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1. INTRODUCTION 1

In the subsequent sections we give an overview of the results of the PhD thesis "Statistical
Analysis of Hidden Markov Models". We start with a short introduction of the considered
topics. Then we describe the investigated model and the results.

1 Introduction
A Hidden Markov Model (HMM) is a discrete-time �nite-state homogenous Markov chain
observed through a discrete-time memoryless invariant channel. The channel is characterized
by a �nite set of transition densities indexed by the states of the Markov chain. These
densities may be members of any parametric family such as Gaussian, Poisson, etc. The
initial distribution of the Markov chain, the transition matrix, and the densities of the
channel may depend on some parameter that characterizes the HMM.

Hidden Markov Models have become a basic tool for modelling stochastic systems with
a wide range of applications in such diverse areas as nano-tecnology [31], telecommunication
[52], speech recognition [30], switching systems [16, 20], �nancial mathematics [13] and
protein research [53]. A good introduction to HMM-s with recent results is given in [15].

The estimation of the dynamics of a Hidden Markov Model is a basic problem in applica-
tions. The �rst fundamental result is due to Baum and Petrie for �nite state Markov chains
with �nite-range read-outs [5]. Their analysis relies on the Shannon-Breiman-McMillan the-
orem, and exploits the �niteness of both the state-space X and the read-out space Y . Strong
consistency of the maximum-likelihood estimator for �nite-state and binary read-out HMM-s
has been established by Araposthatis and Marcus in [1]. An important technical tool, the
exponential forgetting of the predictive �lter has also been established. Strong consistency
of the maximum-likelihood estimator for continuous read-out space has been �rst proven by
Leroux in [41] using the subadditive ergodic theorem. An extensive study of HMM-s with
�nite state-space and continuous read-out-space has been carried out by LeGland and Mevel
in [40] and [39] using the theory of geometric ergodicity for Markov chains. These results
have been extended to compact state space and continuous read-out space by Douc and
Matias in [9].

A key element in the statistical analysis of HMM-s is a strong law of large numbers for
the log-likelihood function. All the listed tools are quite powerful and applicable under very
weak conditions to derive strong laws of large numbers. The most fertile approach seems
to be that of LeGland and Mevel, based on the use of geometric ergodicity, and leading to
results such as CLT or convergence of recursive estimators.

However, it is known from the statistical theory of linear stochastic systems that these
classical results of statistics are not always su�ciently informative to answer natural ques-
tions like the performance of adaptive predictors. This has been pointed out by Gerencsér
and Rissanen in [28], see also [26]. In fact, the performance analysis of adaptive predictors
and controllers has lead prompted research in deriving strong approximation results for es-
timators of linear stochastic systems. For o�-line estimators the strongest result on such a
strong approximation is given in [24].
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A main technical tool for deriving these results is the concept of L-mixing processes, de-
veloped in [23], a generalization of what is known as exponentially stable process, introduced
by Caines and Rissanen in [48] and Ljung [42]. This is a concept which, in its motivation,
strongly exploits the stability and the linear algebraic structure of the underlying stochastic
system.

A simple, but important observation is that using a random mapping representation of
HMM-s (which goes back to Borkar [8], see also [33]), the concept of L-mixing naturally
extends for HMM-s. Thus e.g. if the state-process satis�es the Doeblin-condition, then any
�xed bounded measurable function of a Hidden Markov process will result in an L-mixing
process, see Theorem 3.1 below.

2 Preliminaries
2.1 Hidden Markov Models
We consider Hidden Markov Models with a general state space X and a general observation
or read-out space Y . Both are assumed to be Polish spaces, i.e. they are complete, separable
metric spaces, equipped with their respective Borel-�elds.

De�nition 2.1 The pair (Xn, Yn) is a Hidden Markov process if (Xn) is a homogenous
Markov process with state space X and the observation sequence (Yn) is conditionally inde-
pendent and identically distributed given the σ-�eld generated by the process (Xn).

To illustrate the basic concepts let the state space of the Hidden Markov Model be �nite
now, i.e. |X | = N . The results for general compact state space are discussed in Section 4.2.

Let Q∗ be the transition probability matrix of the unobserved Markov process (Xn), i.e.

Q∗
ij = P (Xn+1 = j|Xn = i),

where ∗ indicates that we take the true value of the corresponding unknown quantity.
Throughout the dissertation we deal with parametric problems, i.e. the unknown quan-
tities depend on a parameter. The true value of the parameter (or the unknown quantities)
is the one which is used to generate the process.

The read-outs will be de�ned by taking the following conditional densities:

P (Yn ∈ dy|Xn = x) = b∗x(y)λ(dy), (1)

where λ is a �xed nonnegative, σ-�nite measure.
A key quantity in estimation theory is the predictive �lter de�ned by

pj
n+1 = P (Xn+1 = j|Yn, . . . , Y0).
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Writing pn+1 = (p1
n+1, . . . , p

N
n+1)

T , we know from [5] that the �lter process satis�es the Baum-
equation

pn+1 = π(QT B(Yn)pn), (2)
with initial condition p0 = q, where Q ∈ RN×N is a stochastic matrix, B(y) = diag(bi(y)) is
a collection of conditional probabilities, and q ∈ RN is a probability vector, i.e. qi ≥ 0 for
i = 1, . . . N and

∑N
i=1 qi = 1.

We will take an arbitrary probability vector q as initial condition, and the solution of the
Baum equation will be denoted by pn(q).

From the statistical point of view it is crucial whether the Baum equation is exponentially
stable, i.e. the distance between iterates pn(q) and pn(q′) goes to zero exponentially fast,
where q, q′ are arbitrary initializations. This has been established in [40] for continuous
read-outs under appropriate conditions.

Proposition 2.1 Assume that Q > 0 and bx(y) > 0 for all x, y. Let q, q′ be any two
initializations. Then for some 0 < δ < 1,

‖pn(q)− pn(q′)‖TV ≤ C(1− δ)n‖q − q′‖TV , (3)

where ‖ ‖TV denotes the total variation norm.

Let D be a non-empty, open subset of Rr. Consider the following estimation problem:
let Q(θ) and b(θ) be parameterized by θ ∈ D, and let

Q∗ = Q(θ∗), b∗ = b(θ∗).

Usually the entries of Q are included in θ.
A standard step in proving consistency of the maximum likelihood estimator is to show

that
lim

N→∞
1

N
log p(y0, . . . yN , θ) (4)

exists almost surely (uniformly in θ), see [42].
The limit of (4) was investigated in various setup in the literature, see [4], [41], [20], [34],

[9], [10].

2.2 L-mixing processes
In this section an overview of L-mixing processes is presented. The concept of L-mixing
introduced by László Gerencsér [23] seemed to be a very powerful tool in the analysis of
linear stochastic systems. Establishing a connection between HMM-s and linear stochastic
systems this technique became the main technical tool analyzing Hidden Markov Models in
this thesis. Here we give the de�nition of L-mixing:

Let a probability space (Ω,F , P ) be given. Consider an Rm-valued stochastic process
(Xn), n ≥ 0 de�ned on (Ω,F , P ). From now on we do not make explicit reference to
(Ω,F , P ) any more.
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De�nition 2.2 We say that the stochastic process (Xn), n ≥ 0 is M-bounded if for all
1 ≤ q < ∞

Mq(x) = sup
n≥0

E
1
q |Xn|q < ∞.

If (Xn) is M -bounded we shall also write Xn = OM(1). Similarly if cn is a positive sequence
we write Xn = OM(cn) if Xn/cn = OM(1).

Let (Fn), n ≥ 0 be a family of monotone increasing σ-�elds and (F+
n ), n ≥ 0 be a

monotone decreasing family of σ-�elds. We assume that for all n ≥ 0, Fn and F+
n are

independent.
De�nition 2.3 A stochastic process (Xn), n ≥ 0 is L-mixing with respect to (Fn,F+

n ), if it
is Fn-adapted, M-bounded, and for 1 ≤ q < ∞ and τ ∈ Z+

γq(τ) = sup
n≥τ

E
1
q |Xn − E(Xn|F+

n−τ )|q

is such that
Γq(x) =

∞∑
τ=0

γq(τ) < ∞.

3 Exponentially stable systems
3.1 Representation of Markov processes
In Section 3.1 we give an overview of the representation of Markov chains following Borkar,
see [8], then give some useful statement on the relationship between this representation and
the Doeblin condition, see [7]. Using these techniques we prove the following lemma:

Lemma 3.1 Assume that the Doeblin-condition holds for the Markov chain (Xn). Then the
Doeblin-condition holds for (Xn, Yn) as well.

3.2 Markov chains and L-mixing processes
Consider an input-output system as follows: Let the input process be a Markov chain which
satis�es the Doeblin condition and the output process is generated through a bounded mea-
surable function. Then the Doeblin condition is not satis�ed for the output process. The
following theorem states that the output process is L-mixing.

Theorem 3.1 Let (Xn) be a Markov chain with state space X , where X is a Polish space,
and assume that the Doeblin condition is valid. Furthermore let g : X −→ R be a bounded,
measurable function. Then the process

Un = g(Xn)

is L-mixing.
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3.3 Exponentially stable random mappings I.
Now we formulate a general concept of exponential stability motivated by Proposition 2.1.
Let X be an arbitrary abstract measurable space, and let Z be a closed subset of a Banach
space (e.g. Z ⊂ L1(R) can be the set of density functions). Let f : X × Z −→ Z be a
Borel-measurable function, and for a �xed sequence (xn)n≥0, xn ∈ X consider the recursion

zn+1 = f(xn, zn), z0 = ξ. (5)

Let the solution be denoted by zn(ξ). To simplify the notations we drop the dependence on
the sequence (xn).

De�nition 3.1 The mapping f is uniformly exponentially stable if for every sequence (xn)
n ≥ 0, xn ∈ X

‖zn(ξ)− zn(ξ′)‖ ≤ C(1− %)n‖ξ − ξ′‖, (6)
where C > 0, 1 > % > 0 are independent of the sequence (xn).

Under reasonable technical conditions this condition is satis�ed for the Baum-equation and
its derivatives, see [40].

De�ne the process (Zn) by

Zn+1 = f(Xn, Zn), Z0 = ξ, (7)

where (Xn) is a Markov chain satisfying the Doeblin condition. Let us denote its invariant
distribution by π. To prove M -boundedness of (Zn) we impose the following conditions:

Condition 3.1 Let the distribution of X0 be π0. Assume

dπ0

dπ
≤ C1. (8)

Condition 3.2 Assume for all ξ ∈ Z and for any q ≥ 1

Eπ‖Z1(ξ)‖q ≤ K1(ξ) < ∞,

or equivalently ∫

X

‖f(x, ξ)‖qdπ(x) ≤ K1(ξ) < ∞, (9)

where π is the unique stationary distribution of (Xn) and K1(·) is a measurable function.

Lemma 3.2 Let the mapping f(x, z) be uniformly exponentially stable, and let Condition
3.1 and 3.2 hold. Then the process (Zn) de�ned by (7) with any �xed constant Z0 = ξ is
M-bounded.
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Consider now processes of the form Vn = g(Xn, Zn), where g is a measurable function.
We need the following technical condition:
Condition 3.3 g(x, z) is a measurable function on X×Z such that it is Lipschitz-continuous
in z for every x with an x-independent Lipschitz constant L.
Theorem 3.2 Consider the process (Xn, Zn), where (Xn) satis�es the Doeblin-condition,
and (Zn) is de�ned by (7) with a uniformly exponentially stable mapping f and an arbitrary
constant initial condition ξ. Assume that Conditions 3.1 and 3.2 hold. Furthermore let
g(x, z) be a bounded function satisfying Condition 3.3. Then

Vn = g(Xn, Zn)

is an L-mixing process.
In some applications Condition 3.3 is too strong. Hence we should weaken this condition

with the following one:
Condition 3.4 g(x, z) is a measurable function on X×Z such that it is Lipschitz-continuous
in z for every x with an x-dependent Lipschitz constant L(x) such that all the moments of
L(x) exists with respect to the stationary distribution of the Markov chain (Xn), i.e. for all
q ≥ 1 ∫

X

|L(x)|qdπ(x) < Lq
q < ∞.

Replacing Condition 3.3 with Condition 3.4 Theorem 3.2 is also valid.

3.4 Exponentially stable random mappings II.
In this section we consider an extension of Theorem 3.2 for unbounded function g. We need
the following conditions.
Condition 3.5 Assume that for all q ≥ 1∫

X

sup
z∈Z

‖g(x, z)‖qdπ(x) ≤ Mq < ∞. (10)

We generalize Theorem 3.2 to unbounded function g as follows.
Theorem 3.3 Consider the process (Xn, Zn), where (Xn) satis�es the Doeblin-condition,
and let (Zn) be de�ned by (7) with a uniformly exponentially stable mapping f and an
arbitrary constant initial condition Z0 = ξ. Assume that Conditions 3.1 and 3.2 hold.
Furthermore assume that Condition 3.3, 3.5 is satis�ed for the function g(x, z). Then

Vn = g(Xn, Zn)

is an L-mixing process.
Theorem 3.3 can also be weakened replacing Condition 3.3 with Condition 3.4.
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3.5 Exponentially stable random mappings III.
For strong approximation results we will need the L-mixing property of the derivative process
∂
∂θ

log p(yn|yn−1, . . . y0, θ). Since the conditions of Theorem 3.3 are not satis�ed for this
derivative process we need an extension of Theorem 3.3. We change Condition 3.3 to the
following technical condition:

Condition 3.6 Let g(x, z) be a measurable function on X × Z such that for every x with
an x-dependent Lipschitz constant L(x) we have

|g(x, z1)− g(x, z2)| ≤ L(x)‖z1 − z2‖(‖z1‖+ ‖z2‖).
Furthermore assume that




∫

X

|L(x)|qdπ(x)




1/q

< Lq < ∞

for all q ≥ 1, where π(x) is the stationary distribution of the Markov chain (Xn).

Furthermore we weaken Condition 3.5.

Condition 3.7 Assume that for all q ≥ 1

∫

X

sup
z∈Z

(‖g(x, z)‖
‖z‖+ 1

)q

dπ(x) ≤ Mq < ∞. (11)

Then we have

Theorem 3.4 Consider the process (Xn, Zn), where (Xn) satis�es the Doeblin-condition,
and let (Zn) be de�ned by (7) with a uniformly exponentially stable mapping f and an
arbitrary constant initial condition Z0 = ξ. Assume that Conditions 3.1 and 3.2 hold.
Furthermore assume that Conditions 3.6, 3.7 are satis�ed for the function g(x, z). Then

Vn = g(Xn, Zn)

is an L-mixing process.

3.6 On-line estimation
In this section we lay down the foundation of the analysis of the convergence of recursive
estimation in Hidden Markov Models. For this purpose we investigate Markov processes
generated by exponentially stable mappings. First we present the general scheme of Ben-
veniste, Metivier and Priouret, see [6] introduced for investigating stochastic approximation
algorithms, then verify the assumptions of [6] for our model class.
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3.6.1 The BMP scheme
In this section we present the basics of the theory of recursive estimation developed by
Benveniste, Metivier and Priouret, BMP henceforth (see Chapter 2, Part II. of [6]).

Let a family of transition probabilities {Πθ, θ ∈ D ⊂ Rd} on U be given, where U is a
Polish space. Let us denote the metric by d. Note that in [6] U is Rn, but the results can
be generalized for complete separable metric space. Let D be an open set. Assume that for
any θ ∈ D there exists a unique invariant probability measure, say µθ. Let (Un(θ)) be a
Markov-chain such that its initial state U0(θ) has distribution µθ. Let H(θ, u) be a mapping
from Rd × U to Rd. Then the basic estimation problem of the BMP-theory is to solve the
equation

Eµθ
H(θ, U(θ)) = 0.

Assume that a solution θ∗ ∈ D exists.
The BMP-scheme. The recursive estimation procedure to solve the above equation is

then de�ned as
θn+1 = θn +

1

n
H(θn, Un), (12)

where Un is the time-varying process de�ned by

P (Un+1 ∈ A|Fn) = Πθn(Un, A).

Here Fn is the σ-�eld of events generated by the random variables U0, . . . , Un and A is any
Borel subset of X .

Theorem 13, p. 236 of [6] yields the following convergence result.

Theorem 3.5 (Benveniste-Métivier-Priouret 1990, [6]) Assume that Conditions A1 - A6
are satis�ed, and ε is su�ciently small. Let θ ∈ intD0, Um = u ∈ U , and consider the
stopped process θ◦n = θn∧τ∧σ. Then for any 0 < λ < 1 there exist constants B and s such
that for all m ≥ 0 we have lim θ◦n = θ∗ with probability at least

1−B(1 + V (u)s)
+∞∑

n=m+1

n−1−λ.

For Conditions A1 - A6 see [6] or Section 3.6.1 of the dissertation.

3.6.2 Application for exponentially stable nonlinear systems
In this subsection conditions (A1)-(A3) are veri�ed for exponentially stable nonlinear sys-
tems. Let X be a Polish space and Z be a closed subset of a separable Banach space. Let
us denote the metric on X by dX .

Consider an exponentially stable random mapping f , see De�nition 3.1, and de�ne the
process (Zn) by

Zn+1 = f(Xn, Zn, θ), Z0 = ξ, (13)



3. EXPONENTIALLY STABLE SYSTEMS 9

where (Xn) is a Markov chain which satis�es the Doeblin condition. Let Un = (Xn, Zn) ∈
X × Z = U . De�ne the metric on U by

d(u, u′) = ‖z − z′‖+ dX (x, x′), (14)

where u = (x, z) and u′ = (x′, z′), and let the Lyapunov function be

V (u) = ‖z‖. (15)

Let us denote a stationary distribution of Xn by π. For assumption (A1) we need two
conditions: the �rst one ensures that there are no states in "large distances", the second one
is (A1) for one-step when X0 has an invariant distribution.

Condition 3.8 Let the distribution of X1 be π1. Assume

dπ1

dπ
≤ C1. (16)

Condition 3.9 Assume for all ξ ∈ Z and for p ≥ 1

Eπ‖Z1(ξ)‖p ≤ K1(1 + ‖ξ‖p),

or equivalently ∫

X

‖f(x, ξ)‖pdπ(x) ≤ K1(1 + ‖ξ‖p). (17)

Note that Condition 3.8 is a modi�ed version of Condition 3.1. As in assumptions (A1)-
(A3) the initialization is always a �xed value and we need it for each initialization, Condition
3.1 is not realistic. Condition 3.9 is a special case of Condition 3.2.

Theorem 3.6 Consider a process Un = (Xn, Zn) de�ned by (7), where f is an exponentially
stable mapping and Xn is a Markov chain satisfying the Doeblin condition. Assume that
Conditions 3.8 and 3.9 are satis�ed. Then assumption (A1) holds, i.e. there exists positive
constant K such that for all n ≥ 0, u ∈ U and θ ∈ Q:

Eu,θ(|V (Un)|p+1) ≤ K(1 + |V (u)|p+1).

Since we have not used the metric property in Theorem 3.6 X can be any measurable
abstract space. Furthermore, we have used the Doeblin property only for the existence of a
stationary distribution of the Markov chain (Xn).

For assumption (A2) we need two more conditions for the stability of the process (Xn).
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Condition 3.10 Assume that f is Lipschitz continuous in x, i.e.

‖f(x1, z)− f(x2, z)‖ ≤ LdX (x1, x2)

Condition 3.11 Assume that for the process (Xn) we have

EdX (Xn, X
′
n) ≤ KdX (X0, X

′
0)

Theorem 3.7 Consider a process Un = (Xn, Zn) de�ned by (7), where f is an exponentially
stable mapping and Xn is a Markov chain satisfying the Doeblin condition. Assume that
Conditions 3.8, 3.9, 3.10 and 3.11 are satis�ed. Then assumption (A2) holds, i.e. there
exist positive constants K, p and 0 < ρ < 1 such that for all g ∈ Li(p), θ ∈ Q, n ≥ 0 and
u, u′ ∈ U :

|Πn
θ g(u)− Πn

θ g(u′)| ≤ Kρn‖∆g‖Vp(1 + |V (u)|p + |V (u′)|p)d(u, u′)

For assumption (A3) we need the smoothness of f with respect to the parameter θ.
Assume that f : X ×Z ×Θ → Z is a Borel-measurable function, di�erentiable in θ and for
any �x θ the function f(·, ·, θ) is exponentially stable.

Theorem 3.8 Consider a process Un = (Xn, Zn) de�ned by (7), where f is an exponentially
stable mapping which is smooth is θ, and Xn is a Markov chain satisfying the Doeblin con-
dition. Assume that Conditions 3.8 and 3.9 are satis�ed. Then assumption (A3) holds, i.e.
there exist positive constants K, p such that for all g ∈ Li(p), u ∈ U , n ≥ 0 and θ, θ′ ∈ Q:

|Πn
θ g(u)− Πn

θ′g(u)| ≤ K‖∆g‖Vp(1 + |V (u)|p)|θ − θ′|

We conclude this section with the following theorem.

Theorem 3.9 Consider a process Un = (Xn, Zn) de�ned by (7), where f is an exponentially
stable mapping and Xn is a Markov chain satisfying the Doeblin condition. Assume that
Conditions 3.8, 3.9, 3.10 and 3.11 are satis�ed. Then assumptions (A1)-(A3) hold.

Thus we get that if assumption (A5) is satis�ed for a function H, and we have a Lyapunov
function satisfying (A6) then convergence result Theorem 3.5 holds for the algorithm (12).

We apply Theorem 3.9 for Hidden Markov Models in Chapter 5.
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4 Application to Hidden Markov Models
This chapter demonstrates the relevance of the previous results for the estimation of Hidden
Markov Models. Consider a Hidden Markov Process (Xn, Yn), where the state space X is
�nite and the observation space Y is possibly continuous, i.e. let Y be a general measurable
space with a σ-�eld B(Y) and a σ-�nite measure λ. In practice Y is usually a measurable
subset of Rd. Although the results of this chapter are valid for a general read-out space, we
will assume that Y is a measurable subset of Rd and λ is the Lebesgue-measure. Assume
that the transition probability matrix and the conditional read-out densities are positive, i.e.
Q∗ > 0 and b∗i(y) > 0 for all i, y. Then the process (Xn, Yn) satis�es the Doeblin-condition.

Let the invariant distribution of (Xn) be ν and the invariant distribution of (Xn, Yn) be
π following the notations used in Theorem 3.3. Then

π({i}, dy) = νib
∗i(y)λ(dy). (18)

4.1 Estimation of Hidden Markov Models
A central question in estimation problems is proving the ergodic theorem

lim
n→∞

1

n

n∑

k=1

g(yk, pk), (19)

where
g(y, p) = log

∑
i

bi(y)pi. (20)

Theorem 4.1 Consider a Hidden Markov Model (Xn, Yn), where the state space X is �nite
and the observation space Y is a measurable subset of Rd. Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0
for all i, y. Let the initialization of the process (Xn, Yn) be random, where the Radon-Nikodym
derivative of the initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (21)

Assume that for all i, j ∈ X and q ≥ 1
∫
| log bj(y)|qb∗i(y)λ(dy) < ∞. (22)

Then the process g(Yn, pn) is L-mixing.

Since the positivity of Q implies that the stationary distribution of (Xn) is strictly positive
in every state and the densities of the read-outs are strictly positive (21) is not a strong
condition. For example for the random initialization we can take a uniform distribution on
X and an arbitrary set of λ a.e. positive density functions bi

0(y).
For the asymptotic properties of (19) we have
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Theorem 4.2 Consider a Hidden Markov Model (Xn, Yn), where the state space X is �nite
and the observation space Y is a measurable subset of Rd. Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0
for all i, y. Let the initialization of the process (Xn, Yn) be random, where the Radon-Nikodym
derivative of the initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (23)

Assume that for all i, j ∈ X and q ≥ 1

∫
| log bj(y)|qb∗i(y)λ(dy) < ∞. (24)

Then the limit
lim

n→∞
1

n

n∑

k=1

g(Yk, pk)

exists almost surely.

Consider now a �nite state-�nite read-out HMM. This case follows from Theorem 4.1,
but the integrability condition (22) is simpli�ed due to the discrete measure.

Theorem 4.3 Consider a Hidden Markov Model (Xn, Yn), where X and Y are �nite. As-
sume that Q,Q∗ > 0 and bi(y), b∗i(y) > 0 for all i, y. Then with a random initialization on
X × Y we have that g(Yn, pn) is an L-mixing process.

Finally, we compare our results with those of Legland and Mevel, see [40] or Proposition
4.1.6 of the dissertation. We give an example where Theorem 4.2 is applicable, but conditions
of Proposition 4.1.6 are not satis�ed.

4.2 Extension to general state space
We extend the results of Section 4.1 for a general compact state space. Let (Xn) be a Markov
chain on a compact set K ⊂ X , where X is a Polish space, and B(K) is the associated Borel
σ-�eld. Let us �x a σ-�nite dominating measure on X . Let Q∗(x,A) (x ∈ K, A ∈ B(K)) be
the Markov transition kernel of the chain, see [44]. The observations (Yn) are conditionally
independent and identically distributed given (Xn) with conditional densities b∗xn(y), see
(1), where the read-out space Y is assumed to be a Polish space. Let the initial distribution
of (Xn) be P ∗

0 .
Assume that the densities bx(y) are with respect to the same σ-�nite measure λ and the

transition kernel Q has a density q with respect to the σ-�nite dominating measure µ on X .
Furthermore, it is assumed that the initial distribution of (Xn) has a density p0 with respect
to µ.
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Consider the predictive density function, i.e. the density of the conditional distribution
of Xn given (Yi)

n−1
i=0 . Using the Baum-equation, see (2), we have the following recursion for

the density of the predictive �lter:

pn+1(x) =

∫
u
q(u, x)bu(Yn)pn(u)dµ(u)∫

u
bu(Yn)pn(u)dµ(u)

.

In this section we use the following notations: for any measurable function f on the space
(K,B(K), µ) de�ne

ess sup(f) = inf{M ≥ 0 : µ({M < |f |}) = 0}
and if f is non-negative,

ess inf(f) = sup{M ≥ 0 : µ({M > |f |}) = 0}.
For y ∈ Y de�ne

δ(y) =
ess supx bx(y)

ess infx bx(y)
(25)

ε =
ess infx,x′ q(x, x′)
ess supx,x′ q(x, x′)

. (26)

The following statement, which is an adaptation of Proposition 2.1, shows the exponential
memorylessness of the predictive density function, see [9].

Proposition 4.1 (Douc-Matias 2001, [9]) Suppose that 0 < ε. Let p′0 and p′′0 be any two
initial density functions of X0 with respect to the measure µ. Then

‖pn(p′0)− pn(p′′0)‖L1 ≤ C(1− ε)n‖p′0 − p′′0‖L1 . (27)

4.2.1 Estimation of HMMs: continuous state space
Assume that the Markov chain (Xn) has an invariant distribution ν. This implies that the
density of the invariant distribution of the pair (Xn, Yn) is

π(x, y) = bx(y)ν(x).

The logarithm of the likelihood function is
n−1∑

k=1

log

(∫

K

bx(Yk)pkµ(dx)

)
,

and de�ne the function g as

g(y, p) = log

(∫

K

bx(y)p(x)µ(dx)

)
. (28)

The following theorem is a modi�ed version of Theorem 4.1.
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Theorem 4.4 Consider a Hidden Markov Model (Xn, Yn), where the state space K ⊂ X is
a compact subset of a Polish space X and the observation space Y is a measurable subset of
Rd. Assume that ε > 0 in (26). Furthermore, assume that the Doeblin condition is satis�ed
for the Markov chain (Xn). Let the initialization of the process (Xn, Yn) be random such that
the Radon-Nikodym derivative of the initial distribution π0 w.r.t the stationary distribution
π is bounded, i.e.

dπ0

dπ
≤ K. (29)

Assume that for all q ≥ 1

ess sup
x

∫
| log ess sup

x′
bx′(y)|qb∗x(y)λ(dy) < ∞. (30)

and
ess sup

x

∫
|δ(y)|q b∗x(y)λ(dy) < ∞ (31)

Then the process g(Yn, pn) is L-mixing and the limit

lim
n→∞

1

n

n∑

k=1

g(Yk, pk)

exists almost surely.

5 Recursive Estimation of Hidden Markov Models
In this paragraph we consider Hidden Markov Models with �nite state-space and �nite read-
out space. Consider the following estimation problem: let Q and b be parameterized by
θ ∈ D, where D is a compact subset of Rr and let

Q∗ = Q(θ∗), b∗ = b(θ∗).

Consider the parameter-dependent Baum-equation

pn+1(θ) =
QT (θ)B(yn, θ)pn(θ)

b(yn, θ)Tpn(θ)
= Φ1(yn,pn, θ), (32)

To simplify the notations we drop the dependence on the parameter θ. Di�erentiating
pn+1 with respect to θ we have

Wn+1 = QT

(
I − B(yn)pne

T

bT (yn)pn

)
B(yn)Wn

bT (yn)pn

+ F, (33)

where
F =

QT
θ B(yn)pn

bT (yn)pn

+ QT

(
I − B(yn)pne

T

bT (yn)pn

)
β(yn)pn

bT (yn)pn

,
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Wn = ∂pn

∂θ
and β(yn) = ∂B(yn)

∂θ
.

In a compact form
Wn+1 = Φ2(yn,pn,Wn, θ).

Thus for a �x θ, un = (Xn, Yn,pn,Wn, θ) is a Markov chain.
Let the score function be

ϕn(θ) =
∂

∂θ
log p(yn|yn−1, . . . , y0, θ).

Using that
log p(yn|yn−1, . . . , y0, θ) = log bT (y)pn,

we get
ϕn =

β(yn)pn + Wnb(yn)

b(yn)Tpn

. (34)

Let
H(θ, u) = H(θ, x, y,p,W ) =

β(y, θ)p + Wb(y, θ)

b(y, θ)Tp
, (35)

and consider the following adaptive algorithm.

θn+1 = θn + γn+1H(θn, xn, yn,pn,W n), (36)

pn+1 = Φ1(yn,pn, θn), (37)
W n+1 = Φ2(yn,pn,W n, θn). (38)

For the convergence of this algorithm we use the approach of Benveniste, Metivier and
Priouret, see Section 3.6.1 and [6]. We verify the conditions of Theorem 3.9.

Consider a Hidden Markov Model with �nite state space and �nite read-out space.
Assume that Q(θ) and b(θ) are smooth functions of the parameter, i.e. the second

derivatives exist and are continuous.

Theorem 5.1 Consider a Hidden Markov Model with �nite state space and �nite read-out
space. Assume that Q∗ > 0, b∗x(y) > 0, and Q(θ) > 0, bx(y, θ) > 0 for all x, y and θ ∈ D,
where D is a compact subset of Rd. Then assumptions (A1)-(A3) and (A5) of Section 3.6.1
are satis�ed.

Note that if the state space and the read-out space are �nite then assumption (A4) is
trivially satis�ed.

Assumption (A6) is very hard even for linear stochastic systems. Let us identify

h(θ) = lim
n→∞

E
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ) (39)

This limit exists, see Theorem 6.2, and assume that the following identi�ability condition is
satis�ed, see also Condition 6.1:
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Condition 5.1 The equation h(θ) = 0 has exactly one solution in D, namely θ∗.

Condition 5.1 implies assumption (A6) in a small domain. Thus we conclude with the
following theorem as an application of Theorem 3.5.

Theorem 5.2 Consider a Hidden Markov Model with �nite state space and �nite read-out
space. Assume that Q∗ > 0, b∗x(y) > 0, and Q(θ) > 0, bx(y, θ) > 0 for all θ, x, y. Assume
Condition 5.1. Then the algorithm de�ned by (36), (37), (38) converges to the true value θ∗

with probability arbitrary close to 1.

6 Strong Estimation of Hidden Markov Models
6.1 Parametrization of the Model
In this chapter the rate of convergence of the parameter is investigated. Let G ⊂ Rr be an
open set, D ⊂ G be a compact set, and D∗ ⊂ intD be another compact set, where intD
denotes the interior of D. Assume that for the true value of the parameter we have θ∗ ∈ D∗.
Furthermore, assume that for an estimation of the parameter of the Hidden Markov Model
we have θ ∈ D. We will refer to D∗ and D as compact domains.

Consider the following estimation problem: let Q and b be parameterized by θ ∈ D and
let

Q∗ = Q(θ∗), b∗ = b(θ∗).

In this paragraph we always consider �nite state-space and continuous read-out space. Al-
though the results of this chapter are valid for a general read-out space, we will always
assume that Y is a measurable subset of Rd and λ is the Lebesgue-measure, similarly to
Chapter 4. Assume that the densities bx(y, θ) are with respect to the Lebesgue measure λ.

In the �nite case (when both X and Y are �nite) θ is often the parameter of the model
parameterizing the transition matrix Q and the conditional read-out probabilities bi(y).
Usually the entries of Q are included in θ.

6.2 L-mixing property of the derivative process
For strong approximation theorems we will need that the derivative processes

∂k

∂θk
log p(yn, yn−1, . . . , y0, θ),

where k = 1, 2, 3, are L-mixing.
For y ∈ Y de�ne

δ(y) =
max

x
bx(y)

min
x

bx(y)
(40)
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and

δ′(y) =
max

x
‖∂bx(y)/∂θ‖

min
x

bx(y)
(41)

Theorem 6.1 Consider a Hidden Markov Model (Xn, Yn), where the state space X is �nite
and the observation space Y is a measurable subset of Rd. Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0
for all i, y. Assume that Q(θ) and bi(y, θ) are continuously di�erentiable functions in the
parameter θ. Let the initialization of the process (Xn, Yn) be random, where the Radon-
Nikodym derivative of the initial distribution π0 w.r.t the stationary distribution π is bounded,
i.e.

dπ0

dπ
≤ K. (42)

Assume that ∫
|δ(y)|qb∗i(y)λ(dy) < ∞, (43)

∫
|δ(y)′|qb∗i(y)λ(dy) < ∞. (44)

Then
∂

∂θ
log p(yn|pn−1, . . . p0, θ)

is L-mixing.

In applications we need that the limit of the expectation of the derivative process exists,
see (39) or (49).

Theorem 6.2 Under the conditions of Theorem 6.1 we have that the limit

lim
n→∞

E
∂

∂θ
log p(yn|yn−1, . . . y0, θ)

exists.

We prove similar theorems as Theorem 6.1 for the second and third derivatives.

6.3 Characterization theorem for the error
Consider a Hidden Markov Model (Xn, Yn), where the state space X is �nite and the obser-
vation space Y is a measurable subset of Rd. Let Q(θ), Q∗ > 0 and bi(y, θ), b∗i(y) > 0 for
all i, y. Let the initialization of the process (Xn, Yn) be random, where the Radon-Nikodym
derivative of the initial distribution π0 w.r.t the stationary distribution π is bounded, i.e.

dπ0

dπ
≤ K. (45)
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Assume that for all i, j ∈ X , θ ∈ D and q ≥ 1
∫
| log bj(y, θ)|qb∗i(y)λ(dy) < ∞. (46)

To estimate the unknown parameter we use the maximum-likelihood (ML) method. Let
the log-likelihood function be

LN =
N∑

n=1

log p(Yn|Yn−1, . . . , Y0, θ).

We shall refer to this as the cost function associated to the ML estimation of the parameter.
The right hand side depends on θ∗ through the sequence (Yn). To stress the dependence of
LN on θ and θ∗ we shall write LN = LN(θ, θ∗). The ML estimation θ̂N of θ∗ is de�ned as
the solution of the equation

∂

∂θ
LN(θ, θ∗) = LθN(θ, θ∗) = 0 (47)

Let us introduce the asymptotic cost function

W (θ, θ∗) = lim
n→∞

Eθ∗ log p(Yn|Yn−1, . . . , Y0, θ). (48)

Assume that the function W (θ, θ∗) is smooth in the interior of D, i.e. the third derivative
exists. Under the conditions of Theorem 6.2 we have

Wθ(θ, θ
∗) = lim

n→∞
Eθ∗

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ), (49)

and for the Fisher-information matrix we have

I∗ = Wθθ(θ
∗, θ∗) =

lim
n→∞

Eθ∗

(
(

∂

∂θ
log p(yn|yn−1, . . . , y0, θ

∗))T (
∂

∂θ
log p(yn|yn−1, . . . , y0, θ

∗))
)

.

Remark 6.1 Note that Wθ(θ
∗, θ∗) = 0.

Consider the following identi�ability condition:

Condition 6.1 The equation
Wθ(θ, θ

∗) = 0

has exactly one solution in D, namely θ∗.

We prove a characterization theorem for the error term of the o�-line ML estimation
following the arguments of [24].
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Theorem 6.3 Consider a Hidden Markov Model (Xn, Yn), where the state space X is �nite
and the observation space Y is a measurable subset of Rd. Let Q,Q∗ > 0 and bi(y), b∗i(y) > 0
for all i, y. Assume that conditions of Theorem 4.1, 6.1 are satis�ed. Let θ̂N be the ML
estimate of θ∗. Furthermore assume that the identi�ability condition 6.1 is satis�ed. Then

θ̂N − θ∗ = −(I∗)−1 1

N

N∑
n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + OM(N−1), (50)

where I∗ is the Fisher-information matrix.

A key point here is that the error term is OM(N−1). This ensures that all basic limit
theorems, that are known for the dominant term, which is a martingale, are also valid for
θ̂N − θ∗.

Let us consider now the case when the read-out space is �nite.

Theorem 6.4 Consider the Hidden Markov Model (Xn, Yn), where X and Y are �nite. Let
Q(θ), Q∗ > 0 and bi(y, θ), b∗i(y) > 0 for all i, y. Assume that Q and b are smooth in θ, i.e.
the third derivatives exist. Let θ̂N be the ML estimate of θ∗. Assume that the identi�ability
condition 6.1 is satis�ed. Then

θ̂N − θ∗ = −(I∗)−1 1

N

N∑
n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + OM(N−1), (51)

where I∗ is the Fisher-information matrix.

7 Estimation with forgetting
If the dynamics changes slowly in time, then we should adapt to the actual system. But
then the estimation procedure must be modi�ed: instead of cumulating past data we must
gradually forget them. Forgetting past data is technically realized by using exponential
forgetting in the o�-line case.

To estimate the unknown parameter we use the modi�ed maximum-likelihood method:
let θ̂N(λ) be the estimator of θ∗ obtained by minimizing

N∑
n=1

(1− λ)N−nλ log p(yn|yn−1, . . . , y0; θ), (52)

with 0 < λ < 1. Here λ is the so-called forgetting factor: small value of λ means slow
forgetting.

Let

Lλ
N(θ, θ∗) =

N∑
n=1

(1− λ)N−nλ log p(Yn|Yn−1, . . . , Y0, θ).
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We shall refer to this as the cost function associated with the modi�ed ML estimation of
the parameter. The right hand side depends on θ∗ through the sequence (Yn).

It is easy to see that the cost function can be computed recursively as follows:

Lλ
N(θ, θ∗) = (1− λ)Lλ

N−1(θ, θ
∗) + λ log p(YN |YN−1, . . . , Y0, θ),

i.e. the correction term corresponding to the latest observation enters the cost function
always with the same �xed weight. This representation of the cost function justi�es the
terminology "�xed gain estimation".

The modi�ed ML estimation θ̂N(λ) of θ∗ is de�ned as the solution of the equation
∂

∂θ
Lλ

N(θ, θ∗) = Lλ
θN(θ, θ∗) = 0 (53)

Combining Theorem 4.1 and the results of Section 6.2 with the techniques of [25] we have
a version of Theorem 6.3:
Theorem 7.1 Under the conditions of Theorem 6.3 we have

θ̂N(λ)− θ∗ = −I(θ∗)−1

N∑
n=1

(1− λ)N−nλ
∂

∂θ
log p(Yn|Yn−1, . . . Y0, θ

∗) + rN ,

where 0 < α < 1, rN = OM(λ) + OM(αN), and I(θ∗) is the Fischer-information matrix.
Theorem 7.1 implies that for the covariance matrix we have

E(θ̂n−1 − θ∗)(θ̂n−1 − θ∗)T =
λ

2
I(θ∗)−1 + O(λ3/2) + o(1). (54)

8 Change detection of HMM-s
We consider change-detection problems for Hidden Markov Models following [3]. For this
we �rst note that the negative of the log-likelihood can be interpreted as a codelength,
modulo a constant, which is obtained when encoding the data sequence (yN , . . . , y1) with a
prescribed accuracy, using the assumed joint density p(yN , . . . , y0; θ). This interpretation of
the likelihood is a central idea of the theory of stochastic complexity. Thus we interpret

Cn(yn; θ)
∆
=− log p(yn|yn−1, . . . , y0; θ),

as a codelength. A key result in the theory of the stochastic complexity can be extended for
the present case (see [26]).

Theorem 8.1 Under the conditions of Theorem 6.3 we have

E(Cn(Yn, θ̂n−1(λ))− Cn(Yn, θ∗) =
1

2
rλ + O(λ3/2−c′′) + o(1),

with an arbitrary small c′′ > 0, where r = dim θ.
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The faster the forgetting is i.e. the closer λ is to 1, the more we loose in encoding
performance. An easy consequence of Theorem 8.1 is the following.

Proposition 8.1 Consider two di�erent forgetting factors 0 < λ1 < λ2 < 1. Then we have

E(Cn(yn, θ̂n−1(λ1))− Cn(yn, θ̂n−1(λ2))) ' 1

2
r(λ1 − λ2) < 0.

Proposition 8.1 has been useful in the design of a new model selection criterion. However
the theoretical analysis of the new method is not powerful enough. Thus we need a sample
path characterization of the prediction error process. Let the cumulative error be

SN(λ) =
N∑

n=1

(Cn(yn, θ̂n−1(λ))− Cn(yn, θ
∗))

Theorem 8.2 Under the conditions of Theorem 6.3 we have

lim sup
N→∞

| 1
N

SN(λ)− λ

2
r| ≤ Cλ3/2

We state a similar easy consequence as above.

Proposition 8.2 Let 0 < λ1 < λ2 < 1 be two di�erent forgetting factors. Then we have

lim sup
N→∞

| 1
N

SN(λ1)− 1

N
SN(λ2)− λ1 − λ2

2
r| ≤ Cλ

3/2
2

Assume now that a jump in the parameter occurs at τ : the true value of θ is θ1 for n ≤ τ
and it is θ2 for n ≥ τ + 1, i.e.

θ∗ :=

{
θ1, if n ≤ τ
θ2, if n ≥ τ

Let 0 < λ1 < λ2 < 1. Then from Proposition 8.2 we have for N ≤ τ

SN(λ1)− SN(λ2) ≈ λ1 − λ2

2
Nr.

On the other hand at the time of change the performance of the estimator with faster
forgetting, i.e. with λ2 expected to be better. Hence, consider the following algorithm for
detecting the change.

The algorithm: Let d(N) := SN(λ1)− SN(λ2) and set

d∗N = min
n≤N

d(n).

An alarm is generated if d(N) − d∗N > ε, where ε > 0 is a prescribed threshold value. This
type of algorithm is called Hinkley detector in the literature, see [12].
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