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Abstract

These are lecture notes for some of the course “Tools of Modern Probability” for 3rd year
BSc and 1st year MSc students of Mathematics at TU Budapest, in the autumn semester
of 2020/21. Draft under construction, with many typos, errors and inconsistencies.

1 Gaussian integrals

Question:

I :=

∫ ∞

−∞
e−

x2

2 dx =?

Or, more generally:
∫ ∞

−∞
e−a(x−m)2d x =?

whenever m ∈ R and 0 < a ∈ R.
Difficulty: the indefinite integral

Φ(x) :=

∫

e−
x2

2 d x

can not be expressed with elementary functions.
Solution: we calculate the double integral

V :=

∫∫

R2

e−
x2+y2

2 d xd y

in two different ways:

1.) Notice that e−
x2+y2

2 = e−
x2

2 ·e− y2

2 is a product of an x-dependent and a y-dependent function,
so

V =

∫∫

R2

e−
x2+y2

2 dxd y =

∫ ∞

−∞

∫ ∞

−∞
e−

x2

2 e−
y2

2 d ydx =

∫ ∞

−∞
e−

x2

2 d x ·
∫ ∞

−∞
e−

y2

2 d y = I2.

2.) Notice that x2+y2 = r2 when we use polar coordinates – i.e. the function e−
x2+y2

2 is rotation
symmetric. Using polar coordinates, d xd y = rdϕd r, so

V =

∫∫

R2

e−
x2+y2

2 d xd y =

∫ ∞

0

∫ 2π

0

e−
r2

2 rdϕd r =

∫ ∞

0

2πre−
r2

2 d r = 2π
[

−e−
r2

2

]∞

0
= 2π.
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Comparing the two, we get that I2 = 2π, so

I =

∫ ∞

−∞
e−

x2

2 d x =
√
2π.

Homework 1.1. Use the integral substitution y2

2
:= a(x−m)2 to show that

∫ ∞

−∞
e−a(x−m)2d x =

√

π

a
(1)

whenever m ∈ R and 0 < a ∈ R.

2 Polar coordinates in higher dimensions

In R
2 the polar coordinate transformation

x = r cosϕ

y = r sinϕ

has Jacobi matrix

J =

(

∂x
∂r

∂x
∂ϕ

∂y

∂r

∂y

∂ϕ

)

=

(

cosϕ −r sinϕ
sinϕ r cosϕ

)

,

which has determinant
det(J) = r cos2 ϕ+ r sin2 ϕ = r.

So, in the integral transformation we have

d xd y = rdϕd r.

As a result, integrating rotation symmetric functions in R
2 always boils down to a 1-dimensional

integral in the following way: If f : R2 → R and f(x, y) depends on r =
√

x2 + y2 only, e.g.

f(x, y) = f̃(r), then

∫∫

R2

f(x, y)dxd y =

∫ ∞

0

∫ 2π

0

f̃(r)rdϕd r =

∫ ∞

0

2πrf̃(r)d r. (2)

The factor 2πr is exactly the circumference of a circle with radius r. Of course: 2πrd r is
exactly the area of the annulus of width d r around the circle of radius r, if d r is infinitesimally
small.

Similarly, for d = 1, 2, 3, . . . let Sd−1 ⊂ R
d be the unit sphere in R

d:

Sd−1 :=
{

(x1, . . . , xd) ∈ R
d
∣

∣x2
1 + x2

2 + · · ·+ x2
d = 1

}

. (3)

So, for example

• S0 = {−1, 1} ⊂ R is a discrete set of only two points,

• S1 is the unit circle in R
2,

• S2 is the usual unit sphere in 3D.
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Let cd denote the d− 1-dimensional “surface volume” of Sd−1, so

• If d = 1, then d− 1 = 0, so c1 is a “zero-dimensional size”, meaning number of points.

• If d = 2, then d− 1 = 1, so c2 is arclength.

• If d = 3, then d− 1 = 2, so c3 is area.

In particular:
d 1 2 3
cd 2 2π 4π

.

Important observation: If, instead of unit spheres, we look at the sphere of radius r in
R

d, the surface scales with rd−1 so that it is cdr
d−1.

This proves (not very rigorously) the following generalization of (2):

Theorem 2.1. If f : Rd → R and f(x1, . . . , xd) = f̃(r) with r =
√

x2
1 + · · ·+ x2

d (meaning that
f is spherically symmetric), then

∫

Rd

f(x1, . . . , xd)d x1 . . . d xd = cd

∫ ∞

0

rd−1f̃(r)d r.

The following homework demonstrates a very clever way to calculate the numbers cd using
Gaussian integrals.

Homework 2.2. Let f(x1, . . . , xd) = e−
x2
1
+···+x2

d
2 , and let V =

∫

Rd f(x)d x.

• Calculate V using that f is a product:

f(x1, . . . , xd) = e−
x21
2 · e−

x22
2 · · · · · e−

x2
d
2 .

• Write V as a one-dimensional integral using Theorem 2.1.

• Compare the two results to get that

cd =

√
2π

d

∫∞
0

rd−1e−
r2

2 d r
.

Remark 2.3. The last integral is in some sense easy: the integral substitution t = r2

2
(or

r =
√
2t) gives d r = 1√

2t
d t, so

∫ ∞

0

rd−1e−
r2

2 d r =

∫ ∞

0

√
2t

d−1
e−t 1√

2t
d t = 2

d
2
−1

∫ ∞

0

t
d
2
−1e−td t = 2

d
2
−1Γ

(

d

2

)

,

where

Γ(s) :=

∫ ∞

0

ts−1e−td t

is the famous Euler gamma function, which we will discuss. Using this, we get

cd = 2
π

d
2

Γ
(

d
2

) .

Homework 2.4. Let Bd ⊂ R
d be the unit ball is Rd meaning

Bd :=
{

(x1, . . . , xd) ∈ R
d
∣

∣x2
1 + x2

2 + · · ·+ x2
d ≤ 1

}

.

(Compare the definition (3) of the sphere.) Let bd be the d-dimensional volume of Bd. Calculate
bd.

(Hint: let f(r) be the surface of the sphere with radius r, and let g(r) be the volume of the
ball with radius r.) Convince me (and yourself) that g′(r) = f(r).
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3 Almost Gaussian integrals, Laplace’s method

In this section we study integrals of the form
∫

enf(x) where n is large.
Suppose that a function f : R → R has a unique absolute maximum at some x0. Suppose for

simplicity that x0 = 0. So, everywhere else, f is less than at 0. Now let n ∈ R be big. Then the
function n · f also has a unique maximum at 0, which is somehow more pronounced: differences
in function values are magnified by the factor n. If we put all this into the exponent – meaning
that we consider enf , then the unique maximum is still at 0, but choosing bigger and bigger n-s
now magnifies the ratio of function values. Function values far away from 0 become “negligible”,
and the integral

∫

R
enf(x)dx is dominated by the contribution of a small neighbourhood of 0.

Now if f is twice differentiable, then f(x) ≈ a0 + a1x+ a2x
2 near x, where a0 = f(0) is the

maximum value, a1 = f ′(0) = 0 because 0 is a critical point, and a2 =
f ′′(0)

2
is negative1. So let

me use the notation A := f(0) and B := −f ′′(0) to write enf(x) ≈ enA−nB
2

x2

= enA · e−nB
2

x2

near
0, which means that

∫

R

enf(x)d x ≈ enA
∫ ∞

−∞
e−

nB
2

x2

d x.

The right hand side is a Gaussian integral, and can be calculated explicitly using (1).
This argument is made precise in the following theorem:

Theorem 3.1. Let f : [a, b] → R be twice differentiable, and let x0 ∈ (a, b) be its unique
maximum place. Suppose that f ′′(x0) < 0. Then

∫ b

a

enf(x)d x ∼ enf(x0)

√

2π

n(−f”(x0))
as n → ∞.

Remark 3.2. If a = −∞ and/or b = ∞, we need to make two additional assumptions:

1. Assume that not only is x0 the unique global maximum place, but function values cannot
even approach f(x0) as x → −∞ or x → ∞. This can be formulated as lim sup

x→−∞
f(x) <

f(x0) and lim sup
x→∞

f(x) < f(x0).

2. Assume that
∫ b

a
enf(x)dx < ∞ for some n.

Proof. Without loss of generality, we can assume that a < x0 = 0 < b. Let’s use the notation
A := f(0) and B := −f ′′(0). Notice that by (1), the statement of the theorem is equivalent to

∫ b

a

enf(x)dx ∼
∫ ∞

−∞
en(A−B

2
x2)d x = enA

√

2π

nB
as n → ∞.

Before turning to the essence, we get rid of the minor difficulties:

Lemma 3.3. For any δ > 0

∫ δ

−δ

en(A−B
2
x2)dx ∼

∫ ∞

−∞
en(A−B

2
x2)d x as n → ∞,

1
a2 can be zero in the degenerate case, but let’s assume it is not.
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Proof. Using the integral substitution x = y√
n
we get

∫ δ

−δ

en(A−B
2
x2)d x = enA

∫ δ

−δ

e−
nB
2

x2

d x = enA
1√
n

∫

√
nδ

−√
nδ

e−
B
2
y2d y.

Since the improper integral
∫∞
−∞ e−

B
2
y2d y is convergent,

∫

√
nδ

−√
nδ

e−
B
2
y2d y →

∫ ∞

−∞
e−

B
2
y2d y as n → ∞,

so
∫ δ

−δ

en(A−B
2
x2)d x =

enA√
n

∫

√
nδ

−√
nδ

e−
B
2
y2d y ∼ enA√

n

∫ ∞

−∞
e−

B
2
y2d y =

∫ ∞

−∞
en(A−B

2
x2)d x.

Lemma 3.4. For any δ > 0 such that a < −δ < δ < b
∫ δ

−δ

enf(x)dx ∼
∫ b

a

enf(x)d x as n → ∞.

Proof. For x /∈ [−δ, δ] the function values are strictly bounded away from A = f(0), so there is
an η > 0 such that f(x) ≤ A− η, and thus enf(x) ≤ enAe−nη whenever x /∈ [−δ, δ]. So

∫

[a−b]\[−δ,δ]

enf(x)dx ≤ enA(b− a)e−nη.

We will see in the next argument (fighting the main difficulty) that
∫ δ

−δ
enf(x)d x is in the order

of magnitude of enA√
n
, so the integral outside [−δ, δ] is indeed negligible.

Now we fight the main difficulty, which is the approximation of enf(x) with Gaussians near
x0 = 0. Since f is twice differentiable at 0, Taylor’s theorem says that

f(x) = A− B

2
x2 + o(x2) as x → 0.

In particular, for any ε > 0 there is some δ > 0 such that for all |x| ≤ δ

A− B

2
x2 − ε

2
x2 ≤ f(x) ≤ A− B

2
x2 +

ε

2
x2,

which means
enAe−nB+ε

2
x2 ≤ enf(x) ≤ enAe−nB−ε

2
x2

,

so

enA
∫ δ

−δ

e−nB+ε
2

x2

dx ≤
∫ δ

−δ

enf(x)d x ≤ enA
∫ δ

−δ

e−nB−ε
2

x2

d x.

We use Lemma 3.3 and (1) to calculate the asymptotics of both estimates:

enA
∫ δ

−δ

e−nB+ε
2

x2

d x ∼ enA

√

2π

n(B + ε)
= enA

√

2π

nB

√

B

B + ε

enA
∫ δ

−δ

e−nB−ε
2

x2

d x ∼ enA

√

2π

n(B − ε)
= enA

√

2π

nB

√

B

B − ε
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This means that

lim inf
n→∞

∫ δ

−δ
enf(x)d x

enA
√

2π
nB

≥
√

B

B + ε
,

lim sup
n→∞

∫ δ

−δ
enf(x)d x

enA
√

2π
nB

≤
√

B

B − ε
.

(This is the point when we are really done with the proof of Lemma 3.4. Now we apply it.)
Using Lemma 3.4 we get rid of the δ-s in the boundary of the integral:

lim inf
n→∞

∫ b

a
enf(x)d x

enA
√

2π
nB

≥
√

B

B + ε
,

lim sup
n→∞

∫ b

a
enf(x)d x

enA
√

2π
nB

≤
√

B

B − ε
.

Since this holds for every ε > 0,

lim
n→∞

∫ b

a
enf(x)dx

enA
√

2π
nB

= 1,

so the theorem is proven.

4 Euler gamma function

Definition 4.1. For s > 0 let

Γ(s) =

∫ ∞

0

xs−1e−xdx

be the Euler gamma function.

Remark 4.2. The definiton can be exetended to all complex s except for the non-positive integers,
but we don’t do that now.

Homework 4.3. Check that Γ(s+ 1) = sΓ(s) for all s > 0.

Homework 4.4. Check by induction that Γ(n+ 1) = n! for all n ∈ N.

Homework 4.5. Calculate Γ
(

1
2

)

.

The gamma function is a beautiful generalization of the factorial for non-integer numbers.
In fact, it is strictly convex on (0,∞). However, it is not monotonous: it has a minimum at
x ≈ 1.46.

Values of the gamma function at half-integers are of special interest, see Remark 2.3.
s 1

2
1 3

2
2 5

2
3 7

2
4

Γ(s)
√
π 1 1

2

√
π 1 3

4

√
π 2 15

8

√
π 6
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5 Stirling’s approximation

Stirling’s approximation is a great tool to do calculations with factorials. It has many versions,
depending on the accuracy. Here we present a version which is easy to prove and accurate enough
for our purposes.

Theorem 5.1 (Striling’s approximation).

Γ(n+ 1) ∼ nne−n
√
n
√
2π as n → ∞.

In particular,
n! ∼ nne−n

√
n
√
2π as n → ∞.

The first version, despite of the notation, is for n ∈ R, not only integers.

Remark 5.2. This formula is often written as n! ∼
√
2πn

(

n
e

)n
for compactness. However, I

prefer the form as written in the theorem, because the terms there are in the order of significance.

Proof. By definition, Γ(n + 1) =
∫∞
0

xne−xd x. Using the integral substitution x = ny we get

Γ(n+ 1) = en lnnn

∫ ∞

0

en(ln y−y)d y.

We apply Theorem 3.1 to the function f(y) = ln y−y. It has its unique maximum at y0 = 1 with

f(1) = −1 and f ′′(1) = −1. So Theorem 3.1 gives
∫∞
0

en(ln y−y)d y ∼ e−n

√

2π
n
, which completes

the proof.
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