
Tools of Modern Probability

Imre Péter Tóth
Exercise sheet 5

5.1 Let (X,F) be a measurable space and let µ, ν be σ-finite measures on it. Show that there is

a countable partition X =
⋃̇

i
Ai such that µ(Ai) < ∞ and ν(Ai) < ∞ for every i. Use this

to show that the special case of the Radon-Nikodym theorem for finite measures implies the
general theorem (for σ-finite measures).

5.2 Let λ be Lebesgue measure and χ be counting measure on R (with the Borel σ-algebra).
Show that λ does not have a density with respect to χ. (Hint: consider 1-element sets.)

5.3 Let (Ω,F ,P) be a probability space and A ∈ F . Define X : Ω → R as X(ω) = 1A(ω) and
let µ = X∗P be the distribution of X . Show that µ is absolutely continuous w.r.t counting
measure, show that it also has a density. What is the density?

5.4 Let X be a discrete random variable and let µ be its distribution. Give the density of µ
w.r.t. counting measure.

5.5 Let (Ω,F ,P) be a probability space. Let X : Ω → R
+ be integrable and let G ⊂ F be a

sub-σ-algebra. Define ν : G → R
+ by ν(A) :=

∫
A
X dP (whenever A ∈ G). Check that ν is

a measure on (Ω,G).

5.6 Let X be a nonempty set and let Fi ⊂ 2X be a σ-algebra for every i ∈ I, where I is some
index set. I may be arbitrary (possibly much bigger that countable), but we assume I 6= ∅.
Show that F :=

⋂
i∈I Fi is also a σ-algebra. (Note that the assumption I 6= ∅ is important.)

5.7 Let (Ω,F) be a measurable space and let X : Ω → R be (Borel-)measurable. Let (Gi)i∈I be
the family of all σ-algebras over Ω such that X is Gi-measurable, and let G :=

⋂
i∈I Gi. Show

that G is the smallest σ-algebra for which X is measurable. (In what sense exactly is it the
smallest?)

5.8 Let (Ω,F) be a measurable space, let X : Ω → R be (F ,B)-measurable, where B is the
Borel σ-algebra on R. Let σ(X) be the smallest σ-algebra on Ω for which X is measurable.
(This exists by the previous exercise.) This is called the σ-algebra generated by X . Show
that

σ(X) = {X−1(B) |B ∈ B}.

5.9 Let (Ω,F) be a measurable space, and let G1,G2 ⊂ F be sub-σ-algebras. We say that G1

and G2 are independent if any A ∈ G1 and B ∈ G2 are independent. Show that if the random
variables X and Y are independent, then σ(X) and σ(Y ) are independent.

5.10 Let (Ω,F) be a measurable space, and let G1,G2 ⊂ F be sub-σ-algebras. Let X and Y be
random variables, X ∈ G1, Y ∈ G2. Show that if G1 and G2 are independent, then X and Y

are independent.

5.11 Show that if X is a random variable, f : R → R measurable and Y = f(X), then σ(Y ) ⊂
σ(X). Show an example when equality holds, and an example when not.

5.12 Show that if X, Y are independent random variables and f, g : R → R are measurable, then
f(X) and g(Y ) are also independent.

5.13 Show that the random variables X, Y : Ω → R are independent if and only if the (joint)
distribution of the pair (X, Y ) (which is a probability measure on R

2) is the product of the
distributions of X and Y .
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5.14 Show that if X and Y are independent and integrable, then E(XY ) = EXEY .

5.15 Show that if the random variable X is independent of the σ-algebra G, then E(X|G) = EX .

5.16 Let Ω = {a, b, c} and P the uniform measure on it. LetX = 1{c} and let G = {∅, {a}, {b, c},Ω}.
Calculate E(X|G).

5.17 We roll two fair dice and let X, Y be the numbers rolled. Calculate E(X|X + Y ).

5.18 Let Ω = [0, 1]2 and let P be Lebesgue measure on Ω. Let X, Y : Ω → R be defined as
X(u, v) = u and Y (u, v) =

√
u+ v. Calculate E(Y |X).

5.19 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(

√
U + V |U).

5.20 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(U + V |U − V ).

5.21 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(

√
U + V |U − V ).

5.22 Let X and Y be independent standard Gaussian random variables. Let U = X + Y and
V = 2X − Y . Calculate E(V |U). (Hint: if W is independent of U , then E(W |U) = EW . If
you choose λ ∈ R cleverly, then W := V − λU will be independent of U . (Since U and W

are jointly Gaussian, to show independence it’s enough to check that Cov(U,W ) = 0.) Then
write V = λU +W .)
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