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Imre Péter Tóth
Exercise sheet 4

4.1 Let X = [0, 1] and let µ be Lebesgue measure on X . Let f(x) = x2. Describe the measure
f∗µ.

4.2 Let X = {(a1, a2, . . . ) | ak ∈ {0, 1} for every k} be the set of {0, 1}-sequences. Let µ be the
measure on X for which

µ({(a1, a2, . . . ) ∈ X | a1 = b1, . . . , aN = bN}) =
1

2N

for every b1, . . . , bN ∈ {0, 1}. Let f : X → R be defined as

f(a1, a2, . . . ) :=
∞
∑

k=1

ak
2k
.

Describe the measure f∗µ.

4.3 Consider the following measure spaces (X, µ):

I. X = [0, 1], µ is Lebesgue measure.

II. X = [0,∞), µ is Lebesgue measure.

III. X = {1, 2 . . . , N}, µ is counting measure.

IV. X = {1, 2 . . . }, µ is counting measure.

Show examples of functions f1, f2, . . . and f from X to R such that fn converges to f

a.) almost everywhere, but not in L1,

b.) in L1, but not almost everywhere,

c.) in L1, but not in L2,

d.) in L2, but not in L1.

4.4 The characteristic function of a random variable X is the function Ψ : R → C defined as
Ψ(t) = E(eitX). Calculate the characteristic function of

(a) The Bernoulli distribution B(p)

(b) The “pessimistic geometric distribution with parameter p” – that is, the distribution µ
on {0, 1, 2 . . .} with weights µ({k}) = (1− p)pk (k = 0, 1, 2 . . . ).

(c) The “optimistic geometric distribution with parameter p” – that is, the distribution ν
on {1, 2, 3, . . .} with weights ν({k}) = (1− p)pk−1 (k = 1, 2 . . . ).

(d) The Poisson distribution with parameter λ – that is, the distribution η on {0, 1, 2 . . . }
with weights η({k}) = e−λ λk

k!
(k = 0, 1, 2 . . . ).

(e) The exponential distribution with parameter λ – that is, the distribution on R with
density (w.r.t. Lebesgue measure)

fλ(x) =

{

λe−λx, if x > 0

0, if not
.
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4.5 Calculate the characteristic function of the normal distribution N (m, σ2). (Remember the
definition from the old times: N (m, σ2) is the distribution on R with density (w.r.t. Lebesgue
measure)

fm,σ2(x) =
1√
2πσ

e−
(x−m)2

2σ2 .

You can save yourself some paperwork if you only do the calculation for N (0, 1) and reduce
the general case to this using the relation between different normal distributions. You can
and should use the fact that

∫

∞

−∞

fm,σ2(x) dx = 1

for every m and σ.

4.6 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 1 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . .
measurable real valued functions on Ω which converge to the limit function pointwise, µ-
almost everywehere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a
set of x-es with µ-measure zero.) Assume furthermore that the fn admit a common integrable
dominating function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and
n ∈ N, and

∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

Use this theorem to prove the following

Theorem 2 (differentiability of the characteristic function) Let X be a real valued
random variable, ψ(t) = E(eitX) its characteristic function and n ∈ N. If the n-th moment
of X exists and is finite (i.e. E(|X|n) < ∞), then ψ is n times continuously differentiable
and

ψ(k)(0) = ikE(Xk), k = 0, 1, 2, . . . , n.

4.7 Exchangeability of integral and limit. Consider the sequences of functions fn : [0, 1] → R

and gn : [0, 1] → R concerning their pointwise limits and the limits of their integrals. Do
there exist integrable functions f : [0, 1] → R and g : [0, 1] → R, such that fn(x) →
f(x) and gn(x) → g(x) for Lebesgue almost every x ∈ [0, 1]? What is lim

n→∞

(

1
∫

0

fn(x)dx

)

and lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are the conditions of the dominated and monotone convergence

theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these
specific examples?

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done in
a unique way for every n). Now let

gn(x) =

{

1 if l

2k
≤ x < l+1

2k
,

0 otherwise.
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4.8 Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?

4.9 For real numbers a1, a2, a3, . . . define the infinite product
∞
∏

k=1

ak as

∞
∏

k=1

ak := lim
n→∞

n
∏

k=1

ak,

whenever this limit exists.

Let p1, p2, p3, . . . satisfy 0 ≤ pk < 1 for all k. Show that
∞
∏

k=1

(1 − pk) > 0 if and only if

∞
∑

k=1

pk <∞.

(Hint: estimate the logarithm of (1− p) with p.)

4.10 Let X1, X2, . . . be independent random variables such that

P(Xn = n2 − 1) =
1

n2
, P(Xn = −1) = 1− 1

n2
.

Show that EXn = 0 for every n, but

lim
n→∞

X1 + . . .Xn

n
= −1

almost surely.

4.11 Prove that for any sequence X1, X2, . . . of random variables (real valued, defined on the
same probability space) there exists a sequence c1, c2, . . . of numbers such that

Xn

cn
→ 0 almost surely.

4.12 Let X1, X2, . . . be i.i.d. random variables with distribution Bernoulli(p) for some p ∈ (0; 1)
but p 6= 1

2
. Let Y :=

∑

∞

n=1 2
−nXn. (The sum is absolutely convergent.) Show that the

distribution of Y is continuous, but singular w.r.t. Lebesgue measure.
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