Tools of Modern Probability
Imre Péter Toth
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1 Gaussian integrals

1.1 Find all continuous functions f : R? — R that are rotation invariant and also of product
form. That is, there are functions ¢g : [0,00) — R and h : R — R such that, for every

r,y € R
f(x,y) = g(vVa? + y?) = h(x)h(y).

(Hint: write everything as the function of the square of the radius, e.g. by defining u := 22,
v:=y* and G(z2) := g(v/z). Then you should get G(u + v) = constG(u)G(v). Now study
the logarithm of G.)

1.2 Use the integral substitution £ := a(z —m)? to show that

2
OO —a(x—m)? dr = z 1
[y 2

whenever m € R and 0 < a € R. We know form class that the value of the integral is v/ 27
Whenm:()anda:%.

I T—

1.3 Let f(x1,...,zq) = 2z ,andlet V= [, f(z)da.

e Calculate V using that f is a product:
f([[’l,...,l‘d):e_2-e P e 2.

e Write V' as a one-dimensional integral using polar coordinate substitution.
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e Compare the two results to get that

2V 27rd

—
o0 _rs
Jo rdtem 2 dr

Cq =

Calculate A,, := f0§ cos” xdx for every n =0,1,2,... the hard way: if n > 2, then

s
2

A, = / (1 —sin?x)cos" >rdr = A, 5 — / [sin z] [sinz cos" 2] da,
0 0

and you can use integration by parts in the second term.
Let By C R? be the unit ball in B¢ meaning
By = {(z1,...,24) ERd}:p%+---+xfl§ 1}.

(Compare the definition of the sphere — note the inequality here.) Let by be the d-dimensional
volume of By. Calculate b,.

(Hint: the volume is the integral of the indicator function. Use the theorem about polar
coordinate substitution in d dimensions.)

Try to calculate by of the previous exercise the hard way: slice the d + 1-dimensional sphere
into d-dimensional ones to see that

1
Dot = / bav/T — 22" da.
-1

Euler gamma function

For s > 0 let

be the Euler gamma function. Check that I'(s+1) = sI'(s) for all s > 0. Check by induction
that I'(n + 1) = n! for all n € N.

Calculate I' (3). Express I'(s) for every half-integer s > 0 using factorials.

Fix some s,¢ > 0. Consider f : (0,00) x (0,00) — R defined by f(z,y) := x* le 2yt~ te™¥
(for all z,y > 0). Calculate f(o 00)? f(z,y)drdy in two different ways:

a.) By using that f has product form,

b.) using the substitution u := x 4+ y, £ := ﬁy (If it’s easier, you can do this in two steps:

firstu:=x+y, v:=y; second £ :=v/u.)

Comparing the two results, express the Beta function B(s,t) := fol(l — &)F 1t dE using
the Euler gamma function.

Calculate A, := fog cos" xdx for every n = 0,1,2,... using the substitution £ := cosz and
the result of the previous exercise.

Calculate the integral

B, ::/ VT~ [2PLypen de
R?’L

using the theorem about spherically symmetric integrals, and check that you really got what
you should. (Hint: it helps to recall Ezercise 2.3)
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Almost Gaussian integrals
Describe the asymptotic behaviour of the integral [, := fjl V1=22"dz as n — co.

Describe the asymptotic behaviour of the integral [, := f_22 VA= 22" dz as n — oo.
Let
fn<x> =

cos"x ifx €[5, 5]
0 if not '

Let g,(2) = fn(va®), where the scaling factors v, are chosen appropriately, so that [, g, — 1
(More precisely: g, should be integrated on all of its domain.) Find the limit g(z) =

limy 0o Gn ().

Let f(z) = VA4 — 22" (for z € [-2,2]), and let g,(z) = up fo(vn), where the scaling factors
u, and v, are chosen appropriately, so that g,(0) — 1 and fR gn — 1 (More precisely: g,
should be integrated on all of its domain.) Find the limit g(z) := lim, 0o gn ().

Let a < 0 < bandlet h: [a,b] — R be twice differentiable with a unique non-degenerate local
maximum at 0. Denote A := h(0) and B := —h"(0). Let f, : [a,b] — R with f,(z) = e™@),
Now let u,, > 0 and v, > 0 be two sequences of scaling factors, and define g, as

gn(l’) = unfn@nx)a

for the z € R where this makes sense. (This means stretching the graph of f,, vertically with
a factor u,, and shrinking it horizontally with a factor v,.)

a.) How should we choose u,, to make sure that g,(0) — 0 as n — o0? (Of course, there are
many such sequences: if u, works and U, ~ u,, then 4, works as well. So give a simple
example.)

b.) Fix w, as in the previous part. Now how should be choose v, to make sure that

/ gn(z)de — 1

n

as n — oo? (Here let D,, denote the domain of g,.)

c.) With wu, and v, chosen as above, calculate g(x) := lim,_, g,(x) for all z € R.

Describe the asymptotic behaviour of the integral [,, := fil(xQ — )" dz as n — 0.

Stirling’s approximation

Let the random vector V = (Vi,...,V,) € R™ be uniformly distributed on the (surface of
the) (n — 1)-dimensional sphere of radius v2nFE in R". Let f, denote the density of the first
marginal V; (which is itself a random variable in R, and, of course, its density depends on
n). Calculate f,(z) for every n. Find the limit f(z) := lim, o fu(2).

[DeMoivre-Laplace Central Limit Theorem/] We toss a biased coin (where the probability of
“heads” is some p € (0,1)) n times independently. Let ¢ =1 — p. Let X be the number of
heads we see. So X is binomially distributed with parameters n and p, meaning

n

P(X = k) = Bin(k;n,p) := (k

)pkq"k for k=0,1,...,n.



5.1

It is known that X has expectation EX = np and standard deviation DX = vVarX =

/npq, so let Y := )\(/%Lé’ be the normalized version of X (which now has expectation 0 and

standard deviation 1). Of course, Y is still a discrete random variable, taking only values

. . . 1
from a grid of points which are N apart.
Let us fix ¢ € R, and choose k € Z such that = ~ '\“/% as closely as possible, so k is
np + x,/npq rounded to the nearest integer. Let
folz) = qu = /npgP(X = k)
NET

be the logical guess for an “approximate density” of Y at x.
Calculate the limit f(z) := lim, o fu(z).
Hint:

Use Stirling’s approximation n! ~ %, and the fact that k = np + x/npq + A, where
A =A(n,r) € [-%,1], 50 A = O(1). Use this in the following forms:

272
k=np+xzynpg+A , n—k=ng—xy/npg—A (2)
k A —k A
—:1+:p1/i+— , n :l—xﬂﬁ—— (3)
np np np ng ng ng
k n—
— =1 1 =1 1 4
IR =L ey (@)

Notice that (2) is a bit stronger than if we only wrote k = np + x\/npg+ O(1) and n — k =
nqg — xy/npq + O(1). This will be important, since A will cancel out at some point.

At some point the calculation may become more transparent if you calculate the logarithm

of fn(x).

Basics of measure theory

Define a og-algebra as follows:

Definition 1 For a nonempty set Q, a family F of subsets of w (i.e. F C 2%, where
2= {A: A CQ} is the power set of Q) is called a o-algebra over §) if

o e F

o if Ac F, then A° :=Q\ A€ F (that is, F is closed under complement taking)

o if Ay, Ag,--- € F, then (U2, A;) € F (that is, F is closed under countable union).

Show from this definition that a o-algebra is closed under countable intersection, and under
finite union and intersection.

5.2 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (2, F, @) is a measure space and Ay, Ay, ... is an increasing sequence of mea-
surable sets (i.e. A; € F and A; C Aiyq for all i), then pu(U2 | A;) = lim; o0 u(A;)
(and both sides of the equation make sense).
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ir. If (Q, F, 1) is a measure space, Ay, As, ... is a decreasing sequence of measurable
sets (i.e. A; € F and A; O Ay for all i) and p(Ay) < oo, then p(N2,A;) =
lim; o p(A;) (and both sides of the equation make sense).

(b) Show that in the second statement the condition (A1) < oo is needed, by constructing
a counterexample for the statement when this condition does not hold.

5.3 (a) We toss a biased coin, on which the probability of heads is some 0 < p < 1. Define the
random variable ¢ as the indicator function of tossing heads, that is

e 0, if tails
" |1, if heads

i. Describe the distribution of £ (called the Bernoulli distribution with parameter p)
in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight P(¢ €
B) of every Borel subset B of R.

iii. Calculate the expectation of .
(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
i. Describe the distribution of X (called the Binomial distribution with parameters
(n,p)) by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case)
using its distribution,
iii. and also by noticing that X = & + & + - -+ 4+ &,, where & is the indicator of the
1-th toss being heads, and using linearity of the expectation.

5.4 The ternary number 0.ajasas . .. is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence ay, as, as, ... with a, € {0,1,2}, by definition
)
0O.a1a9a3 - - - := 3—2
n=1

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

Ay =

0, if the n-th toss is tails,
2, if the n-th toss is heads

and setting X = 0.ajasag... (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C' defined as

C:= {i%,anE{O,Q}(n:1,2,...)}.

n=1
Show that

(a) The distribution of X gives zero weight to every point — that is, P(X = z) = 0 for every
x € R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.
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6.1

Let V be a random vector in R™ with an n-dimensional standard Gaussian distribution,
meaning that it has density

I ) = e T
Vi,...,Up) = ——x¢€ 2
V21
Think of V' as the velocity vector of a particle with mass m, so the energy is F = %V?

Calculate the distribution of the random variable E. (Meaning: calculate the distribution
function and/or the density, and tell the name of the distribution.)

Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops — i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X.
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that.)

Let X = [0,1] and let u be Lebesgue measure on X. Let f(x) = 22, Describe the measure
fet

a.) by calculating (f.u)([a,b]) for every interval [a,b] C R
b.) by giving the density of f,u with respect to Lebesgue measure.

Let X = {(a1,a2,...)|ar € {0,1} for every k} be the set of {0, 1}-sequences. Let u be the
measure on X for which

1
M({(alaa%"')€X|a'1:b1,...,aN:bN}):2—N

for every by,...,by € {0,1}. Let f: X — R be defined as

00 a
f(ay,ag,...) ::ZZ :
k=1

B

Describe the measure f,u

a.) by calculating (f.u)([a,b]) for every interval [a,b] C R
b.) by giving the density of f.u with respect to Lebesgue measure.

Let A be Lebesgue measure and y be counting measure on R (with the Borel o-algebra).
Show that A does not have a density with respect to y. (Hint: consider 1-element sets.)

Let (2, F,P) be a probability space and A € F. Define X : Q@ — R as X (w) = 14(w) and
let 1 = X,IP be the distribution of X. Show that p is absolutely continuous w.r.t counting
measure, show that it also has a density. What is the density?

Let X be a discrete random variable and let p be its distribution. Give the density of p
w.r.t. counting measure.

Convergence of sequences of functions

Consider the following measure spaces (X, u):

I. X =[0,1], p is Lebesgue measure.
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6.3

6.4

6.5

6.6

II. X =]0,00), p is Lebesgue measure.
III. X ={1,2..., N}, p is counting measure.
IV. X ={1,2...}, u is counting measure.

Show examples of functions fi, fo,... and f from X to R such that f,, converges to f

almost everywhere, but not in L!,
in L', but not almost everywhere,
in L', but not in L?,

in L2, but not in L'.

The characteristic function of a random variable X is the function ¥ : R — C defined as
U (t) = E(e™). Calculate the characteristic function of

(a) The Bernoulli distribution B(p)

(b) The “pessimistic geometric distribution with parameter p” — that is, the distribution p
on {0,1,2...} with weights u({k}) = (1 —p)p* (k=0,1,2...).

(c) The “optimistic geometric distribution with parameter p” — that is, the distribution v
on {1,2,3,...} with weights v({k}) = (1 —p)pF~t (k=1,2...).

(d) The Poisson distribution with parameter A — that is, the distribution  on {0,1,2...}

with weights n({k}) = e*’\% (k=0,1,2...).

(e) The exponential distribution with parameter A\ — that is, the distribution on R with
density (w.r.t. Lebesgue measure)
(@) e ™ if x>0
) =
A 0, if not

For a real values random variable X, the characteristic function of X is ¢¥x : R — C defined
as ¥x(t) = E (e“X), where ¢ € C is the imaginary unit. Show that 1y (t) exists for every
teR.

For a probability distribution v on R, the characteristic function of v is ¢, : R — C defined
as i, (t) = [, " dv(z), where i € C is the imaginary unit. Show that v, (t) exists for every
teR.

Let (€2, F,P) be a probability space, let X : 2 — R be a random variable and let v = X,P
be its distribution. Show that ¢¥x = 1, where ©x and 1, are the characteristic functions
defined in exercises 3 and 4.

Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (2, F,u) be a measure space and fi, fa,. ..
measurable real valued functions on €2 which converge to the limit function pointwise, -
almost everywhere. (That is, lim,,_, fo(x) = f(x) for every x € Q, except possibly for a set
of x-es with p-measure zero.) Assume furthermore that the f, admit a common integrable
dominating function: there ezists a g : 2 — R such that | f,(x)| < g(z) for every x € Q and
n €N, and fggdu < 00. Then (all the f, and also f are integrable and)

lim | f,dp= / fdu.
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6.7

Use this theorem to prove the following:

a.) Theorem 3 (Continuity of the characteristic function, 1) For any real valued ran-
dom wvariable X , its characteristic function ¢ x(t) = E(e™™) is continuous.

b.) Theorem 4 (Continuity of the characteristic function, 2) For any probability dis-
tribution v on R, its characteristic function ¥, (t) = [, " dv(z) is continuous.

c.) Theorem 5 (Differentiability of the characteristic function, 1) Let X be a real
valued random variable, its characteristic function V¥x(t) = E(e®X). If X is integrable,
then x is differentiable.

d.) Theorem 6 (Differentiability of the characteristic function, 2) Let v be a prob-
ability distribution on R, its characteristic function 1, (t) fR “du(x). If Bv € R,
then 1, is differentiable.

e.) Theorem 7 (Continuous differentiability of the characteristic function, 1) Let
X be a real valued random variable, its characteristic function x(t) = E(e®™™). If X is
integrable, then V' is continuous.

f.) Theorem 8 (Continuous differentiability of the characteristic function, 2) Let
v be a probability distribution on R, its characteristic function ,(t) fR 2 du(x). If
Ev € R, then v, is continuous.

Ezchangeability of integral and limit. Consider the sequences of functions f, : [0,1] — R
and g, : [0,1] — R concerning their pointwise limits and the limits of their integrals. Do
there exist integrable functions f : [0,1] — R and ¢ : [0,1] — R, such that fn(x) —

f(z) and g,(x) — g(x) for Lebesgue almost every x € [0,1]7 What is hm (f fulz )

and lim [ [ g,(x)dz |? Are the conditions of the dominated and monotone convergence

theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these
specific examples?

(a)

n’x if 0 <z <1/n,
fol®)=<2n—n%r ifl/n<x<2/n,
0 otherwise.

(b) Write n asn =2%+1, where k =0,1,2... and [ = 0,1,...,2*¥ — 1 (this can be done in
a unique way for every n). Now let

1 1f - <z < l;kl,
0 otherw1se.

6.8 Exchangeability of integrals. Consider the following function f : R? — R:

1 if O<z,0<yand0<zx—y<I,
flx)=<-1 if O0<z,0<yandO<y—ax<1,

0 otherwise.

+00 /400 +oo
Calculate [ <f f(:r,y)d:r) dy and f <f f( :r,y)dy) dz. What’s the situation with the

—00

—00 \— —00

Fubini theorem?



6.9 Weak convergence and densities. Prove the following

Theorem 9 Let puy, io, ... and p be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesque measure. Denote their densities by fi, fa,... and f,
respectively. Denote their distribution functions by Fy, Fs, ... and F, respectively. Suppose
that f(z) =3 f(z) for every x € R. Then F,(z) =3 F(z) for every z € R.

(Hint: Use the Fatou lemma to show that F'(z) < liminf, . F,(z). For the other direction,
consider G(x) :=1— F(x).)

7 Linear spaces, norm, inner product

7.1 Which of the spaces V below are linear spaces and why?

a.) V= {(z1, 79, 23) € R®|zy + 225 = 0}, with the usual addition and the usual multipli-
cation by a scalar.

b.) V = {(x1, 12, 23) € R®| 21 + 225 = 3}, with the usual addition and the usual multipli-
cation by a scalar.

c.) V= {(z1,29,73) € R*|z; > 0}, with the usual addition and the usual multiplication
by a scalar.

d.) V:={f:(0,1) - R| fis continuous and |f| < 100}, with the usual addition and the
usual multiplication by a scalar.

e.) V:={f:(0,1) = R| f is continuous and bounded}, with the usual addition and the

usual multiplication by a scalar.

7.2 On the linear spaces V' and W below, which of the given transformations T : V — W are
linear and why?
a.) V=R W =R2 T((x1, 79, 73)) := (21, 72 + 3).
b) V= Rg, W = RQ, T((.Tl,.rg, 1’3)) = (.Tl, 1+ 1’3).
) V=R W =R% T((x1,22,73)) := (1, T273).
) Vi=Af:(-1,1) —» R| f differentiable}, with the usual addition and the usual multi-
plication by a scalar; W :=R; T'(f) := f/(0).

7.3 On the linear spaces V' below, which of the given two-variable functions B : V' — R are
bilinear forms? Which ones are symmetric and positive definite? Why?

a.) V=R3 B((x1,22,23), (y1,Y2,Y3)) = T1Y2 + Tays + T3y1
b.) V =R? B((w1,22), (y1,92)) = 2122 + Y112
)V = R?, B((z1,x2), (y1,Y2)) := x1y1 + T1Y2 + Tay1 + T2l
)V

={f:[-1,1] - R| fis differentiable} With the usual addition and the usual
multiplication by a scalar; B(f,g) f L2 f(x)g(x) d

e) V i={f:[-1,1] - R| fis d1fferentiable}, with the usual addition and the usual
multiplication by a scalar; B(f,g) := fjl xf(z)g(z)dz
£y Vv ={f:[-11] —» R| fis differentiable} With the usual addition and the usual

multiplication by a scalar; B(f,g) f f'(x

7.4 Let V be an inner product space. Show that the function N : V' — R defined as N(z) :=
V/{x, x) is indeed a norm (usually denoted as ||z|| = N(x)).

9
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Riesz representation theorem

Let V' be an inner product space, and let d denote the natural metric on it (defined as
d(z,y) :== ||z — y||). Let x € V, let D C V be convex, and assume that d(z,D) = R > 0
(where d(z, D) := inf{d(x,y) |y € D} is the distance of z and D). Find a number C' € R
(possibly depending on R) such that if u,v € D, d(z,u) < R+ ¢ and d(z,v) < R+ ¢ with
some ¢ < R, then d(u,v) < Cy/e. (Hint: estimate the length of the longest line segment that
fits in the shell {y € V| R < d(xz,y) < R+¢}. A two-dimensional drawing will help.)

Let V' be an inner product space, and let d denote the natural metric (defined as d(z,y) :=
|z = yll)-

a.) Let a,c,x € V with x # c¢. Calculate the distance of a from the line {c+t(x —c) |t € R}
using |la — ¢||, ||z — ¢|| and {(a — ¢,z — ¢).
b.) Let E C V be a linear subspace and let a € V. Suppose that ¢ € FE is such that

d(a,z) > d(a,c) for every x € E — which means that ¢ is the point in £ which is closest
to a. Prove that F is orthogonal to a — ¢, meaning that (z,a — ¢) = 0 for every x € E.

Let V' be an inner product space over R and let f : V' — R be a linear form. Let £ := {y €
V'| f(y) = 0} be the null-space of f. Suppose that f(a) =1, ¢ € E and a — ¢ is orthogonal
to E, meaning (a — c¢)y = 0 for every y € E. Now, for any x € V, find the A € R for which
x1:=x — Ma —¢) € E. Use this to get the relation between f(x) and (a — ¢)z.

Represent the following functions f : V' — R as multiplication by a fixed vector, whenever
this is possible due to the Riesz representation theorem.

a.) V = R!% with the usual inner product, f((z1,...,71)) := x5 (evaluation at 5)

b.) V =R with the usual inner product, f((z1,...,%10)) := r6 — 5 (discrete derivative at
5).

c.) V =R with the usual inner product, f((z1,...,210)) := zs — 225 + x4 (discrete second

derivative at 5).

d) V=>03F:={z:N=>R|> > 2%(i) < oo}, with the inner product x -y := Y oo, x(i)y(i);
f(@) = X241 2().

e) V=0F={z:N=>R| > 7 2%i) < oo}, with the inner product = -y := > "2, x(i)y(i);
fla) =322 ().

£) V=07 ={z: N> R|Y 2 2%(i) < oo}, with the inner product -y := Y oo, x(2)y(4);
fla) =322 (i)

g) V =L*[0,1]) := {z : [0,1] — R| fo t)dt < oo}, with the inner product x -y :
Ji a((®) dts (o)

z(3) (evaluation at )

(t

h.) V = L*([0,1]) := {z : [0,1] — R| fo t)dt < oo}, with the inner product x -y :
3 a(t)y(t) dt; f(x) :x’(%) (derivative at )

i.) V = L*[0,1]) = {= [O 1] - R| fo t)dt < oo}, with the inner product x -y :
Jo @@y() dt; f(@) =[5 ()dt

j )V =A{z : [0,1] —» R| fo t)dt < oo, f is differentiable}, with the inner product
vy = [y 2(t)y(t) dt; f(x) = '(%)-

k) V={z:[0,1] - R| f 2(t)dt < oo, f is continuous}, with the inner product z -y :=

Jo #()y(®) t; f(x) = (%)
3

Jo = ®y(?) dt; fla) = 09; < ) dt,
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9 Radon-Nikodym theorem

9.1 Let (X, F) be a measurable space and let u, v be o-finite measures on it. Show that there is
a countable partition X = UZAZ such that p(A4;) < oo and v(A;) < oo for every i. Use this
to show that the special case of the Radon-Nikodym theorem for finite measures implies the
general theorem (for o-finite measures).

9.2 Let (2, F,P) be a probability space. Let X : Q@ — RT be integrable and let G C F be a
sub-g-algebra. Define v : G — R* by v(A) := [, X dP (whenever A € G). Check that v
is a measure on (£2,G). Show that Lebesgue measure on R is absolutely continuous w.r.t.
counting measure (on R), but it does not have a density. Why doesn’t this contradict the
Radon-Nikodym theorem?

10 Conditional expectation

10.1 Let X be a nonempty set and let F; C 2% be a o-algebra for every i € I, where I is some
index set. I may be arbitrary (possibly much bigger that countable), but we assume I # ().

Show that F := (,c; F; is also a o-algebra. (Note that the assumption I # () is important.)

10.2 Let (92, F) be a probability space and let X : Q@ — R be (Borel-)measurable. Let (G;)ier
be the family of all o-algebras over €2 such that X is G;-measurable, and let G := ﬂie 1 Y.
Show that G is the smallest o-algebra for which X is measurable. (In what sense exactly
is it the smallest?)

10.3 Let (2, F) be a probability space, let X : Q@ — R be (F, B)-measurable, where B is the
Borel o-algebra on R. Let (X)) be the smallest o-algebra on €2 for which X is measurable.
(This exists by the previous exercise.) This is called the o-algebra generated by X. Show
that

o(X)={X"YB)|B e B}.

10.4 Let (€2, F) be a probability space, and let G;, Gy C F be sub-o-algebras. We say that JF;
and F; are independent if any A € G; and B € G, are independent. Show that if the
random variables X and Y are independent, then o(X) and o(Y') are independent.

10.5 Let (€2, F) be a probability space, and let G;,Go C F be sub-o-algebras. Let X and Y be
random variables, X € G, Y € G,. Show that if ¢(X) and o(Y") are independent, then X
and Y are independent.

10.6 Show that if X is a random variable, f : R — R measurable and Y = f(X), then o(Y) C
o(X). Show an example when equality holds, and an example when not.

10.7 Show that if X, Y are independent random variables and f, g : R — R are measurable, then
f(X) and ¢(Y') are also independent.

10.8 Show that the random variables X,Y : Q@ — R are independent if and only if the (joint)
distribution of the pair (X,Y") (which is a probability measure on R?) is the product of the
distributions of X and Y.

10.9 Show that if X and Y are independent and integrable, then E(XY) = EXEY.
10.10 Show that if the random variable X is independent of the o-algebra G, then E(X|G) = EX.

10.11 Let Q = {a, b, ¢} and P the uniform measure on it. Let X = 1y, andlet G = {0, {a}, {b, c}, Q}.
Calculate E(X|G).
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10.12
10.13

10.14

10.15

10.16

10.17

We roll two fair dice and let X, Y be the numbers rolled. Calculate E(X|X +Y).

Let Q = [0,1)* and let P be Lebesgue measure on Q. Let X,Y : Q — R be defined as
X(u,v) =w and Y(u,v) = y/u+ v. Calculate E(Y|X).

Let U and V' be independent random variables, uniformly distributed on [0, 1]. Calculate

E(VT + V|U).

Let U and V' be independent random variables, uniformly distributed on [0, 1]. Calculate
E(U+V|U-V).

Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate

E(VT +V|U - V).

Let X and Y be independent standard Gaussian random variables. Let U = X + Y and
V =2X —Y. Calculate E(V|U). (Hint: if W is independent of U, then E(W|U) = EW.
If you choose A € R cleverly, then W :=V — AU will be independent of U. (Since U and
W are jointly Gaussian, to show independence it’s enough to check that Cov(U, W) = 0.)
Then write V. =\U +W.)
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