Tools of Modern Probability exam exercise sheet, 11.01.2023

(working time: 90 minutes)
Every exercise is worth 12 points. Every student should choose 5 exercises to solve. If more than 5 are solved, I only take the best 5 into account. The maximum total score is 60 . Solve easy exercises if you want a good grade. Solve hard ones if you want me to be proud of you.

1. Describe the asymptotic behaviour of the sequence $A_{n}:=\int_{0}^{1} x^{-n x} \mathrm{~d} x$ as $n \rightarrow \infty$. (By "describing the asymptotic behaviour" I mean: find a sequence a_{n} given by a nice simple formula, such that $A_{n} \sim a_{n}$.)
2. Let the random variables $X_{1}, X_{2}, \ldots, X_{10}$ be independent and uniform on [0,1] and let μ be the distribution of the product $X_{1} X_{2} \cdots X_{10}$. Calculate $\int x^{3} \mathrm{~d} \mu(x)$.
3. Let λ be Lebesgue measure on $[0,1]$, let $f(x)=\sqrt{x}$ and $\mu=f_{*} \lambda$. Let the measure ν have density $\rho(x)=x^{2}$ w.r.t. μ. Calculate $\nu([0,1])$.
4. Let X, X_{1}, X_{2}, \ldots be random variables such that $|X| \leq 1$ and $\left|X_{n}\right| \leq 1$ for every n. Prove that if $X_{n} \Rightarrow X$, then $\mathbb{E}\left(X_{n}^{2}\right) \rightarrow \mathbb{E}\left(X^{2}\right)$, or give a counterexample. Here \Rightarrow denotes weak convergence of random variables.
5. Let λ be Lebesgue measure on \mathbb{R}. Let $f_{1}, f_{2}, f_{3}, \cdots: \mathbb{R} \rightarrow \mathbb{R}$ be non-negative measurable functions, $S_{n}(x)=\sum_{k=1}^{n} f_{k}(x)$ and $S(x)=\sum_{k=1}^{\infty} f_{k}(x)$. Prove that $\int_{\mathbb{R}} S_{n} \mathrm{~d} \lambda \rightarrow \int_{\mathbb{R}} S \mathrm{~d} \lambda$ as $n \rightarrow \infty$, or give a counterexample.
6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space where $\Omega=[0, \infty), \mathcal{F}$ is the Borel σ-algebra and \mathbb{P} has density $f(x)=e^{-x}$ w.r.t. Lebesgue measure. Let $X(\omega)=\omega$ and let

$$
Y(\omega)= \begin{cases}1 & \text { if } \omega>1 \\ 0 & \text { if not }\end{cases}
$$

Calculate
a.) $\mathbb{E}(Y \mid X)$
b.) $\mathbb{E}(X \mid Y)$
7. We roll a fair die 4 times, call the numbers rolled $X_{1}, X_{2}, X_{3}, X_{4}$ and set $Y:=X_{1}+X_{2}+$ $X_{3}+X_{4}$. For $n=0,1,2,3,4$ let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ (so \mathcal{F}_{0} is the σ-algebra generated by the empty set). Calculate

$$
\mathbb{E}\left(\mathbb{E}\left(\mathbb{E}\left(\mathbb{E}\left(\mathbb{E}\left(Y \mid \mathcal{F}_{0}\right) \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{3}\right) \mid \mathcal{F}_{4}\right)
$$

8. Let X, Y be independent random variables with $\operatorname{Exp}(1)$ distribution (that is, having density $f(x)=e^{-x}$ on $\left.[0, \infty)\right)$. Calculate $\mathbb{E}\left(X^{2} \mid X+Y\right)$.
