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Let V' be an inner product space over R and let f : V' — R be a linear form. Let F := {y €
V'| f(y) = 0} be the null-space of f. Suppose that f(a) =1, ¢ € E and a — ¢ is orthogonal
to F, meaning (a — ¢)y = 0 for every y € E. Now, for any z € V| find the A € R for which
x1:=x — Ma — ¢) € E. Use this to get the relation between f(x) and (a — ¢)z.

Represent the following functions f : V — R as multiplication by a fixed vector, whenever
this is possible due to the Riesz representation theorem.

a.) V = R'% with the usual inner product, f((z1,...,21)) := 5 (evaluation at 5)

b.) V = R' with the usual inner product, f((x,...,210)) := z6 — x5 (discrete derivative at
5).

c.) V =R with the usual inner product, f((z1,...,%1)) = x — 225 + x4 (discrete second

derivative at 5).
d) V=0 ={z: N> R| Y7 2%(i) < oo}, with the inner product z -y := Y oo, x(2)y(4);
fla) =28 ().
e) V=0>0F={z: N> R|Y > 2%i) < oo}, with the inner product = -y := >, x(¢)y(i);
fla) =322 ().
£) V=07 ={z: N> R|Y 2 2%(i) < oo}, with the inner product -y := Y o0, x(2)y(4);
fla) =302, 22(1).
g) V =L*[0,1]) := {z : [0,1] — R| f t)dt < oo}, with the inner product x -y :
fol (t)y(t) dt; f(x) == z(3) (evaluation at )
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h.) V = L*[0,1]) := {z : [0,1] — R| fo t)dt < oo}, with the inner product x -y :
fol (t)y(t)dt; f(x) :x(%) (derlvatlve at )

i) V = L*[0,1]) = {= [O 1] - R| f t)dt < oo}, with the inner product x -y :
Jo w@y() dt; f(@) =[5y ()dt

j)V ={z : [0,1] - R| f t)dt < oo, fis differentiable}, with the inner product
vy = [y 2(t)y(t) d; f(o) = '(%)-

k) V={x: [0 1] - R f 2(t)dt < oo, f is continuous}, with the inner product z - y :=
Jo 2@yt dt; f(z) = x(}).

L) V= [O, — R| fo (t )dt < oo, f is continuous}, with the inner product z -y :=

{z:
Sy ds f(@) = 2 o) e

Define a o-algebra as follows:

Definition 1 For a nonempty set Q, a family F of subsets of w (i.e. F C 2%, where
2% :={A: AC Q) is the power set of Q) is called a o-algebra over §) if

e leF

o if Ac F, then A :=Q\ A€ F (that is, F is closed under complement taking)

o if Ay, Ay, -+ € F, then (U2, A;) € F (that is, F is closed under countable union).

Show from this definition that a o-algebra is closed under countable intersection, and under
finite union and intersection.



3.4 (a) We toss a biased coin, on which the probability of heads is some 0 < p < 1. Define the
random variable ¢ as the indicator function of tossing heads, that is

- 0, if tails
T 1, if heads

i. Describe the distribution of £ (called the Bernoulli distribution with parameter p)
in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight P(¢ €
B) of every Borel subset B of R.

iii. Calculate the expectation of &.
(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
i. Describe the distribution of X (called the Binomial distribution with parameters
(n,p)) by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case)
using its distribution,
iii. and also by noticing that X = & + & + -+ - + &,, where &; is the indicator of the
i-th toss being heads, and using linearity of the expectation.

3.5 The ternary number 0.ajasas . .. is the analogue of the usual decimal fraction, but writing

numbers in base 3. That is, for any sequence ay, as, as, ... with a, € {0, 1,2}, by definition
= a
O.a1a2a3 e = 3—2
n=1

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

0, if the n-th toss is tails,
Qy 1=
2, if the n-th toss is heads

and setting X = 0.ayasag... (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C' defined as

C = {i%,an6{0,2}(71:1,2,...)}.

n=1
Show that

(a) The distribution of X gives zero weight to every point — that is, P(X = x) = 0 for every
x € R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.
3.6 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Q, F,n) is a measure space and Ay, As, ... is an increasing sequence of mea-
surable sets (i.e. A; € F and A; C Aiyq for all i), then pu(U2,A;) = lim; o0 u(A;)
(and both sides of the equation make sense).



ir. If (Q, F, 1) is a measure space, Ay, As, ... is a decreasing sequence of measurable
sets (i.e. A; € F and A; O Ay for all i) and p(Ay) < oo, then p(N2,A;) =
lim; o p(A;) (and both sides of the equation make sense).

(b) Show that in the second statement the condition (A1) < oo is needed, by constructing
a counterexample for the statement when this condition does not hold.

3.7 Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops — i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X.
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that.)



