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Theorem 1. Fix p ∈ (0, 1) and let q = 1− p. For every x ∈ R and n ∈ N let k = k(n, x) be the

integer which is nearest to np+ x
√
npq. Then, for every x ∈ R,

fn(x) :=
√
npq

(

n

k

)

pkqn−k →
1

√
2π

e−
x
2

2

as n → ∞.

Proof. We will use Stirling’s approximation n! ∼ nn

√

2πn
en

, and the fact that k = np+x
√
npq+∆,

where ∆ = ∆(n, x) ∈ [−1
2
, 1
2
], so ∆ = O(1). We will use this in the following forms:

k = np+ x
√
npq +∆ , n− k = nq − x

√
npq −∆ (1)

k

np
= 1 + x

√

q

np
+

∆

np
,

n− k

nq
= 1− x

√

p

nq
−

∆

nq
(2)

k

np
= 1 + o(1) ,

n− k

nq
= 1 + o(1) (3)

Notice that (1) is a bit stronger than if we only wrote k = np + x
√
npq + O(1) and n − k =

nq − x
√
npq +O(1). This will be important, since ∆ will cancel out at some point.

By Stirling’s approximation
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√
npq
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To treat the expression under the square root, (3) is fine enough:
√

np

k

nq

n−k
=

√

1
1+o(1)

1
1+o(1)

→ 1,
so

fn(x) ∼
1

√
2π

(np

k

)k
(

nq

n− k

)n−k

. (4)

In the remaining last two factors, k
np

and n−k
nq

are raised to high (negative) powers, so (3) isn’t

fine enough to find the limiting behaviour. Instead, we will use (2). To write an argument
which is both precise and transparent, it is practical to take the logarithm of the powers: (4) is
equivalent to

− ln(
√
2πfn(x)) = k ln

(

k

np

)

+ (n− k) ln

(

n− k

nq

)

+ o(1). (5)

For k

np
and n−k

nq
in this expression, we will use (2). For the logarithm we use the second degree

Taylor approximation

ln(1 + t) = t−
1

2
t2 + o(t2). (6)

At the end of the proof, I suggest the reader to check that the first degree approximation would

not be fine enough. To get ln
(

k

np

)

= ln
(

1 + x
√

q

np
+ ∆

np

)

, we use (6) with t = x
√

q

np
+ ∆

np
,

which means that t2 = x2 q

np
+ o

(

1
n

)

and t3 = o
(

1
n

)

, so (6) gives
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Similarly

ln

(
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)

= −x

√
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.

Writing these and (1) back to (5), we get

− ln(
√
2πfn(x)) = [np+ x

√
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[
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If we write out these products, we get 2 ·3 ·4 = 24 terms, but most of these have an n-dependence
of the form 1

√

n
or 1

n
or even smaller, so these are all o(1), and it’s enough to write this. We get

− ln(
√
2πfn(x)) =

[

x
√
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2
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]

+
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√
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All terms containing n and ∆ cancel out, and we get

− ln(
√
2πfn(x)) =

x2

2
(p+ q) + o(1) =

x2

2
+ o(1) →
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2
.

This implies

fn(x) →
1

√
2π

e−
x
2

2 .
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