Tools of Modern Probability exam exercise sheet, 29.05.2019

(working time: 90 minutes)

1. Prove that $\int_{0}^{\infty} e^{-\frac{x^{2}}{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{2}}$.
2. Let c_{n} denote the (n-1-dimensional) surface volume of the n-1-dimensional unit sphere $S_{n}:=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$. Let d_{n} denote the (n-dimensional) volume of the n-dimensional unit ball $B_{n}:=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$. Give and prove the relation between c_{n} and d_{n}.
3. Let (X, Y) be uniformly distributed on the square $[-1,1]^{2}$. Let $Z=X+X Y$, and let μ be the distribution of the random variable μ. Calculate $\int_{\mathbb{R}} z^{2} \mathrm{~d} \mu(z)$.
4. Give an example of a function $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ for which the integrals

$$
\begin{aligned}
& I_{1}:=\int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} y \mathrm{~d} x \\
& I_{2}:=\int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

both make sense, but they are not equal, or show that there is no such function.
5. Let X, Y, Z be integrable random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ-algebra. Show that if Y and Z both satisfy the definition of the conditional expectation $\mathbb{E}(X \mid \mathcal{G})$, then $Y=Z$ almost surely.
6. Let X and Y be independent random variables having exponential distribution with parameter 1. Calculate $\mathbb{E}\left(\left.\frac{X}{X+Y} \right\rvert\, X+Y\right)$.
7. Let $0<R_{1}<R_{2}$ and let $D \subset \mathbb{R}^{2}$ be the annulus

$$
D:=\left\{(x, y) \in \mathbb{R}^{2}: R_{1}^{2}<x^{2}+y^{2}<R_{2}^{2}\right\},
$$

so the boundary of D consist of the circles

$$
\begin{aligned}
& S_{R_{1}}:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=R_{1}^{2}\right\}, \\
& S_{R_{2}}:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=R_{2}^{2}\right\} .
\end{aligned}
$$

find a function $f: \bar{D} \rightarrow \mathbb{R}$ for which

$$
\begin{cases}\Delta f=0 & \text { on } D \\ f=0 & \text { on } S_{R_{1}} \\ f=1 & \text { on } S_{R_{2}}\end{cases}
$$

(Hint: the complex function $z \mapsto \ln z$ is analytic on its domain.)
8. Let H be a Hilbert space with scalar product $\langle.,$.$\rangle , let V \subset H$ be a closed subspace, let $x \in H$ and let $c \in V$ be the point in V which is closest to x. Show that $x-c$ is orthogonal to V (meaning $\langle x-c, v\rangle=0$ for all $v \in V$).

