Tools of Modern Probability Imre Péter Tóth Exercise sheet 1

1. Find all continuous functions $f : \mathbb{R}^2 \to \mathbb{R}$ that are rotation invariant and also of product form. That is, there are functions $g : [0, \infty) \to \mathbb{R}$ and $u : \mathbb{R} \to \mathbb{R}$ such that, for every $x, y \in \mathbb{R}$

$$f(x,y) = g(\sqrt{x^2 + y^2}) = u(x)u(y).$$

2. Use the integral substitution $\frac{y^2}{2} := a(x-m)^2$ to show that

$$\int_{-\infty}^{\infty} e^{-a(x-m)^2} \,\mathrm{d}x = \sqrt{\frac{\pi}{a}} \tag{1}$$

whenever $m \in \mathbb{R}$ and $0 < a \in \mathbb{R}$. We know form class that the value of the integral is $\sqrt{2\pi}$ when m = 0 and $a = \frac{1}{2}$.

- 3. Let $f(x_1, \ldots, x_d) = e^{-\frac{x_1^2 + \cdots + x_d^2}{2}}$, and let $V = \int_{\mathbb{R}^d} f(\underline{x}) \, \mathrm{d}\underline{x}$.
 - Calculate V using that f is a product:

$$f(x_1, \dots, x_d) = e^{-\frac{x_1^2}{2}} \cdot e^{-\frac{x_2^2}{2}} \cdot \dots \cdot e^{-\frac{x_d^2}{2}}.$$

- Write V as a one-dimensional integral using polar coordinate substitution.
- Compare the two results to get that

$$c_d = \frac{\sqrt{2\pi}^d}{\int_0^\infty r^{d-1} e^{-\frac{r^2}{2}} \,\mathrm{d}r}.$$

- 4. Calculate $A_n := \int_0^{\frac{\pi}{2}} \cos^n x \, dx$ for every $n = 0, 1, 2, \dots$
- 5. Let $B_d \subset \mathbb{R}^d$ be the unit ball is R^d meaning

$$B_d := \{(x_1, \dots, x_d) \in \mathbb{R}^d | x_1^2 + \dots + x_d^2 \le 1\}.$$

(Compare the definition of the sphere – note the inequality here.) Let b_d be the *d*-dimensional volume of B_d . Calculate b_d .

(Hint: let f(r) be the surface of the sphere with radius r, and let g(r) be the volume of the ball with radius r.) Convince me (and yourself) that g'(r) = f(r).

6. Try to calculate b_d of the previous exercise the hard way: slice the d+1-dimensional sphere into d-dimensional ones to see that

$$b_{d+1} = \int_{-1}^{1} b_d \sqrt{1 - x^2}^d \, \mathrm{d}x.$$

7. For s > 0 let

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} \,\mathrm{d}x$$

be the Euler gamma function. Check that $\Gamma(s+1) = s\Gamma(s)$ for all s > 0. Check by induction that $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}$.

8. Calculate $\Gamma\left(\frac{1}{2}\right)$. Express $\Gamma(s)$ for every half-integer s > 0 using factorials.

9. Let V be a random vector in \mathbb{R}^n with an n-dimensional standard Gaussian distribution, meaning that it has density

$$f(v_1, \dots, v_n) = \frac{1}{\sqrt{2\pi^n}} e^{-\frac{v_1^2 + \dots + v_n^2}{2}}.$$

Think of V as the velocity vector of a particle with mass m, so the energy is $E = \frac{m}{2}V^2$. Calculate the distribution of the random variable E. (Meaning: calculate the distribution function and the density.)

10. The free gas is N particles of mass m locked into a box $\Lambda \subset \mathbb{R}^3$ of volume V, with energy depending on the moments only:

$$H(\underline{q},\underline{p}) = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m},$$

where $\underline{q} \in \Lambda^N$ is the vector of positions and $\underline{p} = (\vec{p}_1, \dots, \vec{p}_N) \in \mathbb{R}^{3N}$ is the vector of moments.

The microcanonical phase space $\Omega_{N,V,E}^{micr}$ with energy E is the $\{H = E\}$ surface in $\Lambda^N \times \mathbb{R}^{3N}$. The microcanonical reference measure $\mu_{N,V,E}^{micr}$ is a measure on the phase space, that has density $\frac{1}{|\nabla H|}$ w.r.t. (surface) volume.

Calculate the microcanonical partition function $Z_{micr}(N, V, E) := \frac{1}{N!} \mu_{N,V,E}^{micr}(\Omega_{N,V,E}^{micr}).$ (See the explanation in class for the factor $\frac{1}{N!}$.)

11. The free gas is N particles of mass m locked into a box $\Lambda \subset \mathbb{R}^3$ of volume V, with energy depending on the moments only:

$$H(\underline{q},\underline{p}) = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m}$$

where $\underline{q} \in \Lambda^N$ is the vector of positions and $\underline{p} = (\vec{p}_1, \dots, \vec{p}_N) \in \mathbb{R}^{3N}$ is the vector of moments.

The canonical phase space $\Omega_{N,V}^{can}$ is $\Lambda^N \times \mathbb{R}^{3N}$. The canonical measure $\mu_{N,V,\beta}^{micr}$ with temperature β is the probability measure on the phase space, that has density $\frac{1}{A_{can}(N,V,\beta)}e^{-\beta H}$ (w.r.t. volume), where $A_{can}(N,V,\beta)$ is a normalizing factor.

Calculate the canonical partition function. $Z_{micr}(N, V, E) := \frac{1}{N!} A_{can}(N, V, \beta).$