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3.1 Let V be an inner product space over R and let f : V → R be a linear form. Let E := {y ∈
V | f(y) = 0} be the null-space of f . Suppose that f(a) = 1, c ∈ E and a− c is orthogonal
to E, meaning (a− c)y = 0 for every y ∈ E. Now, for any x ∈ V , find the λ ∈ R for which
x1 := x− λ(a− c) ∈ E. Use this to get the relation between f(x) and (a− c)x.

3.2 Represent the following functions f : V → R as multiplication by a fixed vector, whenever
this is possible due to the Riesz representation theorem.

a.) V = R
10 with the usual inner product, f((x1, . . . , x10)) := x5 (evaluation at 5)

b.) V = R
10 with the usual inner product, f((x1, . . . , x10)) := x6 − x5 (discrete derivative at

5).

c.) V = R
10 with the usual inner product, f((x1, . . . , x10)) := x6− 2x5+ x4 (discrete second

derivative at 5).

d.) V = l2 := {x : N → R |
∑

∞

i=1
x2(i) < ∞}, with the inner product x · y :=

∑

∞

i=1
x(i)y(i);

f(x) :=
∑

100

i=1
x(i).

e.) V = l2 := {x : N → R |
∑

∞

i=1
x2(i) < ∞}, with the inner product x · y :=

∑

∞

i=1
x(i)y(i);

f(x) :=
∑

∞

i=1
x(i).

f.) V = l2 := {x : N → R |
∑

∞

i=1
x2(i) < ∞}, with the inner product x · y :=

∑

∞

i=1
x(i)y(i);

f(x) :=
∑

∞

i=1
x2(i).

g.) V = L2([0, 1]) := {x : [0, 1] → R |
∫

1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x(1

2
) (evaluation at 1

2
).

h.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x′(1

2
) (derivative at 1

2
).

i.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫

1

0
x(t)y(t) dt; f(x) :=

∫

0.7

0.2
x(t) dt.

j.) V = {x : [0, 1] → R |
∫

1

0
x2(t) dt < ∞, f is differentiable}, with the inner product

x · y :=
∫ 1

0
x(t)y(t) dt; f(x) := x′(1

2
).

k.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is continuous}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x(1

2
).

l.) V = {x : [0, 1] → R |
∫

1

0
x2(t) dt < ∞, f is continuous}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) :=

∫ 0.7

0.2
x(t) dt.

3.3 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family F of subsets of ω (i.e. F ⊂ 2Ω, where
2Ω := {A : A ⊂ Ω} is the power set of Ω) is called a σ-algebra over Ω if

• ∅ ∈ F

• if A ∈ F , then AC := Ω \ A ∈ F (that is, F is closed under complement taking)

• if A1, A2, · · · ∈ F , then (∪∞

i=1Ai) ∈ F (that is, F is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under
finite union and intersection.
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3.4 (a) We toss a biased coin, on which the probability of heads is some 0 ≤ p ≤ 1. Define the
random variable ξ as the indicator function of tossing heads, that is

ξ :=

{

0, if tails

1, if heads
.

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p)
in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight P(ξ ∈
B) of every Borel subset B of R.

iii. Calculate the expectation of ξ.

(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.

i. Describe the distribution of X (called the Binomial distribution with parameters
(n, p)) by listing possible values and their probabilities.

ii. Calculate the expectation of X by integration (actually summation in this case)
using its distribution,

iii. and also by noticing that X = ξ1 + ξ2 + · · · + ξn, where ξi is the indicator of the
i-th toss being heads, and using linearity of the expectation.

3.5 The ternary number 0.a1a2a3 . . . is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence a1, a2, a3, . . . with an ∈ {0, 1, 2}, by definition

0.a1a2a3 · · · :=
∞
∑

n=1

an

3n
.

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

an :=

{

0, if the n-th toss is tails,

2, if the n-th toss is heads
,

and setting X = 0.a1a2a3 . . . (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C defined as

C :=

{

∞
∑

n=1

an

3n
, an ∈ {0, 2} (n = 1, 2, . . . )

}

.

Show that

(a) The distribution of X gives zero weight to every point – that is, P(X = x) = 0 for every
x ∈ R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.

3.6 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of mea-
surable sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).
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ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) < ∞, then µ(∩∞

i=1Ai) =
limi→∞ µ(Ai) (and both sides of the equation make sense).

(b) Show that in the second statement the condition µ(A1) < ∞ is needed, by constructing
a counterexample for the statement when this condition does not hold.

3.7 Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops – i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X .
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that.)
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