Math A3 English, practice class 3, autumn 2010

- 3.1 Solve the following initial value problems, and also find the limit $\lim_{t \to \infty} y(t) = ?$
 - a.) y'' + 5y' + 6y = 0, y(0) = 2, y'(0) = 3b.) y'' + y' - 2y = 0, y(0) = 1, y'(0) = 1c.) y'' + 4y' + 3y = 0, y(0) = 2, y'(0) = -1d.) y'' + 8y' - 9y = 0, y(1) = 1, y'(1) = 0
- 3.2 Consider the following initial value problem:

$$y'' + 5y' + 6y = 0, \quad y(0) = 2, \ y'(0) = \beta,$$

where $\beta > 0$.

- a.) Solve the initial value problem.
- b.) As a function of β , find the coordinates (t_m, y_m) of the maximum point of the solution.
- c.) Give the smallest possible value of β , for which $y_m \ge 4$.
- d.) Describe the behaviour of t_m and y_m as $\beta \to \infty$.
- 3.3 Using the Euler formula, give the value of the following powers (with complex exponents) in the algebraic form a + bi $(a, b \in \mathbb{R})$.
 - a.) e^{-3+6i}
 - b.) e^{1+2i}
 - c.) $e^{i\pi}$
 - d.) 2^{1-i}

3.4 Solve the following initial value problems:

a.) 16y'' - 8y' + 145y = 0, y(0) = -2, y'(0) = 1b.) y'' + 4y = 0, y(0) = 1, y'(0) = 1c.) y'' - 2y' + 5y = 0, $y(\pi/2) = 0$, $y'(\pi/2) = 2$ d.) y'' + 2y' + 2y = 0, $y(\pi/4) = 2$, $y'(\pi/4) = -2$

3.5 Solve the following intial value problems:

- a.) y'' y' + 0.25y = 0, y(0) = 2, y'(0) = 1/3
- b.) 9y'' 12y' + 4y = 0, y(0) = 2, y'(0) = -1
- c.) 9y'' + 6y' + y = 0, y(0) = -1, y'(0) = 2
- d.) y'' + 4y' + 4y = 0, y(-1) = 2, y'(-1) = 1
- 3.6 Consider the following initial value problem:

$$4y'' + 12y' + 9y = 0, \quad y(0) = 1, \ y'(0) = -4$$

- a.) Solve the initial value problem and sketch the solution on the interval $0 \le t \le 5$.
- b.) Find the zeroes of the solution.
- c.) Find the coordinates (t_0, y_0) of the minimum point of the solution.
- d.) Change the second initial value to $y'(0) = \beta$, and give the solution as a function of β . Now find the critical value of β that separates those solutions, which are always positive, from those that become negative.