Tools of Modern Probability

Imre Péter Tóth

Exercise sheet 4

4.1 Let $X=[0,1]$ and let μ be Lebesgue measure on X. Let $f(x)=x^{2}$. Describe the measure $f_{*} \mu$.
4.2 Let $X=\left\{\left(a_{1}, a_{2}, \ldots\right) \mid a_{k} \in\{0,1\}\right.$ for every $\left.k\right\}$ be the set of $\{0,1\}$-sequences. Let μ be the measure on X for which

$$
\mu\left(\left\{\left(a_{1}, a_{2}, \ldots\right) \in X \mid a_{1}=b_{1}, \ldots, a_{N}=b_{N}\right\}\right)=\frac{1}{2^{N}}
$$

for every $b_{1}, \ldots, b_{N} \in\{0,1\}$. Let $f: X \rightarrow \mathbb{R}$ be defined as

$$
f\left(a_{1}, a_{2}, \ldots\right):=\sum_{k=1}^{\infty} \frac{a_{k}}{2^{k}} .
$$

Describe the measure $f_{*} \mu$.
4.3 Consider the following measure spaces (X, μ) :
I. $X=[0,1], \mu$ is Lebesgue measure.
II. $X=[0, \infty), \mu$ is Lebesgue measure.
III. $X=\{1,2 \ldots, N\}, \mu$ is counting measure.
IV. $X=\{1,2 \ldots\}, \mu$ is counting measure.

Show examples of functions f_{1}, f_{2}, \ldots and f from X to \mathbb{R} such that f_{n} converges to f
a.) almost everywhere, but not in L^{1},
b.) in L^{1}, but not almost everywhere,
c.) in L^{1}, but not in L^{2},
d.) in L^{2}, but not in L^{1}.
4.4 The characteristic function of a random variable X is the function $\Psi: \mathbb{R} \rightarrow \mathbb{C}$ defined as $\Psi(t)=\mathbb{E}\left(e^{i t X}\right)$. Calculate the characteristic function of
(a) The Bernoulli distribution $B(p)$
(b) The "pessimistic geometric distribution with parameter p " - that is, the distribution μ on $\{0,1,2 \ldots\}$ with weights $\mu(\{k\})=(1-p) p^{k}(k=0,1,2 \ldots)$.
(c) The "optimistic geometric distribution with parameter p " - that is, the distribution ν on $\{1,2,3, \ldots\}$ with weights $\nu(\{k\})=(1-p) p^{k-1}(k=1,2 \ldots)$.
(d) The Poisson distribution with parameter λ - that is, the distribution η on $\{0,1,2 \ldots\}$ with weights $\eta(\{k\})=e^{-\lambda} \frac{\lambda^{k}}{k!}(k=0,1,2 \ldots)$.
(e) The exponential distribution with parameter λ - that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{\lambda}(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, \text { if } x>0 \\
0, \text { if not }
\end{array}\right.
$$

4.5 Calculate the characteristic function of the normal distribution $\mathcal{N}\left(m, \sigma^{2}\right)$. (Remember the definition from the old times: $\mathcal{N}\left(m, \sigma^{2}\right)$ is the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{m, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} .
$$

You can save yourself some paperwork if you only do the calculation for $\mathcal{N}(0,1)$ and reduce the general case to this using the relation between different normal distributions. You can and should use the fact that

$$
\int_{-\infty}^{\infty} f_{m, \sigma^{2}}(x) \mathrm{d} x=1
$$

for every m and σ.
4.6 Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following

Theorem 1 (dominated convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ almost everywehere. (That is, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ-measure zero.) Assume furthermore that the f_{n} admit a common integrable dominating function: there exists a $g: \Omega \rightarrow \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \mathrm{~d} \mu<\infty$. Then (all the f_{n} and also f are integrable and)

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Use this theorem to prove the following
Theorem 2 (differentiability of the characteristic function) Let X be a real valued random variable, $\psi(t)=\mathbb{E}\left(e^{i t X}\right)$ its characteristic function and $n \in \mathbb{N}$. If the n-th moment of X exists and is finite (i.e. $\mathbb{E}\left(|X|^{n}\right)<\infty$), then ψ is n times continuously differentiable and

$$
\psi^{(k)}(0)=i^{k} \mathbb{E}\left(X^{k}\right), \quad k=0,1,2, \ldots, n .
$$

4.7 Exchangeability of integral and limit. Consider the sequences of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and $g_{n}:[0,1] \rightarrow \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$, such that $f_{n}(x) \rightarrow$ $f(x)$ and $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x \in[0,1]$? What is $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right)$ and $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} g_{n}(x) d x\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
(a)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { if } 1 / n \leq x \leq 2 / n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Write n as $n=2^{k}+l$, where $k=0,1,2 \ldots$ and $l=0,1, \ldots, 2^{k}-1$ (this can be done in a unique way for every n). Now let

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{l}{2^{k}} \leq x<\frac{l+1}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

4.8 Exchangeability of integrals. Consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}1 & \text { if } \quad 0<x, 0<y \text { and } 0 \leq x-y \leq 1 \\ -1 & \text { if } \quad 0<x, 0<y \text { and } 0<y-x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y$ and $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x$. What's the situation with the Fubini theorem?
4.9 For real numbers $a_{1}, a_{2}, a_{3}, \ldots$ define the infinite product $\prod_{k=1}^{\infty} a_{k}$ as

$$
\prod_{k=1}^{\infty} a_{k}:=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} a_{k}
$$

whenever this limit exists.
Let $p_{1}, p_{2}, p_{3}, \ldots$ satisfy $0 \leq p_{k}<1$ for all k. Show that $\prod_{k=1}^{\infty}\left(1-p_{k}\right)>0$ if and only if $\sum_{k=1}^{\infty} p_{k}<\infty$.
(Hint: estimate the logarithm of $(1-p)$ with p.)
4.10 Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}, \quad \mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}} .
$$

Show that $\mathbb{E} X_{n}=0$ for every n, but

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\ldots X_{n}}{n}=-1
$$

almost surely.
4.11 Prove that for any sequence X_{1}, X_{2}, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_{1}, c_{2}, \ldots of numbers such that

$$
\frac{X_{n}}{c_{n}} \rightarrow 0 \text { almost surely. }
$$

4.12 Let X_{1}, X_{2}, \ldots be i.i.d. random variables with distribution $\operatorname{Bernoulli}(p)$ for some $p \in(0 ; 1)$ but $p \neq \frac{1}{2}$. Let $Y:=\sum_{n=1}^{\infty} 2^{-n} X_{n}$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.

