Tools of Modern Probability exam exercise sheet, 25.01.2023 (working time: 90 minutes)

Every exercise is worth 12 points. Every student should *choose* 5 exercises to solve. If more than 5 are solved, I only take the best 5 into account. The maximum total score is 60. Solve easy exercises if you want a good grade. Solve hard ones if you want me to be proud of you.

- 1. Describe the asymptotic behaviour of the sequence $A_n := \int_{-\pi}^{\pi} 2^{-n \sin^2 x} dx$ as $n \to \infty$. (By "describing the asymptotic behaviour" I mean: find a sequence a_n given by a nice simple formula, such that $A_n \sim a_n$.)
- 2. Let the random variable X have a uniform distribution on the set $\{1, 2, ..., 100\}$. Let μ be the distribution of \sqrt{X} , $f(x) = \sqrt{x}$ and let $\nu = f_*\mu$. Calculate $\int x^4 d\nu(x)$.
- 3. Let λ be Lebesgue measure on \mathbb{R} and let μ have density $f(x) = e^{-x}$ w.r.t. λ . Let ν be the push-forward of μ by the function $g(x) = x^2$. Calculate $\int_{[0,1]} \sqrt{x} \, d\nu(x)$.
- 4. Let $a_{k,l} \in \mathbb{R}$ for every $k, l \in \{0, 1, 2, ...\}$. Prove the following statements, or give a counterexample:

a.)
$$\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{k,l}^2 = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{l,k}^2$$

b.) $\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{k,l}^3 = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{l,k}^3$

in the sense that if either the left hand side or the right hand side exists then so does the other and they are equal.

- 5. Let $X, X_1, X_2, \ldots \in \mathbb{R}$ be random variables on the same probability space such that $X_{n+1} \ge X_n$ for every n and $X_n \Rightarrow X$. Show that $\mathbb{E}(X_n^2) \to \mathbb{E}(X^2)$, or give a counterexample. Here \Rightarrow denotes weak convergence of random variables.
- 6. We roll two fair dice and call the results X and Y. Let \mathcal{G} be the σ -algebra generated by X + Y. Calculate $\mathbb{E}(X^2|\mathcal{G})$.
- 7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space where $\Omega = [0, 1] \times [0, 1]$, \mathcal{F} is the Borel σ -algebra and $\mathbb{P}(B) = \int_B 3x^2 \, dx \, dy$ for every Borel set $B \subset \Omega$. Let $U, V : \Omega \to \mathbb{R}$ be U(x, y) = x and V(x, y) = y. Calculate $\mathbb{E}(V^2|U)$.
- 8. Let (X, Y, Z) be jointly Gaussian random variables with $\mathbb{E}X = \mathbb{E}Y = \mathbb{E}Z = 0$, $\mathbb{V}arX = \mathbb{V}arY = \mathbb{V}arZ = 1$, $Cov(X, Y) = \frac{1}{3}$ and Cov(X, Z) = Cov(Y, Z) = 0. Calculate $\mathbb{E}(X|Y + Z)$.