3.1 Solve the following initial value problems, and also find the $\operatorname{limit} \lim _{t \rightarrow \infty} y(t)=$?
a.) $y^{\prime \prime}+5 y^{\prime}+6 y=0, \quad y(0)=2, y^{\prime}(0)=3$
b.) $y^{\prime \prime}+y^{\prime}-2 y=0, \quad y(0)=1, y^{\prime}(0)=1$
c.) $y^{\prime \prime}+4 y^{\prime}+3 y=0, \quad y(0)=2, y^{\prime}(0)=-1$
d.) $y^{\prime \prime}+8 y^{\prime}-9 y=0, \quad y(1)=1, y^{\prime}(1)=0$
3.2 Consider the following initial value problem:

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0, \quad y(0)=2, y^{\prime}(0)=\beta
$$

where $\beta>0$.
a.) Solve the initial value problem.
b.) As a function of β, find the coordinates $\left(t_{m}, y_{m}\right)$ of the maximum point of the solution.
c.) Give the smallest possible value of β, for which $y_{m} \geq 4$.
d.) Describe the behaviour of t_{m} and y_{m} as $\beta \rightarrow \infty$.
3.3 Using the Euler formula, give the value of the following powers (with complex exponents) in the algebraic form $a+b i(a, b \in \mathbb{R})$.
a.) $e^{-3+6 i}$
b.) $e^{1+2 i}$
c.) $e^{i \pi}$
d.) 2^{1-i}
3.4 Solve the following intial value problems:
a.) $16 y^{\prime \prime}-8 y^{\prime}+145 y=0, \quad y(0)=-2, y^{\prime}(0)=1$
b.) $y^{\prime \prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=1$
c.) $y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(\pi / 2)=0, y^{\prime}(\pi / 2)=2$
d.) $y^{\prime \prime}+2 y^{\prime}+2 y=0, \quad y(\pi / 4)=2, y^{\prime}(\pi / 4)=-2$
3.5 Solve the following intial value problems:
a.) $y^{\prime \prime}-y^{\prime}+0.25 y=0, \quad y(0)=2, y^{\prime}(0)=1 / 3$
b.) $9 y^{\prime \prime}-12 y^{\prime}+4 y=0, \quad y(0)=2, y^{\prime}(0)=-1$
c.) $9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=-1, y^{\prime}(0)=2$
d.) $y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(-1)=2, y^{\prime}(-1)=1$
3.6 Consider the following initial value problem:

$$
4 y^{\prime \prime}+12 y^{\prime}+9 y=0, \quad y(0)=1, y^{\prime}(0)=-4
$$

a.) Solve the initial value problem and sketch the solution on the interval $0 \leq t \leq 5$.
b.) Find the zeroes of the solution.
c.) Find the coordinates $\left(t_{0}, y_{0}\right)$ of the minimum point of the solution.
d.) Change the second initial value to $y^{\prime}(0)=\beta$, and give the solution as a function of β. Now find the critical value of β that separates those solutions, which are always positive, from those that become negative.

