Stochastics exam

27 January 2015. 13:00
Advanced Mathematics for Electrical Engineers B
Working time: ≤ 60 minutes.

1. (7 points) In a probabilistic computer algorithm every process starts a random number of "child processes" before it quits. This random number of child processes is independent of the past of the algorithm, and has the following distribution: | k | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $\mathbb{P}(k$ children $)$ | $1 / 3$ | $1 / 3$ | $1 / 3$ | . Initially, there is a single process, called the "root process". The algorithm completes succesfully when every process quits.

a.) (2 points) What is the probability that the children of the root process have no children? (That is, the 2 nd generation of processes is already empty?)
b.) (3 points) What is the probability that the algorithm ever completes succesfully?
c.) (2 points) Every process takes 1 millisecond of processor time. What is the expectation of the total time it takes for the algorithm to complete?
2. (8 points) In an electric network there are 10000 consumers. 9000 of them use $32 A$ fuses, so their power consumption can be no more than $32 \mathrm{~A} \times 230 \mathrm{~V}=7360 \mathrm{~W}$. The other 1000 consumers have 100 A fuses, so their power consumption can be at most $100 \mathrm{~A} \times 230 \mathrm{~V}=23000 \mathrm{~W}$. According to the experience of the network operator, (in peak hours) the average total consumption of the consumers is $3.2 \cdot 10^{7} \mathrm{~W}$. Give a large deviation estimate for the probability that the total consumption (at some given peak time) is at least $3.5 \cdot 10^{7} \mathrm{~W}$.
3. (10 points) Let $X_{n}(n=1,2, \ldots)$ be a discrete time Markov chain on the state space $S=\{1,2,3\}$ with the transition probability matrix

$$
P=\left(\begin{array}{lll}
1 / 2 & 1 / 3 & 1 / 6 \\
1 / 6 & 1 / 2 & 1 / 3 \\
1 / 3 & 1 / 6 & 1 / 2
\end{array}\right) .
$$

a.) (1 point) Draw the graph representation of the Markov chain.
b.) (2 points) Calculate the conditional probability $\mathbb{P}\left(X_{2}=3 \mid X_{0}=1\right)$.
c.) (3 points) Find the stationary distributions of the Markov chain.
d.) (2 points) What is the approximate value of the probabiilty $\mathbb{P}\left(X_{50}=3 \mid X_{0}=1\right)$? Why?
e.) (2 points) Let the observable $f: S \rightarrow \mathbf{R}$ be given by $f(1)=1, f(2)=4, f(3)=9$. What is the limit (as $N \rightarrow \infty$) of the time average

$$
\frac{f\left(X_{0}\right)+f\left(X_{1}\right)+\cdots+f\left(X_{N-1}\right)}{N}
$$

and why?

