Tools of Modern Probability
 Imre Péter Tóth

Exercise sheet 3

3.1 Let V be an inner product space over \mathbb{R} and let $f: V \rightarrow \mathbb{R}$ be a linear form. Let $E:=\{y \in$ $V \mid f(y)=0\}$ be the null-space of f. Suppose that $f(a)=1, c \in E$ and $a-c$ is orthogonal to E, meaning $(a-c) y=0$ for every $y \in E$. Now, for any $x \in V$, find the $\lambda \in \mathbb{R}$ for which $x_{1}:=x-\lambda(a-c) \in E$. Use this to get the relation between $f(x)$ and $(a-c) x$.
3.2 Represent the following functions $f: V \rightarrow \mathbb{R}$ as multiplication by a fixed vector, whenever this is possible due to the Riesz representation theorem.
a.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{5}$ (evaluation at 5)
b.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{6}-x_{5}$ (discrete derivative at 5).
c.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{6}-2 x_{5}+x_{4}$ (discrete second derivative at 5).
d.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{100} x(i)$.
e.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{\infty} x(i)$.
f.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{\infty} x^{2}(i)$.
g.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x\left(\frac{1}{2}\right)$ (evaluation at $\frac{1}{2}$).
h.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x^{\prime}\left(\frac{1}{2}\right)$ (derivative at $\frac{1}{2}$).
i.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=\int_{0.2}^{0.7} x(t) \mathrm{d} t$.
j.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is differentiable $\}$, with the inner product $x \cdot y:=\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x^{\prime}\left(\frac{1}{2}\right)$.
k.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is continuous $\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x\left(\frac{1}{2}\right)$.
1.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is continuous $\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=\int_{0.2}^{0.7} x(t) \mathrm{d} t$.
3.3 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega}:=\{A: A \subset \Omega\}$ is the power set of Ω) is called a σ-algebra over Ω if

- $\emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^{C}:=\Omega \backslash A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under finite union and intersection.
3.4 (a) We toss a biased coin, on which the probability of heads is some $0 \leq p \leq 1$. Define the random variable ξ as the indicator function of tossing heads, that is

$$
\xi:=\left\{\begin{array}{l}
0, \text { if tails } \\
1, \text { if heads }
\end{array} .\right.
$$

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p) in the "classical" way, listing possible values and their probabilities,
ii. and also by describing the distribution as a measure on \mathbb{R}, giving the weight $\mathbb{P}(\xi \in$ B) of every Borel subset B of \mathbb{R}.
iii. Calculate the expectation of ξ.
(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
i. Describe the distribution of X (called the Binomial distribution with parameters $(n, p))$ by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case) using its distribution,
iii. and also by noticing that $X=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where ξ_{i} is the indicator of the i-th toss being heads, and using linearity of the expectation.
3.5 The ternary number $0 . a_{1} a_{2} a_{3} \ldots$ is the analogue of the usual decimal fraction, but writing numbers in base 3 . That is, for any sequence $a_{1}, a_{2}, a_{3}, \ldots$ with $a_{n} \in\{0,1,2\}$, by definition

$$
0 . a_{1} a_{2} a_{3} \cdots:=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} .
$$

Now let us construct the ternary fraction form of a random real number X via a sequence of fair coin tosses, such that we rule out the digit 1 . That is,

$$
a_{n}:=\left\{\begin{array}{l}
0, \text { if the } n \text {-th toss is tails } \\
2, \text { if the } n \text {-th toss is heads }
\end{array}\right.
$$

and setting $X=0 . a_{1} a_{2} a_{3} \ldots$ (ternary). In this way, X is a "uniformly" chosen random point of the famous middle-third Cantor set C defined as

$$
C:=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}, a_{n} \in\{0,2\}(n=1,2, \ldots)\right\} .
$$

Show that
(a) The distribution of X gives zero weight to every point - that is, $\mathbb{P}(X=x)=0$ for every $x \in \mathbb{R}$. (As a consequence, the cumulative distribution function of X is continuous.)
(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on \mathbb{R}.
3.6 Continuity of the measure
(a) Prove the following:

Theorem 1 (Continuity of the measure)
i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_{1}, A_{2}, \ldots is an increasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \subset A_{i+1}$ for all i), then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_{1}, A_{2}, \ldots is a decreasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \supset A_{i+1}$ for all i) and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=$ $\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
(b) Show that in the second statement the condition $\mu\left(A_{1}\right)<\infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
3.7 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a destination at random, uniformly out of the 10 floors, independently of the others. Let X denote the number of floors on which the elevator stops - i.e. the number of floors that were chosen by at least one person. Calculate the expectation and the variance of X. (hint: First notice that the distribution of X is hard to calculate. Find a way to calculate the expectation and the variance without that.)

