Tools of Modern Probability exam exercise sheet, 29.05.2019 (working time: 90 minutes)

- 1. Prove that $\int_0^\infty e^{-\frac{x^2}{2}} dx = \sqrt{\frac{\pi}{2}}.$
- 2. Let c_n denote the (n 1-dimensional) surface volume of the n 1-dimensional unit sphere $S_n := \{x \in \mathbb{R}^n : |x| = 1\}$. Let d_n denote the (*n*-dimensional) volume of the *n*-dimensional unit ball $B_n := \{x \in \mathbb{R}^n : |x| \leq 1\}$. Give and prove the relation between c_n and d_n .
- 3. Let (X, Y) be uniformly distributed on the square $[-1, 1]^2$. Let Z = X + XY, and let μ be the distribution of the random variable μ . Calculate $\int_{\mathbb{R}} z^2 d\mu(z)$.
- 4. Give an example of a function $f: [0,1] \times [0,1] \to \mathbb{R}$ for which the integrals

$$I_1 := \int_0^1 \int_0^1 f(x, y) \, \mathrm{d}y \, \mathrm{d}x$$
$$I_2 := \int_0^1 \int_0^1 f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

both make sense, but they are not equal, or show that there is no such function.

- 5. Let X, Y, Z be integrable random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Show that if Y and Z both satisfy the definition of the conditional expectation $\mathbb{E}(X|\mathcal{G})$, then Y = Z almost surely.
- 6. Let X and Y be independent random variables having exponential distribution with parameter 1. Calculate $\mathbb{E}\left(\frac{X}{X+Y} | X+Y\right)$.
- 7. Let $0 < R_1 < R_2$ and let $D \subset \mathbb{R}^2$ be the annulus

$$D := \{ (x, y) \in \mathbb{R}^2 : R_1^2 < x^2 + y^2 < R_2^2 \},\$$

so the boundary of D consist of the circles

$$S_{R_1} := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = R_1^2 \},\$$

$$S_{R_2} := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = R_2^2 \}.$$

find a function $f: \overline{D} \to \mathbb{R}$ for which

$$\begin{cases} \Delta f = 0 & \text{on } D\\ f = 0 & \text{on } S_{R_1} \\ f = 1 & \text{on } S_{R_2} \end{cases}$$

(*Hint: the complex function* $z \mapsto \ln z$ *is analytic on its domain.*)

8. Let *H* be a Hilbert space with scalar product $\langle ., . \rangle$, let $V \subset H$ be a closed subspace, let $x \in H$ and let $c \in V$ be the point in *V* which is closest to *x*. Show that x - c is orthogonal to *V* (meaning $\langle x - c, v \rangle = 0$ for all $v \in V$).