Tools of Modern Probability

Imre Péter Tóth

Exercise sheet 1

1. Find all continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that are rotation invariant and also of product form. That is, there are functions $g:[0, \infty) \rightarrow \mathbb{R}$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ such that, for every $x, y \in \mathbb{R}$

$$
f(x, y)=g\left(\sqrt{x^{2}+y^{2}}\right)=u(x) u(y) .
$$

2. Use the integral substitution $\frac{y^{2}}{2}:=a(x-m)^{2}$ to show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-a(x-m)^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{a}} \tag{1}
\end{equation*}
$$

whenever $m \in \mathbb{R}$ and $0<a \in \mathbb{R}$. We know form class that the value of the integral is $\sqrt{2 \pi}$ when $m=0$ and $a=\frac{1}{2}$.
3. Let $f\left(x_{1}, \ldots, x_{d}\right)=e^{-\frac{x_{1}^{2}+\cdots+x_{d}^{2}}{2}}$, and let $V=\int_{\mathbb{R}^{d}} f(\underline{x}) \mathrm{d} \underline{x}$.

- Calculate V using that f is a product:

$$
f\left(x_{1}, \ldots, x_{d}\right)=e^{-\frac{x_{1}^{2}}{2}} \cdot e^{-\frac{x_{2}^{2}}{2}} \cdots \cdots e^{-\frac{x_{d}^{2}}{2}}
$$

- Write V as a one-dimensional integral using polar coordinate substitution.
- Compare the two results to get that

$$
c_{d}=\frac{\sqrt{2 \pi}^{d}}{\int_{0}^{\infty} r^{d-1} e^{-\frac{r^{2}}{2}} \mathrm{~d} r} .
$$

4. Calculate $A_{n}:=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x$ for every $n=0,1,2, \ldots$.
5. Let $B_{d} \subset \mathbb{R}^{d}$ be the unit ball is R^{d} meaning

$$
B_{d}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \mid x_{1}^{2}+\cdots+x_{d}^{2} \leq 1\right\} .
$$

(Compare the definition of the sphere - note the inequality here.) Let b_{d} be the d dimensional volume of B_{d}. Calculate b_{d}.
(Hint: let $f(r)$ be the surface of the sphere with radius r, and let $g(r)$ be the volume of the ball with radius r.) Convince me (and yourself) that $g^{\prime}(r)=f(r)$.
6. Try to calculate b_{d} of the previous exercise the hard way: slice the $d+1$-dimensional sphere into d-dimensional ones to see that

$$
b_{d+1}=\int_{-1}^{1} b_{d}{\sqrt{1-x^{2}}}^{d} \mathrm{~d} x .
$$

7. For $s>0$ let

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} \mathrm{~d} x
$$

be the Euler gamma function. Check that $\Gamma(s+1)=s \Gamma(s)$ for all $s>0$. Check by induction that $\Gamma(n+1)=n$! for all $n \in \mathbb{N}$.
8. Calculate $\Gamma\left(\frac{1}{2}\right)$. Express $\Gamma(s)$ for every half-integer $s>0$ using factorials.
9. Let V be a random vector in \mathbb{R}^{n} with an n-dimensional standard Gaussian distribution, meaning that it has density

$$
f\left(v_{1}, \ldots, v_{n}\right)=\frac{1}{\sqrt{2 \pi}^{n}} e^{-\frac{v_{1}^{2}+\cdots+v_{n}^{2}}{2}} .
$$

Think of V as the velocity vector of a particle with mass m, so the energy is $E=\frac{m}{2} V^{2}$. Calculate the distribution of the random variable E. (Meaning: calculate the distribution function and the density.)
10. The free gas is N particles of mass m locked into a box $\Lambda \subset \mathbb{R}^{3}$ of volume V, with energy depending on the moments only:

$$
H(\underline{q}, \underline{p})=\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m},
$$

where $\underline{q} \in \Lambda^{N}$ is the vector of positions and $\underline{p}=\left(\vec{p}_{1}, \ldots, \vec{p}_{N}\right) \in \mathbb{R}^{3 N}$ is the vector of moments.
The microcanonical phase space $\Omega_{N, V, E}^{m i c r}$ with energy E is the $\{H=E\}$ surface in $\Lambda^{N} \times \mathbb{R}^{3 N}$. The microcanonical reference measure $\mu_{N, V, E}^{m i c r}$ is a measure on the phase space, that has density $\frac{1}{|\nabla H|}$ w.r.t. (surface) volume.
Calculate the microcanonical partition function $Z_{\text {micr }}(N, V, E):=\frac{1}{N!} \mu_{N, V, E}^{m i c r}\left(\Omega_{N, V, E}^{m i c r}\right)$. (See the explanation in class for the factor $\frac{1}{N!}$.)
11. The free gas is N particles of mass m locked into a box $\Lambda \subset \mathbb{R}^{3}$ of volume V, with energy depending on the moments only:

$$
H(\underline{q}, \underline{p})=\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m}
$$

where $\underline{q} \in \Lambda^{N}$ is the vector of positions and $\underline{p}=\left(\vec{p}_{1}, \ldots, \vec{p}_{N}\right) \in \mathbb{R}^{3 N}$ is the vector of moments.
The canonical phase space $\Omega_{N, V}^{c a n}$ is $\Lambda^{N} \times \mathbb{R}^{3 N}$. The canonical measure $\mu_{N, V, \beta}^{m i c r}$ with temperature β is the probability measure on the phase space, that has density $\frac{1}{A_{\operatorname{can}(N, V, \beta)}} e^{-\beta H}$ (w.r.t. volume), where $A_{c a n}(N, V, \beta)$ is a normalizing factor.

Calculate the canonical partition function. $Z_{\text {micr }}(N, V, E):=\frac{1}{N!} A_{c a n}(N, V, \beta)$.

