Tools of Modern Probability
 exam exercise sheet, 28.01.2020

(working time: 90 minutes)
Every exercise is worth 14 points. Every student should choose 5 exercises to solve. If more than 5 are solved, I only take the best 5 into account. The maximum total score is 70 . Solve easy exercises if you want a good grade. Solve hard ones if you want me to be proud of you.

1. Describe the asymptotic behaviour of the following sequences as $n \rightarrow \infty$:
a.) $A_{n}:=\int_{0}^{2 \pi} \cos ^{2 n} x \mathrm{~d} x$
b.) $B_{n}:=\int_{-1}^{1}(x-1)^{n}(x+1)^{n} \mathrm{~d} x$
(By "describing the asymptotic behaviour" I mean: find sequences a_{n} and b_{n} given by nice simple formulas, such that $A_{n} \sim a_{n}$ and $B_{n} \sim b_{n}$.)
2. For $d=1,2,3, \ldots$ let c_{d} be the surface volume of the d-dimensional unit sphere

$$
S_{d}:=\left\{x \in \mathbb{R}^{d}| | x \mid=1\right\} .
$$

Show that $c_{d}=2 \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)}$.
3. Let \mathbb{P} be Lebesgue measure on $[0,1] \times[0,1]$, let $X:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be given by $X(u, v)=$ $\sqrt{u+v}$ and let $\mu=X_{*} \mathbb{P}$. Calculate $\int_{\mathbb{R}} x^{2} \mathrm{~d} \mu(x)$.
4. Let (X, \mathcal{F}, μ) be a measure space and let $f, f_{1}, f_{2}, f_{3}, \cdots: X \rightarrow \mathbb{R}$ be measurable functions such that $f_{n}(x) \rightarrow f(x)$ for μ-almost every $x \in X$ and $\left|f_{n}(x)\right| \leq 1$ for all x and n. In the following two special cases, show that

$$
\int_{X} \lim _{n \rightarrow \infty} f_{n}(x) \mathrm{d} \mu(x) \leq \lim _{n \rightarrow \infty} \int_{X} f_{n} \mathrm{~d} \mu,
$$

or give a counterexample:
a.) $X=\mathbb{R}, \mu=L e b$
b.) $X=[0,1]$ and μ is a probability measure on X.
5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $X: \Omega \rightarrow \mathbb{R}$ integrable. Let $\mathcal{G}_{1} \subset \mathcal{F}$ and $\mathcal{G}_{2} \subset \mathcal{F}$ be sub- σ-algebras. Show that

$$
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{1}\right) \mid \mathcal{G}_{2}\right)=\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{2}\right) \mid \mathcal{G}_{1}\right),
$$

or give a counterexample.
6. Let X and Y be independent, uniformly distributed on $[-1,1]$. Calculate $\mathbb{E}(X \mid X+Y)$.
7. Let X be uniformly distributed on $[-1,2]$. Calculate $\mathbb{E}\left(X \mid X^{2}\right)$.
8. Let $X, X_{1}, X_{2}, X_{3}, \ldots$ be real valued random variables and let $F, F_{1}, F_{2}, F_{3}, \ldots$ be their distribution functions. Show that $X_{n} \Rightarrow X$ if and only if $F_{n} \Rightarrow F$. Here \Rightarrow denotes weak convergence. (Show means: sketch the proof.)

