Tools of Modern Probability exam exercise sheet, 25.01.2023

(working time: 90 minutes)
Every exercise is worth 12 points. Every student should choose 5 exercises to solve. If more than 5 are solved, I only take the best 5 into account. The maximum total score is 60 . Solve easy exercises if you want a good grade. Solve hard ones if you want me to be proud of you.

1. Describe the asymptotic behaviour of the sequence $A_{n}:=\int_{-\pi}^{\pi} 2^{-n \sin ^{2} x} \mathrm{~d} x$ as $n \rightarrow \infty$. (By "describing the asymptotic behaviour" I mean: find a sequence a_{n} given by a nice simple formula, such that $A_{n} \sim a_{n}$.)
2. Let the random variable X have a uniform distribution on the set $\{1,2, \ldots, 100\}$. Let μ be the distribution of $\sqrt{X}, f(x)=\sqrt{x}$ and let $\nu=f_{*} \mu$. Calculate $\int x^{4} \mathrm{~d} \nu(x)$.
3. Let λ be Lebesgue measure on \mathbb{R} and let μ have density $f(x)=e^{-x}$ w.r.t. λ. Let ν be the push-forward of μ by the function $g(x)=x^{2}$. Calculate $\int_{[0,1]} \sqrt{x} \mathrm{~d} \nu(x)$.
4. Let $a_{k, l} \in \mathbb{R}$ for every $k, l \in\{0,1,2, \ldots\}$. Prove the following statements, or give a counterexample:
a.) $\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{k, l}^{2}=\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{l, k}^{2}$
b.) $\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{k, l}^{3}=\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{l, k}^{3}$
in the sense that if either the left hand side or the right hand side exists then so does the other and they are equal.
5. Let $X, X_{1}, X_{2}, \ldots \in \mathbb{R}$ be random variables on the same probability space such that $X_{n+1} \geq$ X_{n} for every n and $X_{n} \Rightarrow X$. Show that $\mathbb{E}\left(X_{n}^{2}\right) \rightarrow \mathbb{E}\left(X^{2}\right)$, or give a counterexample. Here \Rightarrow denotes weak convergence of random variables.
6. We roll two fair dice and call the results X and Y. Let \mathcal{G} be the σ-algebra generated by $X+Y$. Calculate $\mathbb{E}\left(X^{2} \mid \mathcal{G}\right)$.
7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega=[0,1] \times[0,1], \mathcal{F}$ is the Borel σ-algebra and $\mathbb{P}(B)=\int_{B} 3 x^{2} \mathrm{~d} x \mathrm{~d} y$ for every Borel set $B \subset \Omega$. Let $U, V: \Omega \rightarrow \mathbb{R}$ be $U(x, y)=x$ and $V(x, y)=y$. Calculate $\mathbb{E}\left(V^{2} \mid U\right)$.
8. Let (X, Y, Z) be jointly Gaussian random variables with $\mathbb{E} X=\mathbb{E} Y=\mathbb{E} Z=0, \operatorname{Var} X=$ $\mathbb{V a r} Y=\operatorname{Var} Z=1, \operatorname{Cov}(X, Y)=\frac{1}{3}$ and $\operatorname{Cov}(X, Z)=\operatorname{Cov}(Y, Z)=0$. Calculate $\mathbb{E}(X \mid Y+$ $Z)$.
