2-nd resit of midterm exam 1

19 December 2014. 10:00
Advanced Mathematics for Electrical Engineers B, Stochastics part
Working time: 70 minutes. Every exercise is worth 7 points.

1. A certain kind of plant lives for exactly one year. Before dying, it leaves a random number X of offspring, independently of the past and of other members of the population. The distribution of the random variable X is

k	0	1	2	3
$\mathbb{P}(X=k)$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

At time 0 (in the zero-th year) there is a single plant in a population.
Let Z_{k} denote the size of the k-th generation $(k=0,1,2, \ldots)$ (that is, the number of plants in the k-th year). Model the system by a dicrete time branching process.
a.) What is the generating function of Z_{2} ?
b.) What is the expectation of Z_{10} ?
c.) How much is the probability $\mathbb{P}\left(Z_{3}=0\right)$?
d.) What is the probability that the population dies out (that is, one of the generations will already be empty)? (Hint: $z^{3}+z^{2}-3 z+1=(z-1)\left(z^{2}+2 z-1\right)$.)
2. On an airplane, 300 passengers will travel, whose weights are random and independent. The expectation of the total weight of all passengers is known to be 21000 kg . The weight of each passenger is at least 10 kg and at most 150 kg .
Let K be the maximum weight (of passengers) that the airplane can lift (measured in kilograms), How much should K be, if we want to be $1-10^{-8}$ sure that the total weight of passengers doesn't exceed that? Give a usable bound!
3. Let X_{n} be a Markov chain of the state space $S=\{1,2,3,4\}$ with the following rule:

- with probability $\frac{2}{3}$ the system jumps 1 step "up" (unless it is already at 4: if it is at 4 , it stays there).
- with probability $\frac{1}{3}$ the system jumps 1 step "down" (unless it is already at 1 : if it is at 1 , it stays there).
a.) Draw the transition graph of the Markov chain.
b.) Give the transition probability matrix of the Markov chain.
c.) What is the conditional probability $\mathbb{P}\left(X_{4}=3 \mid X_{0}=1\right)$?
d.) What is the approximate probability of $\left\{X_{100}=4\right\}$?
e.) What is the average of X_{n} on the long run?

