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1 Gaussian integrals

1.1 Find all continuous functions f : R2 → R that are rotation invariant and also of product
form. That is, there are functions g : [0,∞) → R and h : R → R such that, for every
x, y ∈ R

f(x, y) = g(
√

x2 + y2) = h(x)h(y).

(Hint: write everything as the function of the square of the radius, e.g. by defining u := x2,
v := y2 and G(z) := g(

√
z). Then you should get G(u + v) = constG(u)G(v). Now study

the logarithm of G.)

1.2 Use the integral substitution y2

2
:= a(x−m)2 to show that

∫ ∞

−∞
e−a(x−m)2 dx =

√

π

a
(1)

whenever m ∈ R and 0 < a ∈ R. We know form class that the value of the integral is
√
2π

when m = 0 and a = 1
2
.

1.3 Let f(x1, . . . , xd) = e−
x
2
1
+···+x

2
d

2 , and let V =
∫

Rd f(x) dx.

• Calculate V using that f is a product:

f(x1, . . . , xd) = e−
x
2
1
2 · e−

x
2
2
2 · · · · · e−

x
2
d

2 .

• Write V as a one-dimensional integral using polar coordinate substitution.
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• Compare the two results to get that

cd =

√
2π

d

∫∞
0
rd−1e−

r2

2 dr
.

1.4 Calculate An :=
∫ π

2

0
cosn x dx for every n = 0, 1, 2, . . . the hard way: if n ≥ 2, then

An =

∫ π

2

0

(1− sin2 x) cosn−2 x dx = An−2 −
∫ π

2

0

[sin x]
[

sin x cosn−2 x
]

dx,

and you can use integration by parts in the second term.

1.5 Let Bd ⊂ R
d be the unit ball in Rd meaning

Bd :=
{

(x1, . . . , xd) ∈ R
d
∣

∣x21 + · · ·+ x2d ≤ 1
}

.

(Compare the definition of the sphere – note the inequality here.) Let bd be the d-dimensional
volume of Bd. Calculate bd.

(Hint: the volume is the integral of the indicator function. Use the theorem about polar
coordinate substitution in d dimensions.)

1.6 Try to calculate bd of the previous exercise the hard way: slice the d+1-dimensional sphere
into d-dimensional ones to see that

bd+1 =

∫ 1

−1

bd
√
1− x2

d
dx.

2 Euler gamma function

2.1 For s > 0 let

Γ(s) =

∫ ∞

0

xs−1e−x dx

be the Euler gamma function. Check that Γ(s+1) = sΓ(s) for all s > 0. Check by induction
that Γ(n+ 1) = n! for all n ∈ N.

2.2 Calculate Γ
(

1
2

)

. Express Γ(s) for every half-integer s > 0 using factorials.

2.3 Fix some s, t > 0. Consider f : (0,∞)× (0,∞) → R defined by f(x, y) := xs−1e−xyt−1e−y

(for all x, y > 0). Calculate
∫

(0,∞)2
f(x, y) dx dy in two different ways:

a.) By using that f has product form,

b.) using the substitution u := x+ y, ξ := y

x+y
. (If it’s easier, you can do this in two steps:

first u := x+ y, v := y; second ξ := v/u.)

Comparing the two results, express the Beta function B(s, t) :=
∫ 1

0
(1 − ξ)s−1ξt−1 dξ using

the Euler gamma function.

2.4 Calculate An :=
∫ π

2

0
cosn x dx for every n = 0, 1, 2, . . . using the substitution ξ := cosx and

the result of the previous exercise.

2.5 Calculate the integral

Bn :=

∫

Rn

√

1− |x|21{|x|≤1} dx

using the theorem about spherically symmetric integrals, and check that you really got what
you should. (Hint: it helps to recall Exercise 2.3)
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3 Almost Gaussian integrals

3.1 Describe the asymptotic behaviour of the integral In :=
∫ 1

−1

√
1− x2

n
dx as n→ ∞.

3.2 Describe the asymptotic behaviour of the integral In :=
∫ 2

−2

√
4− x2

n
dx as n→ ∞.

3.3 Let

fn(x) =

{

cosn x if x ∈ [−π
2
, π
2
]

0 if not
.

Let gn(x) = fn(vnx), where the scaling factors vn are chosen appropriately, so that
∫

R
gn → 1

(More precisely: gn should be integrated on all of its domain.) Find the limit g(x) :=
limn→∞gn(x).

3.4 Let fn(x) =
√
4− x2

n
(for x ∈ [−2, 2]), and let gn(x) = unfn(vnx), where the scaling factors

un and vn are chosen appropriately, so that gn(0) → 1 and
∫

R
gn → 1 (More precisely: gn

should be integrated on all of its domain.) Find the limit g(x) := limn→∞gn(x).

3.5 Let a < 0 < b and let h : [a, b] → R be twice differentiable with a unique non-degenerate local
maximum at 0. Denote A := h(0) and B := −h′′(0). Let fn : [a, b] → R with fn(x) = enh(x).
Now let un > 0 and vn > 0 be two sequences of scaling factors, and define gn as

gn(x) := unfn(vnx),

for the x ∈ R where this makes sense. (This means stretching the graph of fn vertically with
a factor un and shrinking it horizontally with a factor vn.)

a.) How should we choose un to make sure that gn(0) → 0 as n→ ∞? (Of course, there are
many such sequences: if un works and ūn ∼ un, then ūn works as well. So give a simple
example.)

b.) Fix un as in the previous part. Now how should be choose vn to make sure that

∫

Dn

gn(x) dx→ 1

as n→ ∞? (Here let Dn denote the domain of gn.)

c.) With un and vn chosen as above, calculate g(x) := limn→∞ gn(x) for all x ∈ R.

3.6 Describe the asymptotic behaviour of the integral In :=
∫ 1

−1
(x2 − x4)n dx as n→ ∞.

4 Stirling’s approximation

4.1 Let the random vector V = (V1, . . . , Vn) ∈ R
n be uniformly distributed on the (surface of

the) (n−1)-dimensional sphere of radius
√
2nE in Rn. Let fn denote the density of the first

marginal V1 (which is itself a random variable in R, and, of course, its density depends on
n). Calculate fn(x) for every n. Find the limit f(x) := limn→∞ fn(x).

4.2 [DeMoivre-Laplace Central Limit Theorem] We toss a biased coin (where the probability of
“heads” is some p ∈ (0, 1)) n times independently. Let q = 1 − p. Let X be the number of
heads we see. So X is binomially distributed with parameters n and p, meaning

P(X = k) = Bin(k;n, p) :=

(

n

k

)

pkqn−k for k = 0, 1, . . . , n.
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It is known that X has expectation EX = np and standard deviation DX =
√
V arX =√

npq, so let Y := X−np√
npq

be the normalized version of X (which now has expectation 0 and

standard deviation 1). Of course, Y is still a discrete random variable, taking only values
from a grid of points which are 1√

npq
apart.

Let us fix x ∈ R, and choose k ∈ Z such that x ≈ k−np√
npq

as closely as possible, so k is

np+ x
√
npq rounded to the nearest integer. Let

fn(x) :=
P(Y = k−np√

npq
)

1√
npq

=
√
npqP(X = k)

be the logical guess for an “approximate density” of Y at x.

Calculate the limit f(x) := limn→∞ fn(x).

Hint:

Use Stirling’s approximation n! ∼ nn
√
2πn

en
, and the fact that k = np + x

√
npq + ∆, where

∆ = ∆(n, x) ∈ [−1
2
, 1
2
], so ∆ = O(1). Use this in the following forms:

k = np+ x
√
npq +∆ , n− k = nq − x

√
npq −∆ (2)

k

np
= 1 + x

√

q

np
+

∆

np
,

n− k

nq
= 1− x

√

p

nq
− ∆

nq
(3)

k

np
= 1 + o(1) ,

n− k

nq
= 1 + o(1) (4)

Notice that (2) is a bit stronger than if we only wrote k = np+ x
√
npq +O(1) and n− k =

nq − x
√
npq +O(1). This will be important, since ∆ will cancel out at some point.

At some point the calculation may become more transparent if you calculate the logarithm
of fn(x).

5 Basics of measure theory

5.1 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family F of subsets of ω (i.e. F ⊂ 2Ω, where
2Ω := {A : A ⊂ Ω} is the power set of Ω) is called a σ-algebra over Ω if

• ∅ ∈ F
• if A ∈ F , then AC := Ω \ A ∈ F (that is, F is closed under complement taking)

• if A1, A2, · · · ∈ F , then (∪∞
i=1Ai) ∈ F (that is, F is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under
finite union and intersection.

5.2 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of mea-
surable sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).
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ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) < ∞, then µ(∩∞

i=1Ai) =
limi→∞ µ(Ai) (and both sides of the equation make sense).

(b) Show that in the second statement the condition µ(A1) <∞ is needed, by constructing
a counterexample for the statement when this condition does not hold.

5.3 (a) We toss a biased coin, on which the probability of heads is some 0 ≤ p ≤ 1. Define the
random variable ξ as the indicator function of tossing heads, that is

ξ :=

{

0, if tails

1, if heads
.

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p)
in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight P(ξ ∈
B) of every Borel subset B of R.

iii. Calculate the expectation of ξ.

(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.

i. Describe the distribution of X (called the Binomial distribution with parameters
(n, p)) by listing possible values and their probabilities.

ii. Calculate the expectation of X by integration (actually summation in this case)
using its distribution,

iii. and also by noticing that X = ξ1 + ξ2 + · · · + ξn, where ξi is the indicator of the
i-th toss being heads, and using linearity of the expectation.

5.4 The ternary number 0.a1a2a3 . . . is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence a1, a2, a3, . . . with an ∈ {0, 1, 2}, by definition

0.a1a2a3 · · · :=
∞
∑

n=1

an
3n
.

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

an :=

{

0, if the n-th toss is tails,

2, if the n-th toss is heads
,

and setting X = 0.a1a2a3 . . . (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C defined as

C :=

{ ∞
∑

n=1

an
3n
, an ∈ {0, 2} (n = 1, 2, . . . )

}

.

Show that

(a) The distribution of X gives zero weight to every point – that is, P(X = x) = 0 for every
x ∈ R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.
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5.5 Let V be a random vector in Rn with an n-dimensional standard Gaussian distribution,
meaning that it has density

f(v1, . . . , vn) =
1√
2π

n e
− v

2
1
+···+v

2
n

2 .

Think of V as the velocity vector of a particle with mass m, so the energy is E = m
2
V 2.

Calculate the distribution of the random variable E. (Meaning: calculate the distribution
function and/or the density, and tell the name of the distribution.)

5.6 Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops – i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X .
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that.)

5.7 Let X = [0, 1] and let µ be Lebesgue measure on X . Let f(x) = x2. Describe the measure
f∗µ

a.) by calculating (f∗µ)([a, b]) for every interval [a, b] ⊂ R

b.) by giving the density of f∗µ with respect to Lebesgue measure.

5.8 Let X = {(a1, a2, . . . ) | ak ∈ {0, 1} for every k} be the set of {0, 1}-sequences. Let µ be the
measure on X for which

µ({(a1, a2, . . . ) ∈ X | a1 = b1, . . . , aN = bN}) =
1

2N

for every b1, . . . , bN ∈ {0, 1}. Let f : X → R be defined as

f(a1, a2, . . . ) :=

∞
∑

k=1

ak
2k
.

Describe the measure f∗µ

a.) by calculating (f∗µ)([a, b]) for every interval [a, b] ⊂ R

b.) by giving the density of f∗µ with respect to Lebesgue measure.

5.9 Let λ be Lebesgue measure and χ be counting measure on R (with the Borel σ-algebra).
Show that λ does not have a density with respect to χ. (Hint: consider 1-element sets.)

5.10 Let (Ω,F ,P) be a probability space and A ∈ F . Define X : Ω → R as X(ω) = 1A(ω) and
let µ = X∗P be the distribution of X . Show that µ is absolutely continuous w.r.t counting
measure, show that it also has a density. What is the density?

5.11 Let X be a discrete random variable and let µ be its distribution. Give the density of µ
w.r.t. counting measure.

6 Convergence of sequences of functions

6.1 Consider the following measure spaces (X, µ):

I. X = [0, 1], µ is Lebesgue measure.
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II. X = [0,∞), µ is Lebesgue measure.

III. X = {1, 2 . . . , N}, µ is counting measure.

IV. X = {1, 2 . . . }, µ is counting measure.

Show examples of functions f1, f2, . . . and f from X to R such that fn converges to f

a.) almost everywhere, but not in L1,

b.) in L1, but not almost everywhere,

c.) in L1, but not in L2,

d.) in L2, but not in L1.

6.2 The characteristic function of a random variable X is the function Ψ : R → C defined as
Ψ(t) = E(eitX). Calculate the characteristic function of

(a) The Bernoulli distribution B(p)

(b) The “pessimistic geometric distribution with parameter p” – that is, the distribution µ
on {0, 1, 2 . . .} with weights µ({k}) = (1− p)pk (k = 0, 1, 2 . . . ).

(c) The “optimistic geometric distribution with parameter p” – that is, the distribution ν
on {1, 2, 3, . . .} with weights ν({k}) = (1− p)pk−1 (k = 1, 2 . . . ).

(d) The Poisson distribution with parameter λ – that is, the distribution η on {0, 1, 2 . . . }
with weights η({k}) = e−λ λk

k!
(k = 0, 1, 2 . . . ).

(e) The exponential distribution with parameter λ – that is, the distribution on R with
density (w.r.t. Lebesgue measure)

fλ(x) =

{

λe−λx, if x > 0

0, if not
.

6.3 For a real values random variable X , the characteristic function of X is ψX : R → C defined
as ψX(t) := E

(

eitX
)

, where i ∈ C is the imaginary unit. Show that ψX(t) exists for every
t ∈ R.

6.4 For a probability distribution ν on R, the characteristic function of ν is ψν : R → C defined
as ψν(t) :=

∫

R
eitx dν(x), where i ∈ C is the imaginary unit. Show that ψν(t) exists for every

t ∈ R.

6.5 Let (Ω,F ,P) be a probability space, let X : Ω → R be a random variable and let ν = X∗P
be its distribution. Show that ψX = ψν , where ψX and ψµ are the characteristic functions
defined in exercises 3 and 4.

6.6 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . .
measurable real valued functions on Ω which converge to the limit function pointwise, µ-
almost everywhere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a set
of x-es with µ-measure zero.) Assume furthermore that the fn admit a common integrable
dominating function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and
n ∈ N, and

∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.
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Use this theorem to prove the following:

a.) Theorem 3 (Continuity of the characteristic function, 1) For any real valued ran-
dom variable X, its characteristic function ψX(t) = E(eitX) is continuous.

b.) Theorem 4 (Continuity of the characteristic function, 2) For any probability dis-
tribution ν on R, its characteristic function ψν(t) =

∫

R
eitx dν(x) is continuous.

c.) Theorem 5 (Differentiability of the characteristic function, 1) Let X be a real
valued random variable, its characteristic function ψX(t) = E(eitX). If X is integrable,
then ψX is differentiable.

d.) Theorem 6 (Differentiability of the characteristic function, 2) Let ν be a prob-
ability distribution on R, its characteristic function ψν(t) =

∫

R
eitx dν(x). If Eν ∈ R,

then ψν is differentiable.

e.) Theorem 7 (Continuous differentiability of the characteristic function, 1) Let
X be a real valued random variable, its characteristic function ψX(t) = E(eitX). If X is
integrable, then ψ′

X is continuous.

f.) Theorem 8 (Continuous differentiability of the characteristic function, 2) Let
ν be a probability distribution on R, its characteristic function ψν(t) =

∫

R
eitx dν(x). If

Eν ∈ R, then ψ′
ν is continuous.

6.7 Exchangeability of integral and limit. Consider the sequences of functions fn : [0, 1] → R

and gn : [0, 1] → R concerning their pointwise limits and the limits of their integrals. Do
there exist integrable functions f : [0, 1] → R and g : [0, 1] → R, such that fn(x) →
f(x) and gn(x) → g(x) for Lebesgue almost every x ∈ [0, 1]? What is lim

n→∞

(

1
∫

0

fn(x)dx

)

and lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are the conditions of the dominated and monotone convergence

theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these
specific examples?

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done in
a unique way for every n). Now let

gn(x) =

{

1 if l
2k

≤ x < l+1
2k
,

0 otherwise.

6.8 Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞
f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞
f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?
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6.9 Weak convergence and densities. Prove the following

Theorem 9 Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . . and f ,
respectively. Denote their distribution functions by F1, F2, . . . and F , respectively. Suppose
that fn(x)

n→∞−→ f(x) for every x ∈ R. Then Fn(x)
n→∞−→ F (x) for every x ∈ R.

(Hint: Use the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction,
consider G(x) := 1− F (x).)

7 Linear spaces, norm, inner product

7.1 Which of the spaces V below are linear spaces and why?

a.) V := {(x1, x2, x3) ∈ R3 | x1 + 2x2 = 0}, with the usual addition and the usual multipli-
cation by a scalar.

b.) V := {(x1, x2, x3) ∈ R
3 | x1 + 2x2 = 3}, with the usual addition and the usual multipli-

cation by a scalar.

c.) V := {(x1, x2, x3) ∈ R3 | x1 ≥ 0}, with the usual addition and the usual multiplication
by a scalar.

d.) V := {f : (0, 1) → R | f is continuous and |f | ≤ 100}, with the usual addition and the
usual multiplication by a scalar.

e.) V := {f : (0, 1) → R | f is continuous and bounded}, with the usual addition and the
usual multiplication by a scalar.

7.2 On the linear spaces V and W below, which of the given transformations T : V → W are
linear and why?

a.) V = R3, W = R2, T ((x1, x2, x3)) := (x1, x2 + x3).

b.) V = R3, W = R2, T ((x1, x2, x3)) := (x1, 1 + x3).

c.) V = R3, W = R2, T ((x1, x2, x3)) := (x1, x2x3).

d.) V := {f : (−1, 1) → R | f differentiable}, with the usual addition and the usual multi-
plication by a scalar; W := R; T (f) := f ′(0).

7.3 On the linear spaces V below, which of the given two-variable functions B : V → R are
bilinear forms? Which ones are symmetric and positive definite? Why?

a.) V = R3, B((x1, x2, x3), (y1, y2, y3)) := x1y2 + x2y3 + x3y1

b.) V = R2, B((x1, x2), (y1, y2)) := x1x2 + y1y2

c.) V = R2, B((x1, x2), (y1, y2)) := x1y1 + x1y2 + x2y1 + x2y2

d.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
x2f(x)g(x) dx

e.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
xf(x)g(x) dx

f.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
f ′(x)g(x) dx

7.4 Let V be an inner product space. Show that the function N : V → R defined as N(x) :=
√

〈x, x〉 is indeed a norm (usually denoted as ||x|| = N(x)).
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8 Riesz representation theorem

8.1 Let V be an inner product space, and let d denote the natural metric on it (defined as
d(x, y) := ||x − y||). Let x ∈ V , let D ⊂ V be convex, and assume that d(x,D) = R > 0
(where d(x,D) := inf{d(x, y) | y ∈ D} is the distance of x and D). Find a number C ∈ R

(possibly depending on R) such that if u, v ∈ D, d(x, u) ≤ R + ε and d(x, v) ≤ R + ε with
some ε < R, then d(u, v) ≤ C

√
ε. (Hint: estimate the length of the longest line segment that

fits in the shell {y ∈ V | R ≤ d(x, y) ≤ R + ε}. A two-dimensional drawing will help.)

8.2 Let V be an inner product space, and let d denote the natural metric (defined as d(x, y) :=
||x− y||).

a.) Let a, c, x ∈ V with x 6= c. Calculate the distance of a from the line {c+ t(x− c) | t ∈ R}
using ||a− c||, ||x− c|| and 〈a− c, x− c〉.

b.) Let E ⊂ V be a linear subspace and let a ∈ V . Suppose that c ∈ E is such that
d(a, x) ≥ d(a, c) for every x ∈ E – which means that c is the point in E which is closest
to a. Prove that E is orthogonal to a− c, meaning that 〈x, a− c〉 = 0 for every x ∈ E.

8.3 Let V be an inner product space over R and let f : V → R be a linear form. Let E := {y ∈
V | f(y) = 0} be the null-space of f . Suppose that f(a) = 1, c ∈ E and a− c is orthogonal
to E, meaning (a− c)y = 0 for every y ∈ E. Now, for any x ∈ V , find the λ ∈ R for which
x1 := x− λ(a− c) ∈ E. Use this to get the relation between f(x) and (a− c)x.

8.4 Represent the following functions f : V → R as multiplication by a fixed vector, whenever
this is possible due to the Riesz representation theorem.

a.) V = R
10 with the usual inner product, f((x1, . . . , x10)) := x5 (evaluation at 5)

b.) V = R10 with the usual inner product, f((x1, . . . , x10)) := x6 − x5 (discrete derivative at
5).

c.) V = R10 with the usual inner product, f((x1, . . . , x10)) := x6− 2x5+ x4 (discrete second
derivative at 5).

d.) V = l2 := {x : N → R | ∑∞
i=1 x

2(i) <∞}, with the inner product x · y :=
∑∞

i=1 x(i)y(i);
f(x) :=

∑100
i=1 x(i).

e.) V = l2 := {x : N → R | ∑∞
i=1 x

2(i) <∞}, with the inner product x · y :=
∑∞

i=1 x(i)y(i);
f(x) :=

∑∞
i=1 x(i).

f.) V = l2 := {x : N → R | ∑∞
i=1 x

2(i) <∞}, with the inner product x · y :=
∑∞

i=1 x(i)y(i);
f(x) :=

∑∞
i=1 x

2(i).

g.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x(1

2
) (evaluation at 1

2
).

h.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x′(1

2
) (derivative at 1

2
).

i.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) :=

∫ 0.7

0.2
x(t) dt.

j.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is differentiable}, with the inner product

x · y :=
∫ 1

0
x(t)y(t) dt; f(x) := x′(1

2
).

k.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is continuous}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x(1

2
).

l.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is continuous}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) :=

∫ 0.7

0.2
x(t) dt.
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9 Radon-Nikodym theorem

9.1 Let (X,F) be a measurable space and let µ, ν be σ-finite measures on it. Show that there is

a countable partition X = ˙⋃
iAi such that µ(Ai) < ∞ and ν(Ai) < ∞ for every i. Use this

to show that the special case of the Radon-Nikodym theorem for finite measures implies the
general theorem (for σ-finite measures).

9.2 Let (Ω,F ,P) be a probability space. Let X : Ω → R+ be integrable and let G ⊂ F be a
sub-σ-algebra. Define ν : G → R+ by ν(A) :=

∫

A
X dP (whenever A ∈ G). Check that ν

is a measure on (Ω,G). Show that Lebesgue measure on R is absolutely continuous w.r.t.
counting measure (on R), but it does not have a density. Why doesn’t this contradict the
Radon-Nikodym theorem?

10 Conditional expectation

10.1 Let X be a nonempty set and let Fi ⊂ 2X be a σ-algebra for every i ∈ I, where I is some
index set. I may be arbitrary (possibly much bigger that countable), but we assume I 6= ∅.
Show that F :=

⋂

i∈I Fi is also a σ-algebra. (Note that the assumption I 6= ∅ is important.)

10.2 Let (Ω,F) be a probability space and let X : Ω → R be (Borel-)measurable. Let (Gi)i∈I
be the family of all σ-algebras over Ω such that X is Gi-measurable, and let G :=

⋂

i∈I Gi.
Show that G is the smallest σ-algebra for which X is measurable. (In what sense exactly
is it the smallest?)

10.3 Let (Ω,F) be a probability space, let X : Ω → R be (F ,B)-measurable, where B is the
Borel σ-algebra on R. Let σ(X) be the smallest σ-algebra on Ω for which X is measurable.
(This exists by the previous exercise.) This is called the σ-algebra generated by X . Show
that

σ(X) = {X−1(B) |B ∈ B}.

10.4 Let (Ω,F) be a probability space, and let G1,G2 ⊂ F be sub-σ-algebras. We say that F1

and F1 are independent if any A ∈ G1 and B ∈ G2 are independent. Show that if the
random variables X and Y are independent, then σ(X) and σ(Y ) are independent.

10.5 Let (Ω,F) be a probability space, and let G1,G2 ⊂ F be sub-σ-algebras. Let X and Y be
random variables, X ∈ G1, Y ∈ G2. Show that if σ(X) and σ(Y ) are independent, then X
and Y are independent.

10.6 Show that if X is a random variable, f : R → R measurable and Y = f(X), then σ(Y ) ⊂
σ(X). Show an example when equality holds, and an example when not.

10.7 Show that if X, Y are independent random variables and f, g : R → R are measurable, then
f(X) and g(Y ) are also independent.

10.8 Show that the random variables X, Y : Ω → R are independent if and only if the (joint)
distribution of the pair (X, Y ) (which is a probability measure on R2) is the product of the
distributions of X and Y .

10.9 Show that if X and Y are independent and integrable, then E(XY ) = EXEY .

10.10 Show that if the random variable X is independent of the σ-algebra G, then E(X|G) = EX .

10.11 Let Ω = {a, b, c} and P the uniform measure on it. LetX = 1{c} and let G = {∅, {a}, {b, c},Ω}.
Calculate E(X|G).
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10.12 We roll two fair dice and let X, Y be the numbers rolled. Calculate E(X|X + Y ).

10.13 Let Ω = [0, 1]2 and let P be Lebesgue measure on Ω. Let X, Y : Ω → R be defined as
X(u, v) = u and Y (u, v) =

√
u+ v. Calculate E(Y |X).

10.14 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(

√
U + V |U).

10.15 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(U + V |U − V ).

10.16 Let U and V be independent random variables, uniformly distributed on [0, 1]. Calculate
E(

√
U + V |U − V ).

10.17 Let X and Y be independent standard Gaussian random variables. Let U = X + Y and
V = 2X − Y . Calculate E(V |U). (Hint: if W is independent of U , then E(W |U) = EW .
If you choose λ ∈ R cleverly, then W := V − λU will be independent of U . (Since U and
W are jointly Gaussian, to show independence it’s enough to check that Cov(U,W ) = 0.)
Then write V = λU +W .)
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