Tools of Modern Probability Imre Péter Tóth Exercise sheet 4

- 4.1 Let X = [0, 1] and let μ be Lebesgue measure on X. Let $f(x) = x^2$. Describe the measure $f_*\mu$.
- 4.2 Let $X = \{(a_1, a_2, \dots) \mid a_k \in \{0, 1\}$ for every $k\}$ be the set of $\{0, 1\}$ -sequences. Let μ be the measure on X for which

$$\mu(\{(a_1, a_2, \dots) \in X \mid a_1 = b_1, \dots, a_N = b_N\}) = \frac{1}{2^N}$$

for every $b_1, \ldots, b_N \in \{0, 1\}$. Let $f: X \to \mathbb{R}$ be defined as

$$f(a_1, a_2, \dots) := \sum_{k=1}^{\infty} \frac{a_k}{2^k}.$$

Describe the measure $f_*\mu$.

- 4.3 Consider the following measure spaces (X, μ) :
 - I. $X = [0, 1], \mu$ is Lebesgue measure.
 - II. $X = [0, \infty), \mu$ is Lebesgue measure.
 - III. $X = \{1, 2..., N\}, \mu$ is counting measure.
 - IV. $X = \{1, 2...\}, \mu$ is counting measure.

Show examples of functions f_1, f_2, \ldots and f from X to \mathbb{R} such that f_n converges to f

- a.) almost everywhere, but not in L^1 ,
- b.) in L^1 , but not almost everywhere,
- c.) in L^1 , but not in L^2 ,
- d.) in L^2 , but not in L^1 .
- 4.4 The characteristic function of a random variable X is the function $\Psi : \mathbb{R} \to \mathbb{C}$ defined as $\Psi(t) = \mathbb{E}(e^{itX})$. Calculate the characteristic function of
 - (a) The Bernoulli distribution B(p)
 - (b) The "pessimistic geometric distribution with parameter p" that is, the distribution μ on $\{0, 1, 2...\}$ with weights $\mu(\{k\}) = (1-p)p^k$ (k = 0, 1, 2...).
 - (c) The "optimistic geometric distribution with parameter p" that is, the distribution ν on $\{1, 2, 3, ...\}$ with weights $\nu(\{k\}) = (1-p)p^{k-1}$ (k = 1, 2...).
 - (d) The Poisson distribution with parameter λ that is, the distribution η on $\{0, 1, 2...\}$ with weights $\eta(\{k\}) = e^{-\lambda} \frac{\lambda^k}{k!} \ (k = 0, 1, 2...).$
 - (e) The exponential distribution with parameter λ that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x}, \text{ if } x > 0\\ 0, \text{ if not} \end{cases}$$

4.5 Calculate the characteristic function of the normal distribution $\mathcal{N}(m, \sigma^2)$. (Remember the definition from the old times: $\mathcal{N}(m, \sigma^2)$ is the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$f_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

You can save yourself some paperwork if you only do the calculation for $\mathcal{N}(0,1)$ and reduce the general case to this using the relation between different normal distributions. You can and should use the fact that

$$\int_{-\infty}^{\infty} f_{m,\sigma^2}(x) \,\mathrm{d}x = 1$$

for every m and σ .

4.6 Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following

Theorem 1 (dominated convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_1, f_2, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ almost everywhere. (That is, $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ -measure zero.) Assume furthermore that the f_n admit a common integrable dominating function: there exists a $g: \Omega \to \mathbb{R}$ such that $|f_n(x)| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \, d\mu < \infty$. Then (all the f_n and also f are integrable and)

$$\lim_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu = \int_{\Omega} f \, \mathrm{d}\mu.$$

Use this theorem to prove the following

Theorem 2 (differentiability of the characteristic function) Let X be a real valued random variable, $\psi(t) = \mathbb{E}(e^{itX})$ its characteristic function and $n \in \mathbb{N}$. If the n-th moment of X exists and is finite (i.e. $\mathbb{E}(|X|^n) < \infty$), then ψ is n times continuously differentiable and

$$\psi^{(k)}(0) = i^k \mathbb{E}(X^k), \quad k = 0, 1, 2, \dots, n$$

4.7 Exchangeability of integral and limit. Consider the sequences of functions $f_n : [0,1] \to \mathbb{R}$ and $g_n : [0,1] \to \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f : [0,1] \to \mathbb{R}$ and $g : [0,1] \to \mathbb{R}$, such that $f_n(x) \to$ f(x) and $g_n(x) \to g(x)$ for Lebesgue almost every $x \in [0,1]$? What is $\lim_{n \to \infty} \left(\int_0^1 f_n(x) dx \right)$

and $\lim_{n\to\infty} \left(\int_{0}^{1} g_n(x)dx\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?

(a)

$$f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x < 1/n, \\ 2n - n^2 x & \text{if } 1/n \le x \le 2/n, \\ 0 & \text{otherwise.} \end{cases}$$

(b) Write n as $n = 2^k + l$, where k = 0, 1, 2... and $l = 0, 1, ..., 2^k - 1$ (this can be done in a unique way for every n). Now let

$$g_n(x) = \begin{cases} 1 & \text{if } \frac{l}{2^k} \le x < \frac{l+1}{2^k}, \\ 0 & \text{otherwise.} \end{cases}$$

4.8 Exchangeability of integrals. Consider the following function $f : \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = \begin{cases} 1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 \le x - y \le 1, \\ -1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 < y - x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Calculate $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dx \right) dy$ and $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dy \right) dx$. What's the situation with the Fubini theorem?

4.9 For real numbers a_1, a_2, a_3, \ldots define the infinite product $\prod_{k=1}^{\infty} a_k$ as

$$\prod_{k=1}^{\infty} a_k := \lim_{n \to \infty} \prod_{k=1}^n a_k,$$

whenever this limit exists.

Let p_1, p_2, p_3, \ldots satisfy $0 \le p_k < 1$ for all k. Show that $\prod_{k=1}^{\infty} (1 - p_k) > 0$ if and only if $\sum_{k=1}^{\infty} p_k < \infty$.

(Hint: estimate the logarithm of (1-p) with p.)

4.10 Let X_1, X_2, \ldots be independent random variables such that

$$\mathbb{P}(X_n = n^2 - 1) = \frac{1}{n^2}, \quad \mathbb{P}(X_n = -1) = 1 - \frac{1}{n^2}.$$

Show that $\mathbb{E}X_n = 0$ for every n, but

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = -1$$

almost surely.

4.11 Prove that for any sequence X_1, X_2, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_1, c_2, \ldots of numbers such that

$$\frac{X_n}{c_n} \to 0$$
 almost surely.

4.12 Let X_1, X_2, \ldots be i.i.d. random variables with distribution Bernoulli(p) for some $p \in (0; 1)$ but $p \neq \frac{1}{2}$. Let $Y := \sum_{n=1}^{\infty} 2^{-n} X_n$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.