Tools of Modern Probability exam exercise sheet, 08.01.2018 (working time: 90 minutes)

- 1. Describe the asymptotic behaviour of the sequence $I_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^n x \, dx$.
- 2. Calculate $\int_0^\infty x^\alpha e^{-x} dx$ for nonnegative integer and half-integer values of α .
- 3. Prove that $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ as $n \to \infty$ (Stirling's approximation).
- 4. Define the characteristic function ψ_X of a random variable X. Define the characteristic function ψ_{ν} of a probability distribution ν . Show that if X has distribution ν then $\psi_X = \psi_{\nu}$.
- 5. Give an example of a measure space (X, \mathcal{F}, μ) and a sequence of measurable functions $f_n : X \to \mathbb{R}$ such that f_n converges to some f everywhere, $\lim_{n\to\infty} \int_X f_n \,\mathrm{d}\mu$ and $\int_X f \,\mathrm{d}\mu$ exist but $\int_X f \,\mathrm{d}\mu > \lim_{n\to\infty} \int_X f_n \,\mathrm{d}\mu$. (Hint: think of Fatou's lemma.)
- 6. Let μ and ν be finite measures on the measurable space (X, \mathcal{F}) and let $\rho = \mu + \nu$. For functions $f \in L^2(\rho)$ let $\phi(f) = \int_X f \, d\nu$. Show that ϕ is a bounded linear functional on $L^2(\rho)$.
- 7. We roll two fair dice. Let X and Y be the two numbers rolled. Calculate $\mathbb{E}(X+Y|X-Y)$.
- 8. Give a solution of the Laplace equation $\Delta f = 0$ on the domain $D = \{(x, y) \in \mathbb{R}^2 | x, y > 0\}$ with boundary conditions f(x, 0) = 0, f(0, y) = 1 (for x, y > 0). Are there other solutions?