Exam sheet

Mathematics, Part 1: Probability Theory and Applications
 Final Exam

January ???????????????, 2012
Time: 70 minutes

1. (3 points) Define the notion of consistent estimation. Show an example for consistent estimator.
2. (5 points) In 2015 a local internet service provider serves 12000 users. In the peak hours based on their subscriptions and behaviors the users fall into one of the following three categories:

- beginner: the bandwidth consumption is 100 Mbps in average but no more than 200 Mbps ;
- advanced: the bandwidth consumption is 160 Mbps in average but no more than 280 Mbps ;
- power user: the bandwidth consumption is 250 Mbps in average but no more than 400 Mbps ;

In these groups there are $3500,6500,2000$ users respectively. Find the minimal bandwidth capacity C such that the probability that the capacity C is not enough is less than 10^{-6}.
3. (6 points) Let $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a realization of the i.i.d. sample X_{1}, \ldots, X_{n} from exponential distribution with parameter λ, where $\lambda \in(0, \infty)$. Find the maximum likelihood estimation of λ.
4. (11 points) Passengers arrive at a train station. The waiting room has finite capacity of 4 passengers. Let $X(t)$ be the number of passengers in the room at time t. Assume that $X(t), t \geq 0$ is a five state continuous time Markov chain with transition probability matrix

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Assume that once the number of waiting clients is $0,1,2,3,4$ then the waiting time until the next jump has distribution $\operatorname{Exp}(1), \operatorname{Exp}(4), \operatorname{Exp}(4), \operatorname{Exp}(4), \operatorname{Exp}(2)$, respectively.
(a) Find the graph representation of the Markov chain.
(b) Find the percentage of time that number of waiting passengers is j, for $j=0,1,2,3,4$.
(c) The cost rate of staying in state i is $i+2, i=0,1,2, \ldots, 4$. Find the long-run average cost of the maintenance of the waiting room.

