u) =0) = %

(since P(X(7+u) =0]{=0)=1land P(X(7+u) =0]&=1) =0). On
the other hand F, is not trivial: it definitely contains the events {{ = 0} and
{¢ = 1}. (If you see the trajectory up to 7, you can tell the result of the coin



2.10 a.)

toss.) So E(F(X(r+u)) | F,) is not constant (in particular it is 1 on {¢ = 0}
and 0 on {¢ = 1}).

In summary: for this particular 7 and F', and for any u > 0
E(F(X(1r+u) | ) #E(F(X(r +u)) | o(X(7))),

so the process is not strongly Markov.
The surprising part is that X(¢) is Markov. This is because, for every fixed
deterministic t € R, P (1 + B(t) =0) = 0. This way if we see that X (¢) = 0,

then we know that £ = 0 (or a zero probability event has occured). So

almost surely on {X(¢) = 0}

M= {1 + B(t+u) surely on {X(t) # 0}.

This means

) F(0) a.s. on {X(t) =0}

B(F(X(t+u) [ X() = {E(F 1+ B(t+u)) | B(t)) as. on {X(t)#0}.
F(0) a.s. on {£ =0}
E(F(1+ B(t+u)) }B )) as. on {&=1}.

We need to see that E(F(X (¢t +u)) } F;) is the same. This can be seen by using
that

Fi=0o(F.6),

X(t+u)=&(1+ B(t+u)) where £ is Fi-measurable,
B(t + u) is independent of &,

and B(t) is Markov.

Show that if X (¢) is a submartingale, 1) : R — R is convex and increasing such
that E (]2(X (t)]) < oo for every ¢, then Y (¢) := ¢ (X (¢)) is also a submartingale.

b.) Give an example of a submartingale X (¢) such that Y(¢) := (X (¢))? is not a
submartingale.

Solution:

a.) 1.) Adaptedness is understood w.r.t the natural filtration, so it is automatic.

ii.) Integrability is assumed explicitly as E (|Y'(¢)|) = E (|J¢(X(¢))]) < oo.
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iii.) The essence is the submartingale property: for ¢, u > 0

E(Y(tu) | F) = BQX(0) | F) = ¢ (BX() | F)) 2 $(X () = Y(2),

In step (1) we used Jensen’s inequality. In step (2) we used that E(X(¢) |
]:t) > X (t) by the submartingale property of X (¢) and the monotonicity of
Y.
b.) Note that ¢ € [0, 00). The increasing deterministic function X (f) = —1 does the
job, since it’s a submartingle, but Y (¢) := (X(t))? = % is (strictly) decreasing,

so it’s a supermartingale (and not a submartingale).

Let B(t) be a standard Brownian motion and let X (¢) = B(t) — %: a kind of “Brown-
ian motion with drift to the left”. Let —a < 0 < b, let 75, = inf{t € R* | X (t) = —a}
and T, = Inf{t € RT| X (t) = b} be the first hitting times for —a and b, and let
T = inf{Tess, Trignt}. Let Diesr = Presr(a,b) = P (Tiepr < Trigne) be the probability
that —a is reached sooner than b, and p,ignt = pright(a,b) = P (Tright < Tiepe) be the

probability that b is reached sooner than —a.

a.) Show that pist + prigne = 1, which means exactly that either —a or b is almost
surely reached. (This is the same as saying that 7 < oo almost surely.)

b.) Find a number ¢ > 0 such that M (t) := ¢*® is a martingale.

c.) Apply the optional stopping theorem to M (t) and 7 to find pjes and prighs.

d.) Find the probability that X (¢) ever reaches +1. (Hint: set b = 1, and look at
lim prigne(a, b) as a — 00.)

Solution:

a.) Clearly 7 < 7jcs, and I claim that 7.5, < co almost surely. Indeed, for big ¢ the
particle is very likely to be left of —a, because the expected position is —%, while

the fluctuation around that is only around v/¢. With a rigorous calculation:

P(X(t)>—a)=P (N(—%,t) > _a) —1-® (Lﬁ) _

:1-@(%—%)—&

S0
P (X(t) > —a for every t > 0) = 0.



b.)

c.)

We see from Exercise 2.6 (with § = 1) that ¢ = e does the job: M(t) := eX® =
exp{B(t) — £} is a martingale.

For t < 7 we have B(t) < b, so B(t A7) < b, implying that 0 < M(t A7) < ¢,
so the stopped martingale is bounded. In part a.) we have seen that 7 < oo
almost surely, so the optional stoping theorem can be applied, and it gives that
E(M(r)) = M(0) = 1. But X(7) = —a on {7t < Trigne} and X(7) = b on
{Tright < Tiept}, s0 1 =E(M(7)) =E (eX(T)) = Dresi€* + Drigne€’. Together with

part a.) we have the system of equations
pleft+ DPright = 1
eiapleft + eb Pright = 1

The unique solution is

et —1
Dleft = prp—

1—e¢
Pright = Prpp—

A fixed b :=1 > 0 is reached if and only if b is reached sooner than —a for some
a > 0. So

1—e 1
P ({b = 1is reached}) = lim prigne(a,b=1) = lim —— = -
a—r o0 (&

a—oo g — e~



