Tools of Modern Probability
 Imre Péter Tóth
 Practice exercises

Contents

1 Gaussian integrals 1
2 Euler gamma function 2
3 Almost Gaussian integrals 3
4 Stirling's approximation 3
5 Basics of measure theory 4
6 Convergence of sequences of functions 6
7 Linear spaces, norm, inner product 9
8 Riesz representation theorem 10
9 Radon-Nikodym theorem 11
10 Conditional expectation 11

1 Gaussian integrals

1.1 Find all continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that are rotation invariant and also of product form. That is, there are functions $g:[0, \infty) \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ such that, for every $x, y \in \mathbb{R}$

$$
f(x, y)=g\left(\sqrt{x^{2}+y^{2}}\right)=h(x) h(y) .
$$

(Hint: write everything as the function of the square of the radius, e.g. by defining $u:=x^{2}$, $v:=y^{2}$ and $G(z):=g(\sqrt{z})$. Then you should get $G(u+v)=\operatorname{const} G(u) G(v)$. Now study the logarithm of G.)
1.2 Use the integral substitution $\frac{y^{2}}{2}:=a(x-m)^{2}$ to show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-a(x-m)^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{a}} \tag{1}
\end{equation*}
$$

whenever $m \in \mathbb{R}$ and $0<a \in \mathbb{R}$. We know form class that the value of the integral is $\sqrt{2 \pi}$ when $m=0$ and $a=\frac{1}{2}$.
1.3 Let $f\left(x_{1}, \ldots, x_{d}\right)=e^{-\frac{x_{1}^{2}+\cdots+x_{d}^{2}}{2}}$, and let $V=\int_{\mathbb{R}^{d}} f(\underline{x}) \mathrm{d} \underline{x}$.

- Calculate V using that f is a product:

$$
f\left(x_{1}, \ldots, x_{d}\right)=e^{-\frac{x_{1}^{2}}{2}} \cdot e^{-\frac{x_{2}^{2}}{2}} \cdots \cdots e^{-\frac{x_{d}^{2}}{2}}
$$

- Write V as a one-dimensional integral using polar coordinate substitution.
- Compare the two results to get that

$$
c_{d}=\frac{\sqrt{2 \pi}^{d}}{\int_{0}^{\infty} r^{d-1} e^{-\frac{r^{2}}{2}} \mathrm{~d} r} .
$$

1.4 Calculate $A_{n}:=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x$ for every $n=0,1,2, \ldots$ the hard way: if $n \geq 2$, then

$$
A_{n}=\int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{2} x\right) \cos ^{n-2} x \mathrm{~d} x=A_{n-2}-\int_{0}^{\frac{\pi}{2}}[\sin x]\left[\sin x \cos ^{n-2} x\right] \mathrm{d} x,
$$

and you can use integration by parts in the second term.
1.5 Let $B_{d} \subset \mathbb{R}^{d}$ be the unit ball in R^{d} meaning

$$
B_{d}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \mid x_{1}^{2}+\cdots+x_{d}^{2} \leq 1\right\} .
$$

(Compare the definition of the sphere - note the inequality here.) Let b_{d} be the d-dimensional volume of B_{d}. Calculate b_{d}.
(Hint: the volume is the integral of the indicator function. Use the theorem about polar coordinate substitution in d dimensions.)
1.6 Try to calculate b_{d} of the previous exercise the hard way: slice the $d+1$-dimensional sphere into d-dimensional ones to see that

$$
b_{d+1}=\int_{-1}^{1} b_{d}{\sqrt{1-x^{2}}}^{d} \mathrm{~d} x .
$$

2 Euler gamma function

2.1 For $s>0$ let

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} \mathrm{~d} x
$$

be the Euler gamma function. Check that $\Gamma(s+1)=s \Gamma(s)$ for all $s>0$. Check by induction that $\Gamma(n+1)=n$! for all $n \in \mathbb{N}$.
2.2 Calculate $\Gamma\left(\frac{1}{2}\right)$. Express $\Gamma(s)$ for every half-integer $s>0$ using factorials.
2.3 Fix some $s, t>0$. Consider $f:(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x, y):=x^{s-1} e^{-x} y^{t-1} e^{-y}$ (for all $x, y>0$). Calculate $\int_{(0, \infty)^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y$ in two different ways:
a.) By using that f has product form,
b.) using the substitution $u:=x+y, \xi:=\frac{y}{x+y}$. (If it's easier, you can do this in two steps: first $u:=x+y, v:=y$; second $\xi:=v / u$.)

Comparing the two results, express the Beta function $B(s, t):=\int_{0}^{1}(1-\xi)^{s-1} \xi^{t-1} \mathrm{~d} \xi$ using the Euler gamma function.
2.4 Calculate $A_{n}:=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x$ for every $n=0,1,2, \ldots$ using the substitution $\xi:=\cos x$ and the result of the previous exercise.
2.5 Calculate the integral

$$
B_{n}:=\int_{\mathbb{R}^{n}} \sqrt{1-|\underline{x}|^{2}} \mathbf{1}_{\{|\underline{x}| \leq 1\}} \mathrm{d} \underline{x}
$$

using the theorem about spherically symmetric integrals, and check that you really got what you should. (Hint: it helps to recall Exercise 2.3)

3 Almost Gaussian integrals

3.1 Describe the asymptotic behaviour of the integral $I_{n}:=\int_{-1}^{1}{\sqrt{1-x^{2}}}^{n} \mathrm{~d} x$ as $n \rightarrow \infty$.
3.2 Describe the asymptotic behaviour of the integral $I_{n}:=\int_{-2}^{2}{\sqrt{4-x^{2}}}^{n} \mathrm{~d} x$ as $n \rightarrow \infty$.
3.3 Let

$$
f_{n}(x)= \begin{cases}\cos ^{n} x & \text { if } x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ 0 & \text { if not }\end{cases}
$$

Let $g_{n}(x)=f_{n}\left(v_{n} x\right)$, where the scaling factors v_{n} are chosen appropriately, so that $\int_{\mathbb{R}} g_{n} \rightarrow 1$ (More precisely: g_{n} should be integrated on all of its domain.) Find the limit $g(x):=$ $\lim _{n \rightarrow \infty} g_{n}(x)$.
3.4 Let $f_{n}(x)={\sqrt{4-x^{2}}}^{n}$ (for $\left.x \in[-2,2]\right)$, and let $g_{n}(x)=u_{n} f_{n}\left(v_{n} x\right)$, where the scaling factors u_{n} and v_{n} are chosen appropriately, so that $g_{n}(0) \rightarrow 1$ and $\int_{\mathbb{R}} g_{n} \rightarrow 1$ (More precisely: g_{n} should be integrated on all of its domain.) Find the limit $g(x):=\lim _{n \rightarrow \infty} g_{n}(x)$.
3.5 Let $a<0<b$ and let $h:[a, b] \rightarrow \mathbb{R}$ be twice differentiable with a unique non-degenerate local maximum at 0 . Denote $A:=h(0)$ and $B:=-h^{\prime \prime}(0)$. Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ with $f_{n}(x)=e^{n h(x)}$. Now let $u_{n}>0$ and $v_{n}>0$ be two sequences of scaling factors, and define g_{n} as

$$
g_{n}(x):=u_{n} f_{n}\left(v_{n} x\right),
$$

for the $x \in \mathbb{R}$ where this makes sense. (This means stretching the graph of f_{n} vertically with a factor u_{n} and shrinking it horizontally with a factor v_{n}.)
a.) How should we choose u_{n} to make sure that $g_{n}(0) \rightarrow 0$ as $n \rightarrow \infty$? (Of course, there are many such sequences: if u_{n} works and $\bar{u}_{n} \sim u_{n}$, then \bar{u}_{n} works as well. So give a simple example.)
b.) Fix u_{n} as in the previous part. Now how should be choose v_{n} to make sure that

$$
\int_{D_{n}} g_{n}(x) \mathrm{d} x \rightarrow 1
$$

as $n \rightarrow \infty$? (Here let D_{n} denote the domain of g_{n}.)
c.) With u_{n} and v_{n} chosen as above, calculate $g(x):=\lim _{n \rightarrow \infty} g_{n}(x)$ for all $x \in \mathbb{R}$.
3.6 Describe the asymptotic behaviour of the integral $I_{n}:=\int_{-1}^{1}\left(x^{2}-x^{4}\right)^{n} \mathrm{~d} x$ as $n \rightarrow \infty$.

4 Stirling's approximation

4.1 Let the random vector $V=\left(V_{1}, \ldots, V_{n}\right) \in \mathbb{R}^{n}$ be uniformly distributed on the (surface of the) $(n-1)$-dimensional sphere of radius $\sqrt{2 n E}$ in \mathbb{R}^{n}. Let f_{n} denote the density of the first marginal V_{1} (which is itself a random variable in \mathbb{R}, and, of course, its density depends on $n)$. Calculate $f_{n}(x)$ for every n. Find the limit $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$.
4.2 [DeMoivre-Laplace Central Limit Theorem] We toss a biased coin (where the probability of "heads" is some $p \in(0,1)) n$ times independently. Let $q=1-p$. Let X be the number of heads we see. So X is binomially distributed with parameters n and p, meaning

$$
\mathbb{P}(X=k)=\operatorname{Bin}(k ; n, p):=\binom{n}{k} p^{k} q^{n-k} \quad \text { for } k=0,1, \ldots, n
$$

It is known that X has expectation $\mathbb{E} X=n p$ and standard deviation $D X=\sqrt{\operatorname{Var} X}=$ $\sqrt{n p q}$, so let $Y:=\frac{X-n p}{\sqrt{n p q}}$ be the normalized version of X (which now has expectation 0 and standard deviation 1). Of course, Y is still a discrete random variable, taking only values from a grid of points which are $\frac{1}{\sqrt{n p q}}$ apart.
Let us fix $x \in \mathbb{R}$, and choose $k \in \mathbb{Z}$ such that $x \approx \frac{k-n p}{\sqrt{n p q}}$ as closely as possible, so k is $n p+x \sqrt{n p q}$ rounded to the nearest integer. Let

$$
f_{n}(x):=\frac{\mathbb{P}\left(Y=\frac{k-n p}{\sqrt{n p q}}\right)}{\frac{1}{\sqrt{n p q}}}=\sqrt{n p q \mathbb{P}}(X=k)
$$

be the logical guess for an "approximate density" of Y at x.
Calculate the limit $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$.
Hint:
Use Stirling's approximation $n!\sim \frac{n^{n} \sqrt{2 \pi n}}{e^{n}}$, and the fact that $k=n p+x \sqrt{n p q}+\Delta$, where $\Delta=\Delta(n, x) \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, so $\Delta=O(1)$. Use this in the following forms:

$$
\begin{align*}
& k=n p+x \sqrt{n p q}+\Delta, \quad n-k=n q-x \sqrt{n p q}-\Delta \tag{2}\\
& \frac{k}{n p}=1+x \sqrt{\frac{q}{n p}}+\frac{\Delta}{n p} \quad, \quad \frac{n-k}{n q}=1-x \sqrt{\frac{p}{n q}}-\frac{\Delta}{n q} \tag{3}\\
& \frac{k}{n p}=1+o(1), \quad \frac{n-k}{n q}=1+o(1) \tag{4}
\end{align*}
$$

Notice that (2) is a bit stronger than if we only wrote $k=n p+x \sqrt{n p q}+O(1)$ and $n-k=$ $n q-x \sqrt{n p q}+O(1)$. This will be important, since Δ will cancel out at some point.
At some point the calculation may become more transparent if you calculate the logarithm of $f_{n}(x)$.

5 Basics of measure theory

5.1 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega}:=\{A: A \subset \Omega\}$ is the power set of Ω) is called $a \sigma$-algebra over Ω if

- $\emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^{C}:=\Omega \backslash A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under finite union and intersection.
5.2 Continuity of the measure
(a) Prove the following:

Theorem 1 (Continuity of the measure)
i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_{1}, A_{2}, \ldots is an increasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \subset A_{i+1}$ for all i), then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_{1}, A_{2}, \ldots is a decreasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \supset A_{i+1}$ for all i) and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=$ $\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
(b) Show that in the second statement the condition $\mu\left(A_{1}\right)<\infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
5.3 (a) We toss a biased coin, on which the probability of heads is some $0 \leq p \leq 1$. Define the random variable ξ as the indicator function of tossing heads, that is

$$
\xi:=\left\{\begin{array}{l}
0, \text { if tails } \\
1, \text { if heads }
\end{array} .\right.
$$

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p) in the "classical" way, listing possible values and their probabilities,
ii. and also by describing the distribution as a measure on \mathbb{R}, giving the weight $\mathbb{P}(\xi \in$ $B)$ of every Borel subset B of \mathbb{R}.
iii. Calculate the expectation of ξ.
(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
i. Describe the distribution of X (called the Binomial distribution with parameters $(n, p))$ by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case) using its distribution,
iii. and also by noticing that $X=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where ξ_{i} is the indicator of the i-th toss being heads, and using linearity of the expectation.
5.4 The ternary number $0 . a_{1} a_{2} a_{3} \ldots$ is the analogue of the usual decimal fraction, but writing numbers in base 3 . That is, for any sequence $a_{1}, a_{2}, a_{3}, \ldots$ with $a_{n} \in\{0,1,2\}$, by definition

$$
0 . a_{1} a_{2} a_{3} \cdots:=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} .
$$

Now let us construct the ternary fraction form of a random real number X via a sequence of fair coin tosses, such that we rule out the digit 1 . That is,

$$
a_{n}:=\left\{\begin{array}{l}
0, \text { if the } n \text {-th toss is tails } \\
2, \text { if the } n \text {-th toss is heads }
\end{array},\right.
$$

and setting $X=0 . a_{1} a_{2} a_{3} \ldots$ (ternary). In this way, X is a "uniformly" chosen random point of the famous middle-third Cantor set C defined as

$$
C:=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}, a_{n} \in\{0,2\}(n=1,2, \ldots)\right\} .
$$

Show that
(a) The distribution of X gives zero weight to every point - that is, $\mathbb{P}(X=x)=0$ for every $x \in \mathbb{R}$. (As a consequence, the cumulative distribution function of X is continuous.)
(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on \mathbb{R}.
5.5 Let V be a random vector in \mathbb{R}^{n} with an n-dimensional standard Gaussian distribution, meaning that it has density

$$
f\left(v_{1}, \ldots, v_{n}\right)=\frac{1}{\sqrt{2 \pi}^{n}} e^{-\frac{v_{1}^{2}+\cdots+v_{n}^{2}}{2}} .
$$

Think of V as the velocity vector of a particle with mass m, so the energy is $E=\frac{m}{2} V^{2}$. Calculate the distribution of the random variable E. (Meaning: calculate the distribution function and/or the density, and tell the name of the distribution.)
5.6 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a destination at random, uniformly out of the 10 floors, independently of the others. Let X denote the number of floors on which the elevator stops - i.e. the number of floors that were chosen by at least one person. Calculate the expectation and the variance of X. (hint: First notice that the distribution of X is hard to calculate. Find a way to calculate the expectation and the variance without that.)
5.7 Let $X=[0,1]$ and let μ be Lebesgue measure on X. Let $f(x)=x^{2}$. Describe the measure $f_{*} \mu$
a.) by calculating $\left(f_{*} \mu\right)([a, b])$ for every interval $[a, b] \subset \mathbb{R}$
b.) by giving the density of $f_{*} \mu$ with respect to Lebesgue measure.
5.8 Let $X=\left\{\left(a_{1}, a_{2}, \ldots\right) \mid a_{k} \in\{0,1\}\right.$ for every $\left.k\right\}$ be the set of $\{0,1\}$-sequences. Let μ be the measure on X for which

$$
\mu\left(\left\{\left(a_{1}, a_{2}, \ldots\right) \in X \mid a_{1}=b_{1}, \ldots, a_{N}=b_{N}\right\}\right)=\frac{1}{2^{N}}
$$

for every $b_{1}, \ldots, b_{N} \in\{0,1\}$. Let $f: X \rightarrow \mathbb{R}$ be defined as

$$
f\left(a_{1}, a_{2}, \ldots\right):=\sum_{k=1}^{\infty} \frac{a_{k}}{2^{k}}
$$

Describe the measure $f_{*} \mu$
a.) by calculating $\left(f_{*} \mu\right)([a, b])$ for every interval $[a, b] \subset \mathbb{R}$
b.) by giving the density of $f_{*} \mu$ with respect to Lebesgue measure.
5.9 Let λ be Lebesgue measure and χ be counting measure on \mathbb{R} (with the Borel σ-algebra). Show that λ does not have a density with respect to χ. (Hint: consider 1-element sets.)
5.10 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $A \in \mathcal{F}$. Define $X: \Omega \rightarrow \mathbb{R}$ as $X(\omega)=\mathbf{1}_{A}(\omega)$ and let $\mu=X_{*} \mathbb{P}$ be the distribution of X. Show that μ is absolutely continuous w.r.t counting measure, show that it also has a density. What is the density?
5.11 Let X be a discrete random variable and let μ be its distribution. Give the density of μ w.r.t. counting measure.

6 Convergence of sequences of functions

6.1 Consider the following measure spaces (X, μ) :
I. $X=[0,1], \mu$ is Lebesgue measure.
II. $X=[0, \infty), \mu$ is Lebesgue measure.
III. $X=\{1,2 \ldots, N\}, \mu$ is counting measure.
IV. $X=\{1,2 \ldots\}, \mu$ is counting measure.

Show examples of functions f_{1}, f_{2}, \ldots and f from X to \mathbb{R} such that f_{n} converges to f
a.) almost everywhere, but not in L^{1},
b.) in L^{1}, but not almost everywhere,
c.) in L^{1}, but not in L^{2},
d.) in L^{2}, but not in L^{1}.
6.2 The characteristic function of a random variable X is the function $\Psi: \mathbb{R} \rightarrow \mathbb{C}$ defined as $\Psi(t)=\mathbb{E}\left(e^{i t X}\right)$. Calculate the characteristic function of
(a) The Bernoulli distribution $B(p)$
(b) The "pessimistic geometric distribution with parameter p " - that is, the distribution μ on $\{0,1,2 \ldots\}$ with weights $\mu(\{k\})=(1-p) p^{k}(k=0,1,2 \ldots)$.
(c) The "optimistic geometric distribution with parameter p " - that is, the distribution ν on $\{1,2,3, \ldots\}$ with weights $\nu(\{k\})=(1-p) p^{k-1}(k=1,2 \ldots)$.
(d) The Poisson distribution with parameter λ - that is, the distribution η on $\{0,1,2 \ldots\}$ with weights $\eta(\{k\})=e^{-\lambda} \frac{\lambda^{k}}{k!}(k=0,1,2 \ldots)$.
(e) The exponential distribution with parameter λ - that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{\lambda}(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, \text { if } x>0 \\
0, \text { if not }
\end{array} .\right.
$$

6.3 For a real values random variable X, the characteristic function of X is $\psi_{X}: \mathbb{R} \rightarrow \mathbb{C}$ defined as $\psi_{X}(t):=\mathbb{E}\left(e^{i t X}\right)$, where $i \in \mathbb{C}$ is the imaginary unit. Show that $\psi_{X}(t)$ exists for every $t \in \mathbb{R}$.
6.4 For a probability distribution ν on \mathbb{R}, the characteristic function of ν is $\psi_{\nu}: \mathbb{R} \rightarrow \mathbb{C}$ defined as $\psi_{\nu}(t):=\int_{\mathbb{R}} e^{i t x} \mathrm{~d} \nu(x)$, where $i \in \mathbb{C}$ is the imaginary unit. Show that $\psi_{\nu}(t)$ exists for every $t \in \mathbb{R}$.
6.5 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $X: \Omega \rightarrow \mathbb{R}$ be a random variable and let $\nu=X_{*} \mathbb{P}$ be its distribution. Show that $\psi_{X}=\psi_{\nu}$, where ψ_{X} and ψ_{μ} are the characteristic functions defined in exercises 3 and 4.
6.6 Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ almost everywhere. (That is, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ-measure zero.) Assume furthermore that the f_{n} admit a common integrable dominating function: there exists a $g: \Omega \rightarrow \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \mathrm{~d} \mu<\infty$. Then (all the f_{n} and also f are integrable and)

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Use this theorem to prove the following:
a.) Theorem 3 (Continuity of the characteristic function, 1) For any real valued random variable X, its characteristic function $\psi_{X}(t)=\mathbb{E}\left(e^{i t X}\right)$ is continuous.
b.) Theorem 4 (Continuity of the characteristic function, 2) For any probability distribution ν on \mathbb{R}, its characteristic function $\psi_{\nu}(t)=\int_{\mathbb{R}} e^{i t x} \mathrm{~d} \nu(x)$ is continuous.
c.) Theorem 5 (Differentiability of the characteristic function, 1) Let X be a real valued random variable, its characteristic function $\psi_{X}(t)=\mathbb{E}\left(e^{i t X}\right)$. If X is integrable, then ψ_{X} is differentiable.
d.) Theorem 6 (Differentiability of the characteristic function, 2) Let ν be a probability distribution on \mathbb{R}, its characteristic function $\psi_{\nu}(t)=\int_{\mathbb{R}} e^{i t x} \mathrm{~d} \nu(x)$. If $\mathbb{E} \nu \in \mathbb{R}$, then ψ_{ν} is differentiable.
e.) Theorem 7 (Continuous differentiability of the characteristic function, 1) Let X be a real valued random variable, its characteristic function $\psi_{X}(t)=\mathbb{E}\left(e^{i t X}\right)$. If X is integrable, then ψ_{X}^{\prime} is continuous.
f.) Theorem 8 (Continuous differentiability of the characteristic function, 2) Let ν be a probability distribution on \mathbb{R}, its characteristic function $\psi_{\nu}(t)=\int_{\mathbb{R}} e^{i t x} \mathrm{~d} \nu(x)$. If $\mathbb{E} \nu \in \mathbb{R}$, then ψ_{ν}^{\prime} is continuous.
6.7 Exchangeability of integral and limit. Consider the sequences of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and $g_{n}:[0,1] \rightarrow \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$, such that $f_{n}(x) \rightarrow$ $f(x)$ and $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x \in[0,1]$? What is $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right)$ and $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} g_{n}(x) d x\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
(a)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { if } 1 / n \leq x \leq 2 / n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Write n as $n=2^{k}+l$, where $k=0,1,2 \ldots$ and $l=0,1, \ldots, 2^{k}-1$ (this can be done in a unique way for every n). Now let

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{l}{2^{k}} \leq x<\frac{l+1}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

6.8 Exchangeability of integrals. Consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}1 & \text { if } \quad 0<x, 0<y \text { and } 0 \leq x-y \leq 1 \\ -1 & \text { if } \quad 0<x, 0<y \text { and } 0<y-x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y$ and $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x$. What's the situation with the Fubini theorem?
6.9 Weak convergence and densities. Prove the following

Theorem 9 Let μ_{1}, μ_{2}, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f_{1}, f_{2}, \ldots and f, respectively. Denote their distribution functions by F_{1}, F_{2}, \ldots and F, respectively. Suppose that $f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)$ for every $x \in \mathbb{R}$. Then $F_{n}(x) \xrightarrow{n \rightarrow \infty} F(x)$ for every $x \in \mathbb{R}$.
(Hint: Use the Fatou lemma to show that $F(x) \leq \lim _{\inf _{n \rightarrow \infty}} F_{n}(x)$. For the other direction, consider $G(x):=1-F(x)$.)

7 Linear spaces, norm, inner product

7.1 Which of the spaces V below are linear spaces and why?
a.) $V:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}=0\right\}$, with the usual addition and the usual multiplication by a scalar.
b.) $V:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}=3\right\}$, with the usual addition and the usual multiplication by a scalar.
c.) $V:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1} \geq 0\right\}$, with the usual addition and the usual multiplication by a scalar.
d.) $V:=\{f:(0,1) \rightarrow \mathbb{R} \mid f$ is continuous and $|f| \leq 100\}$, with the usual addition and the usual multiplication by a scalar.
e.) $V:=\{f:(0,1) \rightarrow \mathbb{R} \mid f$ is continuous and bounded $\}$, with the usual addition and the usual multiplication by a scalar.
7.2 On the linear spaces V and W below, which of the given transformations $T: V \rightarrow W$ are linear and why?
a.) $V=\mathbb{R}^{3}$, $W=\mathbb{R}^{2}, T\left(\left(x_{1}, x_{2}, x_{3}\right)\right):=\left(x_{1}, x_{2}+x_{3}\right)$.
b.) $V=\mathbb{R}^{3}, W=\mathbb{R}^{2}, T\left(\left(x_{1}, x_{2}, x_{3}\right)\right):=\left(x_{1}, 1+x_{3}\right)$.
c.) $V=\mathbb{R}^{3}$, $W=\mathbb{R}^{2}, T\left(\left(x_{1}, x_{2}, x_{3}\right)\right):=\left(x_{1}, x_{2} x_{3}\right)$.
d.) $V:=\{f:(-1,1) \rightarrow \mathbb{R} \mid f$ differentiable $\}$, with the usual addition and the usual multiplication by a scalar; $W:=\mathbb{R} ; T(f):=f^{\prime}(0)$.
7.3 On the linear spaces V below, which of the given two-variable functions $B: V \rightarrow \mathbb{R}$ are bilinear forms? Which ones are symmetric and positive definite? Why?
a.) $V=\mathbb{R}^{3}, B\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right):=x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}$
b.) $V=\mathbb{R}^{2}, B\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):=x_{1} x_{2}+y_{1} y_{2}$
c.) $V=\mathbb{R}^{2}, B\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}$
d.) $V:=\{f:[-1,1] \rightarrow \mathbb{R} \mid f$ is differentiable $\}$, with the usual addition and the usual multiplication by a scalar; $B(f, g):=\int_{-1}^{1} x^{2} f(x) g(x) \mathrm{d} x$
e.) $V:=\{f:[-1,1] \rightarrow \mathbb{R} \mid f$ is differentiable $\}$, with the usual addition and the usual multiplication by a scalar; $B(f, g):=\int_{-1}^{1} x f(x) g(x) \mathrm{d} x$
f.) $V:=\{f:[-1,1] \rightarrow \mathbb{R} \mid f$ is differentiable $\}$, with the usual addition and the usual multiplication by a scalar; $B(f, g):=\int_{-1}^{1} f^{\prime}(x) g(x) \mathrm{d} x$
7.4 Let V be an inner product space. Show that the function $N: V \rightarrow \mathbb{R}$ defined as $N(x):=$ $\sqrt{\langle x, x\rangle}$ is indeed a norm (usually denoted as $\|x\|=N(x)$).

8 Riesz representation theorem

8.1 Let V be an inner product space, and let d denote the natural metric on it (defined as $d(x, y):=\|x-y\|)$. Let $x \in V$, let $D \subset V$ be convex, and assume that $d(x, D)=R>0$ (where $d(x, D):=\inf \{d(x, y) \mid y \in D\}$ is the distance of x and D). Find a number $C \in \mathbb{R}$ (possibly depending on R) such that if $u, v \in D, d(x, u) \leq R+\varepsilon$ and $d(x, v) \leq R+\varepsilon$ with some $\varepsilon<R$, then $d(u, v) \leq C \sqrt{\varepsilon}$. (Hint: estimate the length of the longest line segment that fits in the shell $\{y \in V \mid R \leq d(x, y) \leq R+\varepsilon\}$. A two-dimensional drawing will help.)
8.2 Let V be an inner product space, and let d denote the natural metric (defined as $d(x, y):=$ $\|x-y\|)$.
a.) Let $a, c, x \in V$ with $x \neq c$. Calculate the distance of a from the line $\{c+t(x-c) \mid t \in \mathbb{R}\}$ using $\|a-c\|,\|x-c\|$ and $\langle a-c, x-c\rangle$.
b.) Let $E \subset V$ be a linear subspace and let $a \in V$. Suppose that $c \in E$ is such that $d(a, x) \geq d(a, c)$ for every $x \in E$ - which means that c is the point in E which is closest to a. Prove that E is orthogonal to $a-c$, meaning that $\langle x, a-c\rangle=0$ for every $x \in E$.
8.3 Let V be an inner product space over \mathbb{R} and let $f: V \rightarrow \mathbb{R}$ be a linear form. Let $E:=\{y \in$ $V \mid f(y)=0\}$ be the null-space of f. Suppose that $f(a)=1, c \in E$ and $a-c$ is orthogonal to E, meaning $(a-c) y=0$ for every $y \in E$. Now, for any $x \in V$, find the $\lambda \in \mathbb{R}$ for which $x_{1}:=x-\lambda(a-c) \in E$. Use this to get the relation between $f(x)$ and $(a-c) x$.
8.4 Represent the following functions $f: V \rightarrow \mathbb{R}$ as multiplication by a fixed vector, whenever this is possible due to the Riesz representation theorem.
a.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{5}$ (evaluation at 5)
b.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{6}-x_{5}$ (discrete derivative at 5).
c.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{6}-2 x_{5}+x_{4}$ (discrete second derivative at 5).
d.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{100} x(i)$.
e.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{\infty} x(i)$.
f.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{\infty} x^{2}(i)$.
g.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x\left(\frac{1}{2}\right)$ (evaluation at $\frac{1}{2}$).
h.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x^{\prime}\left(\frac{1}{2}\right)$ (derivative at $\frac{1}{2}$).
i.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=\int_{0.2}^{0.7} x(t) \mathrm{d} t$.
j.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is differentiable $\}$, with the inner product $x \cdot y:=\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x^{\prime}\left(\frac{1}{2}\right)$.
k.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is continuous $\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x\left(\frac{1}{2}\right)$.
1.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is continuous $\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=\int_{0.2}^{0.7} x(t) \mathrm{d} t$.

9 Radon-Nikodym theorem

9.1 Let (X, \mathcal{F}) be a measurable space and let μ, ν be σ-finite measures on it. Show that there is a countable partition $X=\bigcup_{i} A_{i}$ such that $\mu\left(A_{i}\right)<\infty$ and $\nu\left(A_{i}\right)<\infty$ for every i. Use this to show that the special case of the Radon-Nikodym theorem for finite measures implies the general theorem (for σ-finite measures).
9.2 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $X: \Omega \rightarrow \mathbb{R}^{+}$be integrable and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ-algebra. Define $\nu: \mathcal{G} \rightarrow \mathbb{R}^{+}$by $\nu(A):=\int_{A} X d \mathbb{P}$ (whenever $A \in \mathcal{G}$). Check that ν is a measure on (Ω, \mathcal{G}). Show that Lebesgue measure on \mathbb{R} is absolutely continuous w.r.t. counting measure (on \mathbb{R}), but it does not have a density. Why doesn't this contradict the Radon-Nikodym theorem?

10 Conditional expectation

10.1 Let X be a nonempty set and let $\mathcal{F}_{i} \subset 2^{X}$ be a σ-algebra for every $i \in I$, where I is some index set. I may be arbitrary (possibly much bigger that countable), but we assume $I \neq \emptyset$. Show that $\mathcal{F}:=\bigcap_{i \in I} \mathcal{F}_{i}$ is also a σ-algebra. (Note that the assumption $I \neq \emptyset$ is important.)
10.2 Let (Ω, \mathcal{F}) be a probability space and let $X: \Omega \rightarrow \mathbb{R}$ be (Borel-)measurable. Let $\left(\mathcal{G}_{i}\right)_{i \in I}$ be the family of all σ-algebras over Ω such that X is \mathcal{G}_{i}-measurable, and let $\mathcal{G}:=\bigcap_{i \in I} \mathcal{G}_{i}$. Show that \mathcal{G} is the smallest σ-algebra for which X is measurable. (In what sense exactly is it the smallest?)
10.3 Let (Ω, \mathcal{F}) be a probability space, let $X: \Omega \rightarrow \mathbb{R}$ be $(\mathcal{F}, \mathcal{B})$-measurable, where \mathcal{B} is the Borel σ-algebra on \mathbb{R}. Let $\sigma(X)$ be the smallest σ-algebra on Ω for which X is measurable. (This exists by the previous exercise.) This is called the σ-algebra generated by X. Show that

$$
\sigma(X)=\left\{X^{-1}(B) \mid B \in \mathcal{B}\right\}
$$

10.4 Let (Ω, \mathcal{F}) be a probability space, and let $\mathcal{G}_{1}, \mathcal{G}_{2} \subset \mathcal{F}$ be sub- σ-algebras. We say that \mathcal{F}_{1} and \mathcal{F}_{1} are independent if any $A \in \mathcal{G}_{1}$ and $B \in \mathcal{G}_{2}$ are independent. Show that if the random variables X and Y are independent, then $\sigma(X)$ and $\sigma(Y)$ are independent.
10.5 Let (Ω, \mathcal{F}) be a probability space, and let $\mathcal{G}_{1}, \mathcal{G}_{2} \subset \mathcal{F}$ be sub- σ-algebras. Let X and Y be random variables, $X \in \mathcal{G}_{1}, Y \in \mathcal{G}_{2}$. Show that if $\sigma(X)$ and $\sigma(Y)$ are independent, then X and Y are independent.
10.6 Show that if X is a random variable, $f: \mathbb{R} \rightarrow \mathbb{R}$ measurable and $Y=f(X)$, then $\sigma(Y) \subset$ $\sigma(X)$. Show an example when equality holds, and an example when not.
10.7 Show that if X, Y are independent random variables and $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are measurable, then $f(X)$ and $g(Y)$ are also independent.
10.8 Show that the random variables $X, Y: \Omega \rightarrow \mathbb{R}$ are independent if and only if the (joint) distribution of the pair (X, Y) (which is a probability measure on \mathbb{R}^{2}) is the product of the distributions of X and Y.
10.9 Show that if X and Y are independent and integrable, then $\mathbb{E}(X Y)=\mathbb{E} X \mathbb{E} Y$.
10.10 Show that if the random variable X is independent of the σ-algebra \mathcal{G}, then $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E} X$.
10.11 Let $\Omega=\{a, b, c\}$ and \mathbb{P} the uniform measure on it. Let $X=\mathbf{1}_{\{c\}}$ and let $\mathcal{G}=\{\emptyset,\{a\},\{b, c\}, \Omega\}$. Calculate $\mathbb{E}(X \mid \mathcal{G})$.
10.12 We roll two fair dice and let X, Y be the numbers rolled. Calculate $\mathbb{E}(X \mid X+Y)$.
10.13 Let $\Omega=[0,1]^{2}$ and let \mathbb{P} be Lebesgue measure on Ω. Let $X, Y: \Omega \rightarrow \mathbb{R}$ be defined as $X(u, v)=u$ and $Y(u, v)=\sqrt{u+v}$. Calculate $\mathbb{E}(Y \mid X)$.
10.14 Let U and V be independent random variables, uniformly distributed on $[0,1]$. Calculate $\mathbb{E}(\sqrt{U+V} \mid U)$.
10.15 Let U and V be independent random variables, uniformly distributed on $[0,1]$. Calculate $\mathbb{E}(U+V \mid U-V)$.
10.16 Let U and V be independent random variables, uniformly distributed on $[0,1]$. Calculate $\mathbb{E}(\sqrt{U+V} \mid U-V)$.
10.17 Let X and Y be independent standard Gaussian random variables. Let $U=X+Y$ and $V=2 X-Y$. Calculate $\mathbb{E}(V \mid U)$. (Hint: if W is independent of U, then $\mathbb{E}(W \mid U)=\mathbb{E} W$. If you choose $\lambda \in \mathbb{R}$ cleverly, then $W:=V-\lambda U$ will be independent of U. (Since U and W are jointly Gaussian, to show independence it's enough to check that $\operatorname{Cov}(U, W)=0$.) Then write $V=\lambda U+W$.)

