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1.1 Find all continuous functions f : R2 → R that are rotation invariant and also of product
form. That is, there are functions g : [0,∞) → R and h : R → R such that, for every
x, y ∈ R

f(x, y) = g(
√

x2 + y2) = h(x)h(y).

(Hint: write everything as the function of the square of the radius, e.g. by defining u := x2,
v := y2 and G(z) := g(

√
z). Then you should get G(u + v) = constG(u)G(v). Now study

the logarithm of G.)

1.2 Use the integral substitution y2

2
:= a(x−m)2 to show that

∫ ∞

−∞
e−a(x−m)2 dx =

√

π

a
(1)

whenever m ∈ R and 0 < a ∈ R. We know form class that the value of the integral is
√
2π

when m = 0 and a = 1
2
.

1.3 Let f(x1, . . . , xd) = e−
x
2
1
+···+x

2
d

2 , and let V =
∫

Rd f(x) dx.

• Calculate V using that f is a product:

f(x1, . . . , xd) = e−
x
2
1
2 · e−

x
2
2
2 · · · · · e−

x
2
d

2 .

• Write V as a one-dimensional integral using polar coordinate substitution.

• Compare the two results to get that

cd =

√
2π

d

∫∞
0

rd−1e−
r2

2 dr
.

1.4 Calculate An :=
∫ π

2

0
cosn x dx for every n = 0, 1, 2, . . . the hard way: if n ≥ 2, then

An =

∫ π

2

0

(1− sin2 x) cosn−2 x dx = An−2 −
∫ π

2

0

[sin x]
[

sin x cosn−2 x
]

dx,

and you can use integration by parts in the second term.

1.5 Let Bd ⊂ R
d be the unit ball in Rd meaning

Bd :=
{

(x1, . . . , xd) ∈ R
d
∣

∣x2
1 + · · ·+ x2

d ≤ 1
}

.

(Compare the definition of the sphere – note the inequality here.) Let bd be the d-dimensional
volume of Bd. Calculate bd.

(Hint: the volume is the integral of the indicator function. Use the theorem about polar
coordinate substitution in d dimensions.)

1.6 Try to calculate bd of the previous exercise the hard way: slice the d+1-dimensional sphere
into d-dimensional ones to see that

bd+1 =

∫ 1

−1

bd
√
1− x2

d
dx.
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1.7 For s > 0 let

Γ(s) =

∫ ∞

0

xs−1e−x dx

be the Euler gamma function. Check that Γ(s+1) = sΓ(s) for all s > 0. Check by induction
that Γ(n+ 1) = n! for all n ∈ N.

1.8 Calculate Γ
(

1
2

)

. Express Γ(s) for every half-integer s > 0 using factorials.

1.9 Fix some s, t > 0. Consider f : (0,∞)× (0,∞) → R defined by f(x, y) := xs−1e−xyt−1e−y

(for all x, y > 0). Calculate
∫

(0,∞)2
f(x, y) dx dy in two different ways:

a.) By using that f has product form,

b.) using the substitution u := x+ y, ξ := y

x+y
. (If it’s easier, you can do this in two steps:

first u := x+ y, v := y; second ξ := v/u.)

Comparing the two results, express the Beta function B(s, t) :=
∫ 1

0
(1 − ξ)s−1ξt−1 dξ using

the Euler gamma function.

1.10 Calculate An :=
∫ π

2

0
cosn x dx for every n = 0, 1, 2, . . . using the substitution ξ := cosx and

the result of the previous exercise.

1.11 Describe the asymptotic behaviour of the integral In :=
∫ 1

−1

√
1− x2

n
dx as n → ∞.

1.12 Describe the asymptotic behaviour of the integral In :=
∫ 2

−2

√
4− x2

n
dx as n → ∞.

1.13 Let

fn(x) =

{

cosn x if x ∈ [−π
2
, π
2
]

0 if not
.

Let gn(x) = fn(vnx), where the scaling factors vn are chosen appropriately, so that
∫

R
gn → 1

(More precisely: gn should be integrated on all of its domain.) Find the limit g(x) :=
limn→∞gn(x).

1.14 Let fn(x) =
√
4− x2

n
(for x ∈ [−2, 2]), and let gn(x) = unfn(vnx), where the scaling factors

un and vn are chosen appropriately, so that gn(0) → 1 and
∫

R
gn → 1 (More precisely: gn

should be integrated on all of its domain.) Find the limit g(x) := limn→∞gn(x).

1.15 Let a < 0 < b and let h : [a, b] → R be twice differentiable with a unique non-degenerate local
maximum at 0. Denote A := h(0) and B := −h′′(0). Let fn : [a, b] → R with fn(x) = enh(x).
Now let un > 0 and vn > 0 be two sequences of scaling factors, and define gn as

gn(x) := unfn(vnx),

for the x ∈ R where this makes sense. (This means stretching the graph of fn vertically with
a factor un and shrinking it horizontally with a factor vn.)

a.) How should we choose un to make sure that gn(0) → 0 as n → ∞? (Of course, there are
many such sequences: if un works and ūn ∼ un, then ūn works as well. So give a simple
example.)

b.) Fix un as in the previous part. Now how should be choose vn to make sure that

∫

Dn

gn(x) dx → 1

as n → ∞? (Here let Dn denote the domain of gn.)
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c.) With un and vn chosen as above, calculate g(x) := limn→∞ gn(x) for all x ∈ R.

1.16 Let the random vector V = (V1, . . . , Vn) ∈ R
n be uniformly distributed on the (surface of

the) (n−1)-dimensional sphere of radius
√
2nE in R

n. Let fn denote the density of the first
marginal V1 (which is itself a random variable in R, and, of course, its density depends on
n). Calculate fn(x) for every n. Find the limit f(x) := limn→∞ fn(x).

1.17 [DeMoivre-Laplace Central Limit Theorem] We toss a biased coin (where the probability of
“heads” is some p ∈ (0, 1)) n times independently. Let q = 1 − p. Let X be the number of
heads we see. So X is binomially distributed with parameters n and p, meaning

P(X = k) = Bin(k;n, p) :=

(

n

k

)

pkqn−k for k = 0, 1, . . . , n.

It is known that X has expectation EX = np and standard deviation DX =
√
V arX =√

npq, so let Y := X−np√
npq

be the normalized version of X (which now has expectation 0 and

standard deviation 1). Of course, Y is still a discrete random variable, taking only values
from a grid of points which are 1√

npq
apart.

Let us fix x ∈ R, and choose k ∈ Z such that x ≈ k−np√
npq

as closely as possible, so k is

np+ x
√
npq rounded to the nearest integer. Let

fn(x) :=
P(Y = k−np√

npq
)

1√
npq

=
√
npqP(X = k)

be the logical guess for an “approximate density” of Y at x.

Calculate the limit f(x) := limn→∞ fn(x).

Hint:

Use Stirling’s approximation n! ∼ nn
√
2πn

en
, and the fact that k = np + x

√
npq + ∆, where

∆ = ∆(n, x) ∈ [−1
2
, 1
2
], so ∆ = O(1). Use this in the following forms:

k = np+ x
√
npq +∆ , n− k = nq − x

√
npq −∆ (2)

k

np
= 1 + x

√

q

np
+

∆

np
,

n− k

nq
= 1− x

√

p

nq
−

∆

nq
(3)

k

np
= 1 + o(1) ,

n− k

nq
= 1 + o(1) (4)

Notice that (2) is a bit stronger than if we only wrote k = np+ x
√
npq +O(1) and n− k =

nq − x
√
npq +O(1). This will be important, since ∆ will cancel out at some point.

At some point the calculation may become more transparent if you calculate the logarithm
of fn(x).
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