Tools of Modern Probability exam exercise sheet, 08.01.2018

(working time: 90 minutes)

1. Describe the asymptotic behaviour of the sequence $I_{n}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x$.
2. Calculate $\int_{0}^{\infty} x^{\alpha} e^{-x} \mathrm{~d} x$ for nonnegative integer and half-integer values of α.
3. Prove that $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ as $n \rightarrow \infty$ (Stirling's approximation).
4. Define the charactersitic function ψ_{X} of a random variable X. Define the characteristic function ψ_{ν} of a probability distribution ν. Show that if X has distribution ν then $\psi_{X}=\psi_{\nu}$.
5. Give an example of a measure space (X, \mathcal{F}, μ) and a sequence of measurable functions $f_{n}: X \rightarrow \mathbb{R}$ such that f_{n} converges to some f everywhere, $\lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu$ and $\int_{X} f \mathrm{~d} \mu$ exist but $\int_{X} f \mathrm{~d} \mu>\lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu$. (Hint: think of Fatou's lemma.)
6. Let μ and ν be finite measures on the measurable space (X, \mathcal{F}) and let $\rho=\mu+\nu$. For functions $f \in L^{2}(\rho)$ let $\phi(f)=\int_{X} f \mathrm{~d} \nu$. Show that ϕ is a bounded linear functional on $L^{2}(\rho)$.
7. We roll two fair dice. Let X and Y be the two numbers rolled. Calculate $\mathbb{E}(X+Y \mid X-Y)$.
8. Give a solution of the Laplace equation $\Delta f=0$ on the domain $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y>0\right\}$ with boundary conditions $f(x, 0)=0, f(0, y)=1$ (for $x, y>0$). Are there other solutions?
