Tools of Modern Probability exam exercise sheet, 11.01.2023 (working time: 90 minutes)

Every exercise is worth 12 points. Every student should *choose* 5 exercises to solve. If more than 5 are solved, I only take the best 5 into account. The maximum total score is 60. Solve easy exercises if you want a good grade. Solve hard ones if you want me to be proud of you.

- 1. Describe the asymptotic behaviour of the sequence $A_n := \int_0^1 x^{-nx} dx$ as $n \to \infty$. (By "describing the asymptotic behaviour" I mean: find a sequence a_n given by a nice simple formula, such that $A_n \sim a_n$.)
- 2. Let the random variables X_1, X_2, \ldots, X_{10} be independent and uniform on [0, 1] and let μ be the distribution of the product $X_1 X_2 \cdots X_{10}$. Calculate $\int x^3 d\mu(x)$.
- 3. Let λ be Lebesgue measure on [0, 1], let $f(x) = \sqrt{x}$ and $\mu = f_*\lambda$. Let the measure ν have density $\rho(x) = x^2$ w.r.t. μ . Calculate $\nu([0, 1])$.
- 4. Let X, X_1, X_2, \ldots be random variables such that $|X| \leq 1$ and $|X_n| \leq 1$ for every n. Prove that if $X_n \Rightarrow X$, then $\mathbb{E}(X_n^2) \to \mathbb{E}(X^2)$, or give a counterexample. Here \Rightarrow denotes weak convergence of random variables.
- 5. Let λ be Lebesgue measure on \mathbb{R} . Let $f_1, f_2, f_3, \dots : \mathbb{R} \to \mathbb{R}$ be non-negative measurable functions, $S_n(x) = \sum_{k=1}^n f_k(x)$ and $S(x) = \sum_{k=1}^\infty f_k(x)$. Prove that $\int_{\mathbb{R}} S_n \, d\lambda \to \int_{\mathbb{R}} S \, d\lambda$ as $n \to \infty$, or give a counterexample.
- 6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space where $\Omega = [0, \infty)$, \mathcal{F} is the Borel σ -algebra and \mathbb{P} has density $f(x) = e^{-x}$ w.r.t. Lebesgue measure. Let $X(\omega) = \omega$ and let

$$Y(\omega) = \begin{cases} 1 & \text{if } \omega > 1\\ 0 & \text{if not} \end{cases}$$

Calculate

a.) $\mathbb{E}(Y|X)$

- b.) $\mathbb{E}(X|Y)$
- 7. We roll a fair die 4 times, call the numbers rolled X_1, X_2, X_3, X_4 and set $Y := X_1 + X_2 + X_3 + X_4$. For n = 0, 1, 2, 3, 4 let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ (so \mathcal{F}_0 is the σ -algebra generated by the empty set). Calculate

$$\mathbb{E}(\mathbb{E}(\mathbb{E}(\mathbb{E}(\mathbb{E}(Y|\mathcal{F}_0)|\mathcal{F}_1)|\mathcal{F}_2)|\mathcal{F}_3)|\mathcal{F}_4)$$

8. Let X, Y be independent random variables with Exp(1) distribution (that is, having density $f(x) = e^{-x}$ on $[0, \infty)$). Calculate $\mathbb{E}(X^2 | X + Y)$.