Tools of Modern Probability
 exam exercise sheet, 21.12.2022

(working time: 90 minutes)
Every exercise is worth 12 points. Every student should choose 5 exercises to solve. If more than 5 are solved, I only take the best 5 into account. The maximum total score is 60 . Solve easy exercises if you want a good grade. Solve hard ones if you want me to be proud of you.

1. Describe the asymptotic behaviour of the following sequences as $n \rightarrow \infty$:
a.) $A_{n}:=\int_{0}^{1}\left(x-x^{3}\right)^{n} \mathrm{~d} x$
b.) $B_{n}:=\int_{-1}^{1}\left(x-x^{3}\right)^{n} \mathrm{~d} x$
(By "describing the asymptotic behaviour" I mean: find sequences a_{n} and b_{n} given by nice simple formulas, such that $A_{n} \sim a_{n}$ and $B_{n} \sim b_{n}$.)
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{ll}
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & \text { if } x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leq 1 \\
0 & \text { if not }
\end{array} .\right.
$$

Calculate $\int_{\mathbb{R}^{n}} f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$.
Help: the surface volume of the d-dimensional unit sphere is $c_{d}=2 \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)}$.
3. Let χ be counting measure on \mathbb{Z} and let $f(x)=x^{2}$. Let ν have density f w.r.t. χ and let $\mu=f_{*} \nu$. Calculate $\int f \mathrm{~d} \mu$.
4. Prove that if $X_{n} \Rightarrow X$ then $\mathbb{E} X_{n} \rightarrow \mathbb{E} X$, or give a counterexample. Here \Rightarrow denotes weak convergence of random variables.
5. Prove that if $f_{1}, f_{2}, f_{3}, \ldots$ and $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$are Lebesgue integrable functions and $f_{n}(x) \rightarrow$ $f(x)$ for every $x \in \mathbb{R}$, then $\int_{-\infty}^{y} f_{n}(x) \mathrm{d} x \rightarrow \int_{-\infty}^{y} f(x) \mathrm{d} x$ for every $y \in \mathbb{R}$, or give a counterexample.
6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space where $\Omega=[0,1] \times[0,1]$ and \mathcal{F} is the Borel σ-algebra. Let $X, Y: \Omega \rightarrow \mathbb{R}$ be the natural projections: $X(x, y)=x$ and $Y(x, y)=y$. Let $\mathcal{G}=\sigma(X)$ be the generated σ-algebra. Calculate $\mathbb{E}(Y \mid \mathcal{G})$ if
a.) \mathbb{P} is Lebesgue measure on Ω,
b.) \mathbb{P} has density $\rho(x, y)=x+y$ w.r.t. Lebesgue measure on Ω.
7. Let X, Y be independent and uniformly distributed on $[-1,2]$. Let $Z=X+Y$. Calculate $\mathbb{E}\left(Z^{2} \mid Z^{3}\right)$.
8. Let X, Y be jointly Gaussian random variables with covariance matrix

$$
C=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

Calculate $\mathbb{E}(X \mid X+Y)$.

