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Chapter 1

Introduction

Complex networks have been studied extensively since they describe effi-

ciently a wide range of systems, spanning many different disciplines, such

as Biology (e.g. protein interaction networks), Information Technology (e.g.

World Wide Web, Internet), Social Sciences (e.g. scientific collaboration net-

works, human communication networks) etc. Accordingly, networks are ubiq-

uitous in science and in everyday life and have been the focus of intense

interest since they can represent various systems in a tractable way. Charac-

terizing the topology of networks is very important for a wide range of static

and dynamic properties (e.g. the topology of social networks influences the

spread of information and disease).

One of the most important discoveries is that despite of the diversity of

networks, most real-world networks share specific properties that differ in

many ways from random networks (such as Erdős-Rényi random graph [19]).

Two fundamental characteristics of complex networks that have attracted

tremendous attention recently are the small-world property and the scale-

free property. Small-world behavior means that the average distance between

vertices scales logarithmically with the number of nodes [68]; while scale-free

property refers to the fact that the degree distribution follows a power law

[2].

Other fundamental properties, which are in the focus of this thesis, are

self-similarity and fractality. To put it in other words, we investigate whether
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the whole network looks much the same as a subsection of itself. Although

there is no distinction between fractality and self-similarity with respect to

regular fractal objects, in network theory we can distinguish the two terms:

the fractality stands for the power-law relation between the minimum number

of boxes needed to cover the entire network and the size of the boxes, while

a self-similar network is defined as a network whose degree distribution is

invariant under renormalization (details will be provided later) [60].

My BSc thesis [47] is also devoted to network theory, the reader can find

there a much more detailed introduction to the filed with historical overview,

several real-world examples, lots of interesting facts, basic definitions and a

number of mathematical models. The necessary notions are also repeated in

this work.

In this thesis we will unfold the concepts of fractality and self-similarity,

we review some notions of fractal dimension and the connections between

them. If needed, we handle the lack of mathematically rigorous notions of

the current literature and make concepts and proofs more precise. We study

the origin and influence of fractality, observe some real-world examples, show

and investigate some mathematical models.

1.1 Network science and mathematics

In recent years network science has become a new discipline of great impor-

tance. It can be regarded as a new academic field since 2005 when the United

States National Research Council defined network science as a new field of

basic research [14]. The most distinguished academic publishing companies

announce the launch of new journals devoted to complex networks, one af-

ter another (e.g. Journal of Complex Network by Oxford University Press
1 or Network Science by Cambridge University Press 2). Leading universi-

ties also continuously establish research centers for network science, such as

1http://comnet.oxfordjournals.org/
2http://journals.cambridge.org/NWS
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Yale University 3, Duke University 4, Northeastern University 5 or Central

European University 6, the last two have also launched PhD programs in

the field recently. The significance of network theory is also reflected in the

big number of publications about complex networks and in the enormous

number of citations of the pioneering papers by Barabási & Albert [2] and

Watts & Strogatz [68] that turned the attention to complex networks. Some

scientists interpret network science as a new paradigm shift [32], however,

complex networks did not only influence the research community, but also

appeared in popular literature [3], [67] and mass media 7.

Complex networks are researched by several disparate disciplines, mathe-

maticians (primarily graph theorists and probabilists) also extensively study

networks [8], [41], [64]. Mathematicians sometimes have hard time dealing

with network science since it is mainly researched from an empirical perspec-

tive, without mathematical rigor, but with notions based on simulations. It

is also important to mention some of the criticism leveled at network science.

Some articles question the ubiquity of scale-free property and confute the

assumption that biological networks or the internet are scale-free [37], [63],

[69]. These papers claim that in most of the network science literature the

data are typically insufficient and the measurements are not of satisfactory

quality for the aim they are used for, furthermore there are no careful statis-

tical tests [62]. The critics also lack that network scientists usually provide

no statistically clean separation between the data used for model selection

and for model validation. It is also under criticism that lots of assertions

are obtained by plotting and fitting, e.g. creating log-log plots of degree vs.

frequency and fitting a straight line. However, doubters highlight that com-

monly used methods, such as least-squares fitting, can provide considerably

inaccurate estimates of parameters [13]. On the other hand, it is worth ascer-

taining that none of the critics doubt the importance of the study of complex

networks, just raise concerns about certain methods and statements.

3http://yins.yale.edu/
4https://dnac.ssri.duke.edu/
5http://www.barabasilab.com/
6http://cns.ceu.edu/
7http://www.imdb.com/title/tt1310375/
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Network theory keeps great potential for mathematics, with several out-

standing mathematical challenges. In order to resolve the existing ambiguity

in the field’s mathematical formulation, lots of distinguished mathematicians

have put on mathematically solid footing: developing the theory of scale-free

random graphs [8], [7], establishing a theory of graph sequences and graph

limits [41], [9], working out the precise concepts in theory of scale-free graphs

[36] or laying down the mathematical foundations of random network models

[64]. Nevertheless, one can argue that the mathematically rigorous concepts

and theories sometimes do not meet the real interest of network scientists, e.g.

most of the theories are developed for graphs tending to infinity, but network

scientists are more interested in real-world networks (which are certainly of

finite nodes).

It is also important to note that both in the general literature and in this

work in most cases “network” and “graph” are interchangeable concepts. We

usually use “network” if we would like to emphasize its real-world nature and

“graph” if its mathematical properties are under consideration.

In this thesis we overview a certain segment of network science, namely

the theory of fractal networks, we point out some mathematical inaccuracy

and propose some ideas to make concepts more precise. We also derive some

results with more rigor (such as Lemmas 2.8, 2.9, 3.1 and 3.2). On the other

hand, this work does not intend to construct the complete mathematical

theory of fractal networks, it would go far beyond the scope of this thesis.

1.2 Definitions and notation

In this section we introduce the most important definitions of network theory

and fix the notation used throughout this paper. Having regard to the fact

that a network stands for a system that can be modeled by a graph (an

undirected single graph in most cases), the notions of network theory roots

in graph theory. We assume the reader to be familiar with the basic concepts

and results of graph theory. An overview over this topic can be found in

my BSc thesis [47] or in [10]. However, we give a glossary which introduces

the specific network theory vocabulary used in this paper. This topic is very

6



fresh and researched mainly empirically from a more practical point of view

by scientists from several disciplines, hence the definitions are not always

precise in a mathematical sense and sometimes the terminology is not even

consequent in the papers. In this glossary and throughout this thesis we strive

to use the most accurate notions and even try to make them more rigorous

if necessary. Here we largely rely on [10], [66] and [51].

• A graph is an ordered pair G = (V,E), where V is the set of vertices

or nodes together with a set E of edges or links, which are two-element

subsets of V . To be more precise, this is the definition of undirected

and simple graph, since it does not allow either loops (self-edges) or

multiple edges between elements of V . We note here that sometimes

the vertex (node) set is denoted by N.

• A path is a sequence of edges such that the target of the previous edge

is the source of the next edge. The length of a path is the number of

its edges.

• A path is geodesic if its end points cannot be connected by shorter

path.

• The length of a geodesic between to vertices u and v is the distance

d(u, v) of these vertices.

• The l-neighborhood Γlu of a vertex u is the set of vertices v whose

distance from u is not greater than l.

• We write Diam(G) (diameter) for the maximal graph-distance in the

graph G within components of G. It is not hard to see that Diam(G) ≤
|V | − 1.

• The characteristic path length ` is defined as the number of edges in the

shortest path between two vertices, averaged over all pairs of vertices

(mean of geodesic length):

` =
1

|V | (|V | − 1)

∑
u,v∈V,i 6=j

d(u, v) (1.1)

7



The above definition only makes sense for connected graphs. If there

are disconnected components, then ` diverges. This may be adapted

by averaging only over connected components or limiting the summa-

tion only to the pairs of vertices belonging to the largest connected

component [68].

• Given two variables x and y, y is directly proportional to x if there is

a non-zero constant C such that y = Cx. In this paper sometimes we

denote this relation by x ∝ y or by x ≈ y.

• A network is called small-world if the characteristic path length ` grows

proportionally to the logarithm of the number of nodes in the network,

i.e. ` ∝ log |V |.

• The degree distribution P (k) is the probability that the degree of a

randomly (uniformly) chosen vertex is equal to k.

• A network is scale-free if its degree distribution follows a power law,

i.e. P (k) is proportional to a power of k, for some number γ ≥ 1:

P (k) ∝ k−γ. (1.2)

Even though a lot of times not stated explicitly, in most cases the power

law behavior is required only in the tail distribution, i.e. for k ≥ k0.

For real networks the degree exponent γ usually satisfies 2 < γ < 3.

The above definition of scale-free property is widely spread among net-

work scientists, however it is not rigorous from a mathematical point of view.

Here we give a more sophisticated - yet weaker - formulation [64]. First, we

introduce the notion of graph sequence. Several real-world networks (col-

laboration networks, WWW) grow in size as time proceeds, therefore it is

reasonable to consider graphs of growing size, namely graph sequences, de-

noted by {Gn}n∈N. We start by defining what it means for a graph process

{Gn}n∈N to be sparse [64]:
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Definition 1.1. Denote the proportion of vertices with degree k in Gn by

P n
k . A graph sequence {Gn}n∈N is called sparse when

lim
n→∞

P n
k = pk, (1.3)

for some deterministic limiting distribution.

Now we can define the notion of scale-free graph sequences [64]:

Definition 1.2. We call a graph sequence {Gn}n∈N scale-free with exponent

γ if it is sparse and the following stands:

lim
k→∞

log pk
− log k

= γ. (1.4)
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Chapter 2

Fractality and self-similarity of

complex networks

Self-similar pattern of fractal structures, a concept introduced by Mandelbrot

[44], is one of the most influential results of 20th century mathematics [20],

[65]. The significance of fractal geometry is due to the fact that it turned to

be a valuable tool that can properly describe numerous complex systems as

diverse as coastlines [42], snowflakes [45] or even stock market movements

[43].

The question naturally comes up: Does fractality and self-similarity char-

acterize complex networks? We have already mentioned that according to

empirical studies real-world networks share some fundamental common prop-

erties: small-world and scale-free character. Small-world property implies that

the number of nodes increases exponentially with the diameter of the net-

work; it appears to contradict a basic property of fractality (similarity over

different length scales): fast increase of the diameter with the system size.

Furthermore, scale invariance of fractal object also seems to be contrary

to the scale-free property of networks, where the scale has naturally limited

range. Along these lines, at first sight, it seems that small-world and scale-free

properties contradict to fractality and these features cannot co-exist in the

same network. On the other hand, in recent years Song, Havlin, Makse and

Gallos have published a number of papers ([60], [59], [61], [22]) to unfold the
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fractality of complex networks and they showed that several real-world net-

works are fractal networks (e.g. WWW, protein interaction network), other

scholars such as Goh, Slavi, Kim and Kahng also presented some approaches

to analyze networks that reveals the underlying self-similarity [25]. In the fol-

lowing sections we will follow them to reconcile the seemingly contradictory

aspects and sometimes we will handle the lack of mathematical precision.

2.1 Box covering and fractality

The technique of identifying the presence of fractality in complex networks

is analogous to that of regular fractals (see Figure 2.1). In the case of con-

ventional fractal objects embedded in the Euclidean space, a basic tool is

box-covering (or box box-counting) method [20], [11] and it also turns to

be practical regarding networks [66]. Although the Euclidean metric is not

relevant for networks, there is a more natural metric, namely the shortest (or

geodesic) path length between two nodes (see Section 1.2).

The method works as follows [59]: For a given network G, we partition

the vertices into boxes of size lB. A box is a set of nodes where all distances

di,j between any two nodes i and j within the box are smaller than lB (it is

illustrated in Figure 2.1). The minimum number of boxes needed to cover the

entire network G is denoted by NB(lB). As long as lB = 1, NB(lB) is clearly

equal to the size of the network |N |, while provided that lB > Diam(G),

then obviously NB = 1. However, to identify the minimum number of boxes

NB(lB) for any given lB belongs to a family of NP-hard problems [59] and

Section 2.2 is devoted to this question. (For the time being let’s assume that

we have an efficient algorithm that can find a nearly optimal box covering.)

In accordance with regular fractals, the fractal dimension or box dimen-

sion (dB) can be defined by:

NB(lB) ≈ l−dBB , (2.1)

i.e. the required number of boxes scales as a power law with the box size. To

determine the fractal dimension numerically, we plot the logarithm of NB(lB)
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Figure 2.1: The box-covering algorithm as employed in (a) a regular fractal
object, and (b) a complex network of eight nodes. The fractal dimension is
determined by the scaling of the number of boxes NB versus the size of the
box lB. The figure is from [22].

against the logarithm of lB, if the relation between the two is linear (i.e. it

implies power law scaling), then the network has a finite fractal dimension,

that is the additive inverse of the slope of the best-fit line on our plot (see

Figure 2.1).

Although it is possible to ascertain the fractal dimension with the above

description, it is not mathematically precise and none of the papers give a

rigorous mathematical definition. Considering regular fractal objects the box

dimension (or Minkowski-dimension) is defined as the limit of the opposite

of the ratio of the logarithm of the number of boxes and the logarithm of

the box size, as the box size tends to 0. This definition would have no sense

with respect to networks, since shortest path length can’t be less than 1. On

the other hand, tending to infinity might be a solution if the network itself

grows. For this reason, we work with the concept of graph sequence {Gn}n∈N
as we have introduced in Section 1.2. Now, we can define the box dimension

of a graph sequence in the following way:

Definition 2.1. The box dimension dB of a graph sequence {Gn}n∈N is de-

fined by

dB := lim
lB→∞

lim
n→∞

logNn
B(lB)

− log lB
, (2.2)
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where Nn
B(lB) denotes the minimum number of lb-boxes needed to cover Gn.

Although the order of limits is quite natural in the previous definition,

the question comes up whether the limiting operations can be interchanged.

Considering the fact that the number of boxes needed to cover Gn is clearly

Nn
B(lB) = 1 if lB > Diam(Gn), so it is meaningless to change the order of

the limits. We note here that in the latter definitions formulated for graph

sequences {Gn}n∈N we always take the limit in n first according to similar

consideration.

The above definition is one approach of making the concept of box dimen-

sion mathematically more precise. On the other hand, this definition deals

with graph limits and does not explain the box dimension of networks on

finite vertices, however, network scientists are more interested in the latter.

In most cases the box dimension is determined for real-world networks with

the following strategy: one plots the number of lB-boxes needed to cover the

network against the box size lB on log-log scale. As follows, we see a plot

of log lB 7→ logNB(lB). Therefore, if Eq. 2.1 is satisfied by the examined

network, then logNB(lB) ≈ −dB log lb, thus the slope is a straight line and

the negative of the slope of the straight line is the box dimension (as we

can see in Figure 2.2). Of course, to make this procedure more exact, one

should follow a principled statistical framework [13], including the estima-

tion of the lower (and upper) bound of the scaling region lB,min < lB < lB,max

(with marginal likelihood method), estimating the scaling parameter dB (us-

ing method of maximum likelihood) and testing the hypothesis (i.e. calcu-

lating the goodness-of-fit between the data and the fitted model). This is a

general framework of fitting power law distributions, a more detailed descrip-

tion can be found in [13]. In the remainder of this thesis, we mention several

power-law scaling relations similar to 2.1, however, we will not repeat this

procedure later but we call the reader’s attention that this is the strategy

behind power-law fitting, i.e any assertions similar to f(x) ≈ x−α.

The power law form of Eq. 2.1 (with a finite dB) can be verified by plot-

ting and fitting in a number of real-world networks such as WWW, actor

collaboration network (illustrated in Figure 2.2) and protein interaction net-

works [61], however another family of complex networks (called non-fractal
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Figure 2.2: Measuring the box dimension dB in real world networks via a
log-log plot of NB versus lB. The white circles shows the measurements in
case of the WWW, while red triangles refers to the co-appearance network
of Hollywood actors. The figure is from [60].

networks) is characterized by a sharp decay of NB with lB (i.e. has infinite

fractal dimension), such a network is Internet at router level [22]. This dis-

tinction makes necessary to introduce the concept of fractality [60]:

Definition 2.2. The fractality of a network (also called fractal scaling or

topological fractality) stands for the power-law relation between the minimum

number of boxes needed to cover the entire network and the size of the boxes.

Strictly speaking, a graph sequence is fractal if a finite box dimension dB

exists in the sense of 2.1.

2.2 Box-covering algorithm

We have seen that covering the network with boxes has central importance

in studying fractality of complex networks. In this section we investigate the

optimal box-covering problem and survey some algorithms.

First, we state and prove that optimally covering a graph with boxes of

given size and determining the minimum number of boxes needed to tile the

graph belongs to the family of NP-hard problems [59]. In the following we

assume the reader’s acquaintance with standard concepts of computational

complexity theory that may be found e.g. in [35] or in [57].
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The box-covering problem: Given a G graph and an lB ∈ N, 2 ≤ lB ≤
Diam(G) natural number. The box-covering of G with lB-boxes is a partition

of the vertices of G into boxes (subgraphs of G, i.e. sets of nodes and links

between them) such that all the distances di,j between any two nodes i and

j within the box are smaller than lB; in other words, the diameter of a box

is at most lB − 1. It can be stated either as an optimization problem or as a

decision problem. In the decision problem version, the input is a pair (G, lB)

and an integer m; the question is whether there is a box-covering of G with

m or less lB-boxes. In the box-covering optimization problem, the input is a

pair (G, lB), and the task is to find a box-covering that uses the fewest boxes.

Theorem 2.3. The decision version of box-covering is NP-complete, and the

optimization version of box-cover is NP-hard.

The following version of the proof is my own.

Proof of Theorem 2.3. In the proof we use polynomial time reduction, in par-

ticular we show that a certain NP-complete problem is no more difficult than

the box-covering problem, because whenever an efficient algorithm exists for

the box-covering problem, one exists for the first problem as well.

Let Gk denote a graph constructed from G, the vertex set of Gk is the

same as in case of G, two vertices of Gk are joined with an edge if and only

if in G they can be reached on a path of length at most k from each other.

The construction of Gk from G can be achieved in polynomial time since a

modified breadth-first search (BFS) finds the shortest paths between every

pair of vertices in O(|V |2 + |V ||E|) [35].

It is easy to see that covering G with boxes of size lB = i is transformed

into covering Gi−1 with boxes of size lB = 2. On the other hand, covering a

graph with boxes of size lB=2 (i.e. the box diameter is 1) is the same as the

classical clique cover problem (also sometimes called partition into cliques),

one of Richard Karp’s original 21 problems shown NP-complete in his 1972

paper [29].

It remains to show that the decision problem is in NP. Finding an efficient

witness is trivial (the partition itself) and it is also clear that the verifier

executes in polynomial time. Now we can conclude that the decision problem
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of box covering is NP-complete and it is well-known that if an optimization

problem has an NP-complete decision version then it is NP-hard.

In [59] Song et al. give an other argument for the fact that box-covering

problem is NP-hard, namely they show that it can be mapped on to a vertex

coloring problem. Here we sketch this reasoning: For a graph G we obtain an

auxiliary graph G′ by removing all edges in G and connecting nodes that are

separated by a distance greater than or equal to lB in G. The vertex coloring

procedure is to color the nodes of G′ using minimum possible number of

colors in such a way that no edge connects two identically colored vertices.

It is not hard to see that this scheme give rise to a natural box covering

in the original graph G, in the sense that the nodes of the same color will

necessarily form a box since they are separated by a distance less than lB

in G. Therefore, the minimum number of boxes to cover G is equal to the

chromatic number of the auxiliary graph G′. The procedure is visualized in

Figure 2.3.

Figure 2.3: Illustration of the solution of the box-covering problem via map-
ping to the vertex coloring problem (here lB = 3). The figure is from [59].

Accordingly, no efficient algorithm exists that computes the optimal solu-

tion of box-covering for large networks, a brute-force approach can be found

in [54]. However, in order to investigate the fractality of large networks, ap-

proximate algorithms should be considered. A widely adopted way is mapping
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box-covering to graph coloring problem since vertex coloring is an extensively

researched topic and several algorithms are present in literature [40], [31]. The

most common - and a vast amount of analysis is based on that (e.g. [39], [26])

- is greedy coloring algorithm [59] due to its high efficiency and significant

accuracy. The results of the greedy algorithm may depend on the ordering

of vertices, various heuristic ordering strategies exist [28].

There are several other algorithms for box-covering [66], such as compact-

box-burning (CBB) [59], maximum-excluded-mass-burning [59] or random-

sequential-box-covering. Here we present the CBB algorithm, that belongs to

the family of burning algorithms, a traditional geometrical approach based

on breadth-first-search. The basic idea is creating a box by evolving it from

one randomly chosen node until the box is compact, i.e. there do not exist

any other vertices that could be included in the box. Compact-box-burning

(CBB) works as follows [59]:

(i) Construct the candidate set C of all yet uncovered vertices.

(ii) Choose a random node u from the set C and delete it from C.

(iii) Delete all vertices v from C whose distance from u is greater than or

equal to lB (i.e. d(u, v) ≥ lB) since these vertices can not belong to the

same box by definition.

(iv) Repeat steps (ii) and (iii) until the candidate step is empty.

(v) The set of the chosen nodes u forms a compact box. Repeat the proce-

dure from (i) until the entire network is covered.

It is important to note that for some of the above algorithms (e.g. CBB)

the connectivity of boxes is not guaranteed. In other words, for some boxes

there may not exist a path within the box that connects two vertices residing

in the same box or equivalently the boxes may overlap. However, according

to the definition of box-covering, disconnectedness is not allowed. Song et al.

found that all the presented algorithms yield approximately the same value

for fractal dimension dB [59].
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2.3 Renormalization and self-similarity

After tiling the system with lB-boxes, we can apply a renormalization pro-

cedure to it, that is an essential technique in modern statistical physics [12],

[53]. The point of this approach is to create smaller replicas of a given ob-

ject, preserving the main structural features and expecting the coarse-gained

copies to be more tractable to analysis. The idea behind the renormaliza-

tion of complex networks arises from the concept of self-similarity, that is

whether the network looks roughly the same under different length-scales.

In this section (following Song et al. [60]) the different scales will be based

on renormalization principles and the invariance of the essential structural

features will be expressed by the degree distribution.

The method works as follows [60]: After optimally covering the entire

network with boxes of given size lB (for details see Section 2.1), each box

is replaced by a single node and two nodes are connected if and only if at

least one link existed between the two corresponding boxes in the original

network. Therefore we create a network where the small-scale structure have

made indistinct and the length scale is now different. We can apply the same

process to the renormalized network to obtain the second renormalization

stage network, and continue until we are left with a single node, provided

that the graph is connected (the procedure is illustrated in Figure 2.4).

Investigating several real-world scale-free networks (in the sense of Eq.

1.2) it turns out that in many cases the main properties, such as the degree

distribution, remain invariant during the renormalization stages [51]. Thus,

the new probability distribution also follows a power law with the same

exponent γ:

P ′(k) ≈ k−γ, (2.3)

where P ′(k) is the probability that a node chosen randomly in the renormal-

ized graph has degree k.

The above property is clear in case of graph sequences since (for a given

box-size lB) the renormalization stages of a graph sequence {Gn}n∈N are also

well-defined graph sequences {G′n}n∈N , {G′′n}n∈N , . . . ,
{
G

(k)
n

}
n∈N

, . . . . There-

fore it is reasonable to require for these graph sequences to have degree distri-
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Figure 2.4: The renormalization procedure for complex networks. In (a) the
method is demonstrated for different box sizes lB in a network demo. In (b)
the renormalization scheme is applied to the entire WWW (with lB = 3).
The figure is from [60].

butions with the same scale-free degree exponent γ (in the sense of Definition

1.2). An example of such a graph sequence is the hierarchical graph sequence

model [34], a generalized version of BRV model [4], that is invariant under

renormalization with the natural choice of lB = N (where N is the size of

the base graph), a detailed investigation can be found in my BSc thesis [47].

Nevertheless, the concept of renormalization invariance of networks on fi-

nite vertices is ambiguous in the literature. The number of vertices is strictly

decreasing during the renormalization procedure (until there is only one sin-

gle node as it is illustrated in Figure 2.4), clearly it makes necessary to restrict

our expectation of renormalization invariance to a certain number of steps

(terminating condition can be the maximum renormalization steps to make or

the minimum number of vertices in the renormalized network). Furthermore,

it is still problematic how to define invariant degree distribution between

two stages; considering the fact that the number of nodes is decreasing it is

plausible to require the same power law scaling in different scaling regions,

e.g. for degrees kmin < k < kmax in case of the unrenormalized network and

for k′min < k′ < k′max regarding the renormalized network; empirical results

yield [60] that the scaling relation between the degrees of the unrenormalized

and renormalized networks (k and k′ respectively) can be characterized in a
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certain sense by a linear scaling law as you can see in Eq. 2.4.

As we mentioned earlier, the property of renormalization-invariant degree

distribution is shared by a lot of complex networks, this feature also applies

in non-fractal networks such as the Internet [22]. It necessitates to introduce

a new notion and distinguish between fractality and self-similarity (although

traditional fractal theory does not separate the two concepts).

Definition 2.4. The self-similarity of a network means that the degree

distribution is invariant under renormalization, i.e. a network is self-similar

if satisfies 2.3 for an appropriate renormalization procedure.

We note here that if the probability distribution of a graph sequence is

invariant under renormalization for lB = l then it is also true for lB = li, ∀i ∈
N, since boxing of Gn with box-size lB = li−1 corresponds to the boxing of

G
(i)
n with box-size lB = l, where G

(i)
n denotes the graph after i renormalization

steps. A similar result is also true for finite networks taking into consideration

that the range of feasible box sizes is limited.

The renormalization procedure can also help us to understand the evo-

lution of many networks, in particular biological networks [22]. The inverse

renormalization process can be considered as the time evolution of the net-

work, that is the growth from a single node (e.g. a primitive protein) via

duplication and divergence into a more complex network, illustrated in Fig-

ure 2.5.

Renormalization can also give rise to a new scaling relation observed in

many real-world fractal networks. Song et al. noticed that plotting the degree

kB(lB) of each vertex in the renormalized network versus the degree khub of

the most connected node in the corresponding box exhibits a linear scaling

law [60]:

kB(lB) ≈ s(lB) · khub, (2.4)

where s(lB) is called the scaling factor. The above scaling relation can be

understood by the same statistical framework that we have described in

Section 2.1.

It is also an empirical finding that the scaling factor s (s < 1) scales with
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Figure 2.5: The inverse renormalization process can be seen as the evolution
of a network from a single node diverging into a complex network. In the
inverse process a node is replaced by a box that contains more vertices and
a number of edges between them, such that the distance between any two
nodes within a box is less than a given box size lB. The figure is from [22].

lB defining a new exponent dk (referred also as degree exponent):

s(lB) ≈ l−dkB . (2.5)

The degree exponent of a graph sequence can be defined in the same

manner as Definition 2.1:

Definition 2.5. The degree exponent dk of a graph sequence {Gn}n∈N is

defined by

dk := lim
lB→∞

lim
n→∞

log sn(lB)

log lB
, (2.6)

where sn(lB) denotes the scaling factor corresponding to Gn and box size lB.

2.4 Network dimensions and their connection

It was found in [60] that the previously introduced measures such as frac-

tal dimension dB, degree exponent dk and scale-free exponent γ are not all

independent from each other. The following assertion was made in [60] sup-

ported by theoretical reasoning and numerical verification (i.e. measurements

on real-world networks):
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Claim 2.6. If a complex graph is scale-free (its degree distribution follows

a power law with exponent γ), fractal (has finite box dimension dB), self-

similar (its degree distribution is invariant under renormalization) and has

finite degree exponent dk then the following relation holds between the three

indices:

γ = 1 +
dB
dk
. (2.7)

Heuristic proof of Claim 2.6 and some comments on the proof. Here we

first describe an extended version of the argument from [60] repeated in

many sources (e.g. [51], [58]). To start with, we collect the equations result

from the assumptions of the claim:

N

NB(lB)
≈ ldBB , (2.8)

P (k) ≈ k−γ and P ′(k′) ≈ k′−γ, (2.9)

kB(lB) ≈ s(lB) · khub, (2.10)

s(lB) ≈ l−dkB . (2.11)

In the equations above, 2.8 refers to fractality derived from 2.1 (N denotes the

number of vertices, NB(lB) is the minimum number of lB-boxes); in 2.9 P (k)

and P ′(k′) denote the degree distributions of the original and renormalized

graph respectively, thus 2.9 means that the network is scale-free and self-

similar; while equations 2.10 and 2.11 relate to the existence of finite degree

exponent and they are the same as 2.4 and 2.5.

The number of vertices in the renormalized network is the same as the

number of boxes needed to cover the unrenormalized network at any given

lB. According to [60] from equation 2.9 we obtain a density balance equation

between the number of nodes with degree k in the original graph and the

number of nodes with degree k′ after the renormalization. (In the original

proof the authors used = instead of ≈, while it would be more accurate to

use ≈, but we keep their notation, since it does not cause misunderstanding.)

NP (k) dk = NB(lB)P ′(k′) dk′.
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From this we get

NP (k) = NB(lB)P ′(k′)
dk′

dk
.

Let us choose k := khub and the corresponding vertices in the renormalized

graph have degree kB(lB), so using equation 2.10 we have

NP (khub) = NB(lB)P (s(lB) · khub) · s(lB).

Substituting equation 2.9 leads to

Nk−γhub = NB(lB)k−γhubs(lB)−γs(lB).

After simplification we have

N

NB(lB)
= s(lB)−γ+1.

From equations 2.8 and 2.11 we obtain

ldBB =
(
l−dkB

)−γ+1

.

Thus dB = −dk(−γ + 1) and it gives rise to desired result

γ = 1 +
dB
dk
.

We would like to raise concerns about the above proof, not only because of

the lack of rigorous formulation of the concepts that the argument starts with

(we have already mentioned these issues in the previous sections). It is also

not clear how equation 2.9 implies the density balance equation NP (k) dk =

NB(lB)P ′(k′) dk′ or what this means exactly, what the mathematical meaning

of such an equation is.

In [70] Parhami et al. also demonstrate that Claim 2.6 is inadequately

justified in [60], they also doubt that invariance of degree distribution under

renormalization holds in general. A new derivation is given in [70] to Claim

2.6 without using self-similarity (invariance under renormalization). However,
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they begin the proof with setting

s(lB) :=

(
N

NB(lB)

) 1
1−γ

(2.12)

leading to a tautological argument. It is obscure how we get 2.12 and what

meaning it has (apart from the fact that it makes the claim easily derivable).

We also mention that if we replace our assumptions (equations 2.8 - 2.11)

with the earlier introduced more rigorous concepts (formulated for graph

sequences, such as Definitions 2.1 and 2.5) we cannot derive such a relation

between the three indices.

2.5 Further network dimensions

The dimension of a system is one of the most essential metrics to charac-

terize its structure and basic features. In the theory of complex networks

the concept of dimension is heavily discussed and several distinct definitions

have been introduced in the literature, the best definiton may depend on

the nature of the problem being studied. Besides the notions that we have

already seen, now we mention the most important other definitions without

attempting to be comprehensive. For example, metric dimension is defined

as the minimum number of vertices in an S subset of the network such that

all other vertices are uniquely determined by their distances to the vertices

in S [27]. There are also definitions based on the scaling property of volume

(or mass) with radius [55], a similar approach lead to the so called fractal

cluster dimension [60], or based on the complex network zeta function [56].

For networks embedded in Euclidean space, one can define a dimension that

describe the number of vertices that can be reached with an average Eu-

clidean distance [16]. We have also introduced a new concept (the modified

box dimension) in my BSc thesis [47] in order to investigate the fractality of

the hierarchical graph sequence model [34].

The remainder of this chapter is devoted to cluster fractal dimension since
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it is useful to the better understanding of the co-existence of the small-world

and fractal properties. The cluster fractal dimension is defined with the help

of cluster-growing method that works as follows [60]. We pick a seed node v

at random and consider the l-neighborhood Γlv (defined in Section 1.2), it can

be also called as a cluster. Let M l
v denote the number of nodes in the cluster

Γlv, i.e. Mv(l) =
∣∣Γlv∣∣. Then we repeat the procedure by choosing many seed

nodes at random and consider the average “mass” of the resulting clusters,

strictly speaking we write M(l) = Ev(Mv(l)) and the cluster dimension df is

given by the following scaling:

M(l) ≈ ldf . (2.13)

Similarly to Definition 2.1 we can define the cluster dimension of a graph

sequence in the following manner:

Definition 2.7. The cluster dimension df of a graph sequence {Gn}n∈N is

defined by

df := lim
l→∞

lim
n→∞

logMn(l)

log l
, (2.14)

where Mn(l) denotes the expected size of an l-neighborhood in Gn.

For a complex network with small-world property (see Section 1.2) df =

∞ holds. Since small-worldness readily implies that for sufficiently big l and

for an average v we have Mv(l) =
∣∣Γlv∣∣ ≈ el, i.e. M(l) ≈ el. Hence

df ≈
logM(l)

log l
≈ l

log l
→∞ (2.15)

Therefore, if we try to measure the fractal dimension of a small-world network

using the cluster growing method then it points out that these networks

cannot be characterized by a finite dimension, even though the box dimension

(see Definiton 2.1) can be finite. The reason behind this discrepancy can be

better clarified studying the average mass (number of vertices) of a box in

case of a network characterized by a finite box dimension dB [51]. For a given

lB and a given network with N vertices the average mass of a box 〈|B(lB)|〉
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is

〈|B(lB)|〉 =
N

NB(lB)
≈ ldBB , (2.16)

as opposed to the exponential scaling of the average mass of a cluster M(l) ≈
el. This difference is due to the topology of real-world scale-free networks,

expressly the presence of several highly connected hubs implying that most

of the nodes can be reached from the hubs via few steps. Therefore, the

hubs are overrepresented in the Γlv clusters, there is a very high probability

of including the same hubs in almost all clusters. On the other hand, box-

covering method is a global tiling and once a hub (or any other vertex)

is covered, it cannot be covered again. It is also important to note that

this distinction between box and cluster dimensions does not emerge for

a homogenous network characterized by a narrow degree distribution, but

the cluster-growing and box-counting methods yield the same exponent, i.e.

dB = df , since in this case every node typically has the same number of

neighbors [60].

2.6 Origins and influence of fractality

The standard models for generating scale free networks, such as the pref-

erential attachment model [2] or the configuration model [6], [46] do not

produce self-similar or fractal networks [61]. In this section we show two pos-

sible approaches to understand the origin of the fractal property in complex

networks: the “repulsion between hubs” principle by Song et al. [61] and

the study of the skeleton (spanning tree) of the graph by Kim et al. [25].

In addition, we also point out the importance and influence of fractality of

real-world networks.

2.6.1 The “repulsion between hubs” principle

The main feature that seems to distinguish the fractal networks is an effec-

tive “repulsion” (dissortativity) between nodes with high degree (hubs), this

idea was first suggested by Yook et al. based on empirical evidence [71] and
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developed by Song et al. with analytical and modeling confirmations [61].

To put in other words, the most connected vertices tend to not be directly

linked with each other but they prefer to link with less-connected nodes. In

contrast, in case of non-fractal networks, hubs are primarily connected to

hubs.

The degree correlation can be captured by studying the neighbor connec-

tivity 〈knn〉, i.e. the average degree of neighbors of a node with degree k [49].

This term is formally defined as:

〈knn〉 =
∑
k′

k′P (k′|k),

where P (k′|k) is the conditional probability that a vertex of degree k is

connected to a vertex with degree k′. Another means of measuring the as-

sortativity is the Pearson correlation coefficient of degree between pairs of

linked vertices, also known as assortativity coefficient [48].

We have already seen a network evolution approach using the inverse

renormalization procedure (illustrated in Figure 2.5), however this is not a

real network growth model, since it only sketches a possible evolution know-

ing the future network. Now we present a simple network generation model

motivated by the inverse renormalization process that can capture the main

features of real-world fractal networks [61].

• Initial condition: We start at t = 0 with a simple structure of a few

vertices (e.g. a star shape of five nodes).

• Growth: At each time step t + 1 we link m · degt(v) new vertices to

every v vertex that is already present in the network, where m is an

input parameter and degt(v) is the degree of vertex v at time t.

• Rewiring edges: At each time step t+1 we rewire the already existing

edges as a stochastic combination of Mode I (with probability e) and

Mode II (with probabilty 1− e)

– Mode I: we keep the old edge generated before time t+ 1
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– Mode II: we substitute the edge (u, v) generated in one of the

previous time steps by a link between newly added nodes, i.e. by

an edge (u′, v′), where u′ and v′ are newly added neighbors of u

and v respectively, as shown in Figure 2.6.

Figure 2.6: Different modes of growth with m = 2. In (a) the initial stage is
illustrated, (b), (c) and (d) demonstrates Mode I, Mode II and the combina-
tion of the two modes respectively. The figure is from [61].

The model evolves by linking new nodes to already existing ones as fol-

lows: those nodes that appeared in the earlier stages form the hubs in the

network. Consequently, Mode I leaves the direct edges between the hubs lead-

ing to hub-hub attraction, on the contrary Mode II leads to hub-hub repulsion

or anticorrelation. It is interesting to investigate how the connection mode

affects the fractality of the model, what happens if only one of the modes is
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used (e = 0 or e = 1) or the stochastic combination of the two modes.

First, we establish some basic facts about the graph sequence model

{Gt}t∈N in general. It is easy to see that the number of vertices in the net-

work at time t is deterministic, namely: N(t) = N(t − 1) + 2m · E(t − 1),

where E(t) denotes the number of edges in the network at time t. It is

also obvious that we add the same number of vertices as edges in all steps,

i.e. N(t + 1) − N(t) = E(t + 1) − E(t). It is important to note that the

paper [61] that introduced the model claims that N(t) = E(t), but the va-

lidity of this equation depends on the initial configuration (and only holds

if N(0) = E(0)). Nevertheless, it is clear that the number of nodes increases

exponentially with time, i.e. N(t) ≈ et.

Lemma 2.8. The above network generation model with parameter e = 1 (i.e.

using only Mode I) leads to a small-world non-fractal topology.

The above assertion was claimed in [61] with heuristic explanation, here

we give a more analytical argument.

Proof of Lemma 2.8. If we use only Mode I (e = 1), the diameter increases

by 2 in every step, thus Diam(Gt+1) = Diam(Gt) + 2. It implies that the

diameter grows proportionally to the logarithm of the number of nodes in

the network, i.e. Diam(Gt) ≈ logN(t) leading to a small-world network.

In order to handle fractality we should examine the boxing of the graph

sequence. It is easy to recognize that we can cover Gt with N(t− 1) boxes of

size lB = Diam(G0) + 1 as it is also suggested by Figure 2.6. Another quite

apparent observation (following from the hierarchical structure of the model)

is that Gt can be covered with N(t− i− 1) boxes of size lB = Diam(Gi) + 1

if t − i − 1 ≥ 0 and clearly only one box is enough to cover Gt if t < i + 1.

Let N t
B(di) denote the minimum number of boxes of size lB = Diam(Gi) + 1

needed to cover Gt, so we have

N t
B(di) ≤

N(t− i− 1) if t ≥ i+ 1

1 if t < i+ 1.
(2.17)

It is less straightforward to verify that this is the optimal boxing (if
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Diam(G0) ≤ 2) or at least asymptotically optimal (if Diam(G0) > 2). We

can observe that in case of covering Gt with boxes of size lB = Diam(Gi) + 1

we can find N
(
t− i−

⌈
Diam(G0)

2

⌉)
witness vertices such that the pairwise

distances between the vertices are greater than Diam(Gi). It means that

N t
B(di) ≥

N
(
t− i−

⌈
Diam(G0)

2

⌉)
if t ≥ i+

⌈
Diam(G0)

2

⌉
1 if t < i+

⌈
Diam(G0)

2

⌉
.

(2.18)

(Here we do not give the exact construction but for the boxing of the

hierarchical graph sequence model [34] a complete rigorous proof can be

found in my BSc thesis [47] and the optimal boxing of this model can be

proved in a very similar way.) Therefore putting together 2.17 and 2.18

we can conclude that N t
B(di) ≈ N(t − i), this together with the exponen-

tial grow of N(t) ≈ et (implying N t
B(di) ≈ et−i) and the linear grow of

Diam(Gt) = Diam(G0) + 2t ≈ t yields that no finite dB exists in the sense of

Definition 2.1, thus Mode I leads to a small-world non-fractal topology.

Now we determine the degree distribution of the model if only Mode I is

used (i.e. e = 1).

Lemma 2.9. The degree distribution of the network generation model with

parameter e = 1 (i.e. using only Mode I) is scale-free with γ = log(2m+1)
log(m+1)

.

The following argument is my own.

Proof of Lemma 2.9. First of all, we suppose that N(0) = E(0) and at t =

0 all the vertices are of the same degree deg0(v) = c ≈ 1 ∀v ∈ V (G0),

where degt(v) denotes the degree of vertex v at time t. It is obvious from

the construction that degt+1(v) = degt+1(v) · (m + 1). It implies that G(t)

has only vertices of degree k = (m + 1)i i = 0, 1, . . . , t. Let Vt(i) denote the

number of vertices of degree (m+ 1)i in G(t), then we have

Vt(i) =

N(t− i− 1) · 2m if 0 ≥ i ≥ t− 1

N(0) if i = t.
(2.19)
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Let us check whether the total number of vertices of the possible degrees

equals the number of nodes in G(t):

t∑
i=0

Vt(i) = N(0) +
t∑
i=1

N(i− 1) · 2m = N(0) +
t∑
i=1

(2m+ 1)i−1 ·N(0) · 2m

= N(0) + 2mN(0)
t∑

j=0

(2m+ 1)j = N(0) + 2m ·N(0)
(2m+ 1)t − 1

2m

= N(0) · (2m+ 1)t = N(t).

The degree distribution now can be calculated, the probability that a uni-

formly chosen vertex from G(t) has degree (m+1)i is obviously Pt((m+1)i) =

Vt(i)/N(t), thus we obtain:

Pt(k) = Pt((m+ 1)i) =
Vt(i)

N(t)
=

2m ·N(t− i− 1)

N(t)

=
2m · (2m+ 1)t−i−1 ·N(0)

(2m+ 1)t ·N(0)
= 2m · (2m+ 1)−i−1

We search for a scale-free degree exponent γ(t) such that Pt(k) ≈ k−γ(t), i.e.

((m+ 1)i)
−γ(t) ≈ 2m · (2m+ 1)−i−1. Taking the logarithm we get:

−γ(t)i log(m+ 1) ≈ log(2m) + (−i− 1) log(2m+ 1)

γ(t) ≈ log(2m)

−i log(m+ 1)
+

(−i− 1) log(2m+ 1)

−i log(m+ 1)
.

Using that log(2m)
−i log(m+1)

≈ 0 and i+1
i
≈ 1 if i is sufficiently big we obtain:

γ = γ(t) =
log(2m+ 1)

log(m+ 1)
. (2.20)

Therefore we can conclude that the model is scale-free with a finite γ

exponent. We note here that this result for γ does not agree with the formula

that can be found in [61], since in that paper the author claims that the scale-

free exponent of this model is γ = 1 + log(2m+1)
log(m+1)

.
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If we rewire all the edges according to Mode II (e = 0), the diameter

increases multiplicatively Diam(Gt+1) = 3 ·Diam(Gt) + 2, since in each step

we replace the edges by three-long paths and the + 2 term comes by adding

new vertices, this leads to an exponential growth in the diameter with time

Diam(Gt) = (Diam(G0) + 1) · 3t−1 − 1 ≈ 3t = et log 3 and consequently to the

absence of the small-world property. Using similar argument as in the proof

of Lemma 2.8 we obtain that the model has fractal property with a finite

box dimension dB = log(2m+1)
log 3

[61].

In the general case (for an intermediate 0 < e < 1) the diameter grows as

Diam(Gt+1) ≈ (3− 2e)Diam(Gt) + 2e and the model reproduces both small-

world property and finite fractal exponents dB and dk [61], the visualization

of this stochastic small-world fractal network model can be seen in Figure

2.7.

Figure 2.7: Resulting topology predicted by the stochastic combination of
Mode I and Mode II with e = 0.8. The different colors represent the boxing
of the network. The figure is from [61].
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2.6.2 Skeleton of complex networks

Another way to understand the origin of fractality is to examine the so called

skeletons of complex networks proposed by Kim et al. [30],[25]. The method is

motivated by a similar intention as renormalization (as presented in Section

2.3): to simplify the complexity but preserving the main structural features.

In what follows, this more simple structure is the spanning tree. The spanning

tree of a graph on n vertices is a subset of n−1 edges that form a tree. We will

consider a particular spanning tree - called skeleton - that can be regarded as

the “communication kernel” of the network, in the sense that it handles most

of the traffic or information flow. To put in mathematically precise terms,

skeleton refers to the spanning tree that maximizes the edge betweenness

centrality.

Definition 2.10. The betweenness centrality (sometimes also referred to as

load) be of an edge (or node) e is defined as

be =
∑

i,j∈V,i 6=j

ci,j(e)

ci,j
, (2.21)

where ci,j denotes the number of shortest paths connecting i and j, while

ci,j(e) is the number of shortest paths connecting i and j passing through e.

Edges (or nodes) with high betweenness centrality (BC) has a large influ-

ence on the transfer of items (e.g. information) through the network, under

the probable assumption that item transfer follows the shortest paths [24]. An

important discovery is that the distribution of the edge betweenness central-

ity is very inhomogeneous in scale-free networks, indicating the existence of

edges with extremely high BC, thus used for communication very frequently;

this assertion makes it more interesting to investigate the spanning tree that

maximizes the sum of edge BC, namely the skeleton [30].

A group of the department’s fellows (including me) has provided social

network analysis in the scope of a university project in partnership with a

leading telecommunication company and betweenness centrality also played

an important role in our analysis, a lot more details about this case study

can be found in the caption of Figure 2.8.
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Figure 2.8: Case study: We have provided social network analysis to a large
telecommunication company. The figure shows a telephone call network based
on real sample data, namely MIT Reality Mining Dataset [18]. The network
illustrates the call connections between 411 MIT students during the 11th
week of 2005. It was part of our job to explore the key users (and con-
nections) with respect to their role in the social network. There are several
ideas to measure the centrality, one of them is betweenness centrality, it is
roughly speaking proportional to the number of geodesics (shortest paths)
going through a vertex, see Definition 2.10. If a user (represented by a vertex)
has large betweenness it means that his/her opinion may be quite important
in the community. The edge with maximal betweenness centrality can be
considered as the “backbone” (since it is the most important edge in the
skeleton). The vertex and edge with maximal betweeness are colored by red.

After determining the betweenness centraility of each edge, we assign the

BC as the weight of each edges then we negate the weights of all edges. The

construction of the skeleton is equivalent to find the minimum spanning tree

of the previously defined weighted network, therefore all the classical methods

can be used: Prim’s, Kruskal’s or Bor̊uvka’s algorithm [5]. The residual edges

(the ones not included in the skeleton) can be regarded as the shortcuts (since

they shorten paths on the spanning tree). It was pointed out in [30] based

on empirical observations that the skeleton of a scale-free network is also

scale-free but with different γ exponent.

The investigation of the skeleton of fractal networks shed light on the ori-
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gin of fractality. After performing fractal scaling analysis on the underlying

skeleton of several real-world networks, it came into view that for the fractal

networks, the numbers of boxes needed to cover the original networks and

its skeleton are almost the same. Even though these networks are far from

being a tree, the shortcuts are distributed in such a way that the fractality

is preserved. The reason of this is that the shortcuts connect nodes mostly

within modules (or branches) and the connections between different modules

are provided by the skeleton. This topological structure can be measured by

the “length” of a shortcut between vertices i and j, in the sense of the mini-

mum number of steps from i to j on the spanning tree, for fractal networks

the “length” of the shortcuts are typically small (for illustration see Figure

2.9). Based on these observations a model of fractal networks was introduced

in [25].

Figure 2.9: We consider the scale-free tree illustrated in (a). In (b) and (c)
shortcuts are added, in (b) the shortcuts are “short” resulting a fractal net-
work, while in (c) a non-fractal network is shown created by adding “long”
shortcuts. The figure is from [25].

2.6.3 Influence and importance of fractality

We have seen different approaches to unravel the key principles that give rise

to the fractal structure of complex networks. However, the question is still

open: Why do real-world networks evolve into fractal networks, what impact
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does fractality have on complex networks? Here we mention three important

properties of fractal networks that have received considerable attention.

One of the most important property is robustness against random fail-

ure or intentional attacks. A network is regarded to be vulnerable to random

errors / targeted attacks if removing a small number of random / certain ver-

tices the graph falls apart. The most frequently used quantities to describe

robustness are measuring the effect of removing nodes to the average size of

the connected components 〈s〉 or to the relative size of the largest component

(the fraction of nodes that belong to the largest component). It was found

by simulations and confirmed by calculations that scale-free networks show

intense robustness against random node removal [1]. On the other hand, a

number of scale free networks (such as Internet at router level) are extremely

vulnerable to targeted attacks on the hubs [1]. However, the authors in [61]

showed that fractal property of networks significantly increases the robust-

ness to targeted attacks (in comparison with a a scale-free network of the

same number of nodes, with same γ degree exponent, but different degree

correlation) . Thus fractality makes scale-free networks less vulnerable and

provides better protection when the hubs are removed from the system, since

the hubs are more dispersed. This can serve as an explanation why most bi-

ological networks have evolved towards fractal topology.

Another feature that is closely related to fractality is transport (also re-

ferred to as diffusion or flow) on networks. The authors in [23] developed

a scaling theory on transport and showed that fractality of networks tend

to accelerate the diffusion process. Mathematically the diffusion problem is

expressed through first passage problem (FPP or first hitting time) [38]. The

most natural quantities to consider are the minimal weight of a path be-

tween two vertices x and y and the number of edges, often regarded as the

hopcount, on this path. Clearly, without edge weights (and in this thesis we

mainly consider unweighted networks) these quantities coincide. Another im-

portant related question is to determine the flooding time of the graph from

a fixed vertex x i.e. the maximum of the shortest paths between x and all

other vertices [33].

Finally, fractality seems to be heavily associated with modularity. As hubs
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are isolated, one can consider the groups of nodes around a local hub being

different functional modules (and this is really the case for some biological

networks, e.g. protein interaction networks) [22]. One way to define modular-

ity is through the renormalization procedure, boxes at a given length scale

lB are identified as the network modules for this scale [21].

Definition 2.11. The modularity function M(lB) of a network is given as

follows

M(lB) :=
1

NB(lB)

NB(lB)∑
i=1

Lin
i

Lout
i

,

where the sum is over all boxes, Lin
i denotes the edges within the ith box and

Lout
i is the edges that go out from the ith box.

We can notice that we have counted every edge between the boxes twice,

since an edge that connects box i and box j appears both in Lout
i and Lout

j ,

so it may be reasonable to multiply by a factor 2.

We can gather even more information on the network structure if we

examine how this property is modified under varying scales of observation,

i.e. for different values of lB. In [21] it was found that the dependence of M on

lB follows a power law in real-world fractal networks defining the modularity

exponent dM

M(lB) ≈ ldMB . (2.22)

The exponent dM demonstrates how modularity scales with length and dis-

criminate modular (usually if dM > 1) from non-modular (dM < 1) networks.

Experimental studies shows that real-world fractal networks are indeed mod-

ular (i.e. dM > 1) [21], in Section 3.1 we also calculate dM for a mathematical

fractal network model.
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Chapter 3

Fractal network models

We have already remarked that in spite of the presence of fractality in sev-

eral real-world networks, the common models of scale-free networks fail to

exhibit fractal scaling. We have also presented and examined a fractal net-

work model in the previous chapter (illustrated in Figure 2.7), in this chapter

we demonstrate and investigate further deterministic and random fractal net-

work models. Modeling real world fractal networks (i.e. producing an artificial

object that is similar to the real one) is of great interest due to two main

reasons: they provide insight into the origins that give rise to fractal property

and mathematically tractable models allow for rigorous analysis.

3.1 Song-Havlin-Makse-model

This model is motivated by “repulsion between hubs” principle present in

fractal networks (for more details see Subsection 2.6.1) and it shows that the

correlations between degrees of vertices are a determinant factor for the frac-

tality [51]. The generating algorithm works with a similar recursive approach

as the network generation model that we have introduced in Subsection 2.6.1.

The model starts with two vertices connected by an edge in generation n = 0

[51]. Then the next generation is obtained recursively by adding m · degn(w)

new vertices to every w vertices that is already present in the network, where

degn(w) is the degree of vertex w at generation n. To put in other words,
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that is connecting m new vertices to the endpoints of each edge (u, v) of

generation n. Furthermore, edge (u, v) is removed with probability e and re-

placed by x new ((u(i), v(i)))i=1,...,x edges, where u(i) and v(i) are newly added

neighbors of u and v respectively (see Figure 3.1). On the other hand, this

description does not explain how to proceed if x > m and it is also not clear

whether it is possible to choose a vertex more times or it is required that

u(i) 6= u(j) and v(i) 6= v(j) if i 6= j.

Figure 3.1: Illustration of the growth process in Song-Havlin-Makse-model.
In this case, the original edge is removed and m = 3 new vertices are attached
to the endpoints with x = 1 or x = 2 new links between the new nodes. The
figure is from [51].

A very similar model is investigated in details in terms of diameter, degree

distribution and box dimension in Subsection 2.6.1, pointing out that the

choice of e determines whether the network is small-world, fractal or both.

Now we will follow [51] to examine another topological property of this model,

namely the modularity (see Definition 2.11).

Lemma 3.1. The modularity exponent of the Song-Havlin-Makse model is

dM =
ln

(2m+x−1)
x

ln 3
.

The following argument is my own motivated by the explanation from

[51].
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Proof of Lemma 3.1. In this model a module can be identified as the neigh-

borhood of a central hub. More specifically, we will examine the model for

e = 1 (old edges are surely rewired) and in this case the lB-modules of G(n)

of size lB = 3i, i < t can be recognized as the offspring (or neighborhood) of

“old” vertices from G(n − i). It is easy to see that if x = 1 then the graph

is a tree, while x > 1 means that the different modules are connected by

more edges. The number of edges within a module of size lB = 3i is ap-

proximately (2m + x − 1)i, since each edge give rise to 2m new links in a

generation step and x−1 extra links are added, so using the notation of 2.11,

Lin ≈ (2m + x − 1)i. The number of edges going out from a module of size

lB = 3i is obviously Lout ≈ xi. Putting together these results, we obtain that

the modularity function of the Song-Havlin-Makse model for e = 1 is

M(lB) =
1

NB(lB)

NB(lB)∑
j=1

Lin
j

Lout
j

=
(2m+ x− 1)i

xi
,

where lB = 3i, i ∈ N.

(3.1)

The modularity exponent dM of the network model is given by 2.22:

(2m+ x− 1)i

xi
≈
(
3i
)dM , (3.2)

which finally yields that for e = 1 this network model has finite modularity

exponent:

dM =
ln (2m+x−1)

x

ln 3
. (3.3)

A network is considered modular if dM > 1, so now we can conclude that

this model for e = 1 is modular if 2m+x−1
x

> 3, i.e. m − 1
2
> x, which is the

same as m > x, since both parameters are integer.
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3.2 (u,v)-flowers and -trees

In this section we present a new family of recursive scale-free networks, the

(u, v)-flowers, proposed by Rozenfeld, Havlin and ben-Avraham [52]. This

network model generalizes the hierarchical scale-free network model of Doro-

gostev, Golstsev and Mendes (DGM) [17] and appropriately modifying the

parameters u and v results to either fractal or non-fractal networks [52] [50].

The algorithm to construct the (u, v)-flowers is as follows: In generation

n = 1 we start with a cycle graph consisting of u + v ≡ w nodes. Then,

generation n+1 is achieved recursively by replacing each edge by two parallel

paths of length u and v. In what follows we assume that u ≤ v, without loss

of generality. Examples of (1, 3)- and (2, 2)-flowers are illustrated in Figure

3.2. The DGM network corresponds to the special case of u = 1 and v = 2.

Figure 3.2: The first three iterations of (u, v)-flowers, u + v = 4. In (a)
u = 1, v = 3, while in (b) u = 2, v = 2. The figure is from [52].
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One of the most important properties of the (u, v)-flowers that they are

self-similar, it follows easily from an equivalent method of construction: to

obtain generation n + 1, create w = u + v copies of the network at step n

and join them (glue them together) at the hubs (the exact connection rule is

determined by u and v) [52].

It is obvious from the second method of construction that the number of

edges of a (u, v)-flower of generation n is

En = (u+ v)n = wn. (3.4)

While the number of vertices obeys the recursion relation [52]

Vn = wVn−1 − w,

that together with initial condition N1 = w yields

Vn = wn − wn − w
w − 1

=

(
w − 2

w − 1

)
wn +

(
w

w − 1

)
. (3.5)

Lemma 3.2. The degree distribution of (u, v)-flowers follows a power-law

distribution with degree exponent γ = ln(u+v)
ln 2

.

First we note that it is claimed without proof in [52] and [17], also repeated

in [51] that the degree exponent of the model is

γ = 1 +
ln(u+ v)

ln 2
. (3.6)

On the other hand, further investigation yields otherwise.

Proof of Lemma 3.2. It is easy to see from construction that (u, v)-flowers

have only vertices of degree k = 2m, m = 1, 2, . . . , n. Let Vn(m) denote the

number of vertices of degree 2m in the nth iteration of the graph, then we

can obtain the following recursion formula:

Vn(m) = Nn−1(m− 1) + (w − 2)wn−1δm,1,
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where δm,1 stands for the Kronecker delta, i.e. it is 1 if m = 1 and 0 otherwise.

This leads to:

Vn(m) =

(w − 2)wn−m, if m < n,

w, if m = n.
(3.7)

First, if a vertex is chosen uniformly at random from the (u, v)-flower of

generation n, then the probability that this vertex is of degree 2m is clearly

Pn(2m) = Vn(m)/Vn. That means that we search for γ(n) that satisfies the

following formula (for k ≥ k0):

Pn(k) ≈ k−γ(n). (3.8)

It is known that k is of the form 2m and we suppose that m < n, then we

obtain:

Pn(k) = Pn(2m) =
Vn(m)

Vn
=

(w − 2)wn−m

w−2
w−1w

n + w
w−1

=
(w − 2)w−m

w−2
w−1 + w

w−1w
−n (3.9)

From the last form of 3.9 it can be seen that w
w−1w

−n ≈ 0 if n is sufficiently

big. We search for γ(n) that satisfies Pn(2m) ≈ (2m)−γ(n), so taking the

logarithm base 2 of 3.9 we get:

log2(w − 2)−m log2(w)− (log2(w − 2)− log2(w − 1)) ≈ −mγ(n), (3.10)

then using that log2(w−1)
m

≈ 0 if m is sufficiently big, we can write:

log2(w) ≈ γ(n). (3.11)

Thus we obtain that:

γ = log2(w) =
ln(w)

ln 2
=

ln(u+ v)

ln 2
, (3.12)

which does not agree with the formula of 3.6.

Recursive scale-free trees constructed in a similar way as the flower net-

works [52]. However, it is not specified by the authors, it is a natural choice
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to start with a path graph on u+ v = w edges (other trees are also possible

to start with). Generation n+1 of a (u, v)-tree is obtained by replacing every

edge in generation n with a path of length
⌊
v
2

⌋
. The trees may be also built

up by successively joining w copies at the appropriate hubs [52]. An example

of (1, 2)-tree is shown in Figure 3.3.

Figure 3.3: The first three iterations of (1, 2)-tree. The figure is from [52].

In the remainder of this section we will show that (u, v)-networks have

different topological properties if u = 1 or u > 1 [52]. First, we consider the

diameter of (u, v)-flowers, let Dn denote the diameter of the n-th iteration.

If u = 1, it means that the distance between “old” vertices remains the

same, so the diameter grows linearly (due to new vertices), namely: Dn+1 =

Dn +
⌊
v−1
2

⌋
+
⌈
v−1
2

⌉
= Dn + v − 1. Using the fact that we start with a cycle

of 1 + v vertices D1 =
⌊
v+1
2

⌋
, which yields that:

Dn =

(v − 1)n+ 3−v
2
, if u = 1 and v is odd,

(v − 1)n+ 2−v
2
, if u = 1 and v is even.

Now we compute the diameter of the (u, v) flower if u > 1. It is clear

the distance between “old” vertices grows by a factor of u (since each edge

is replaced by parallel paths of u and v, u ≤ v), adding new vertices to the

graph also increases the diameter, expressly: Dn+1 = Dn ·u+
⌊
v−u
2

⌋
+
⌈
v−u
2

⌉
=

Dn · u + v − u. Solving the recursion with the initial condition D1 =
⌊
v+u
2

⌋
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we conclude that:

Dn = un−1
(⌊

u+ v

2

⌋
+
v − u
u− 1

)
+
u− v
u− 1

, if u > 1.

To summarize, the diameter of (u, v)-flowers scales as follows:

Dn ≈

(v − 1)n, if u = 1,

un, if u > 1.
(3.13)

Similar reasoning yields that the diameter of (u, v)-trees Dtree
n is:

Dtree
n ≈

vn, if u = 1,

un, if u > 1.
(3.14)

Combining 3.13 with the fact that the number of nodes grows as a power

of n, Vn ≈ (u+ v)n (see 3.5) implies that

Dn ≈

lnVn, if u = 1,

V
lnu

ln(u+v)
n , if u > 1.

(3.15)

Therefore, (u, v)-flowers are small-world only if u = 1.

In order to determine the box dimension dB we use a heuristic argument

from [51]. The change of the average mass of a box 〈|B(lB)|〉 upon the rescal-

ing of the box-size by a factor c is clearly:

〈|B(c · lB)|〉 ≈ cdB 〈|B(lB)|〉 . (3.16)

Regarding (u, v)-flowers for u > 1 we have:

〈|B(u · lB)|〉 ≈ (u+ v) 〈|B(lB)|〉 , (3.17)

that yields that the box dimension of the (u, v)-flower (for u > 1) is given by

dB =
ln(u+ v)

lnu
, (3.18)
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and no finite box dimension exists if u = 1. On the other hand, deriving 3.17

with mathematical precision is far from trivial.
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Chapter 4

Summary

The purpose of this thesis was to explore and understand the theory of fractal

networks with mathematical precision. We did not only conduct a compre-

hensive literature review but also handled the deficiency of mathematical

rigor of related papers and proposed different approaches to make concepts

more precise.

After giving a general introduction to network science and going through

the most important notions of the topic, we gained an extensive understand-

ing of fractality of complex networks. We presented the most important meth-

ods adopted from fractal theory and statistical physics to unfold the fractal

and self-similar structure of real-world networks, namely box-covering and

renormalization. Next, we investigated box-covering problem in detail and

gave an own proof for the fact that it is NP-hard. We demonstrated some

notions of fractal dimension and shed light on the connections between them.

Furthermore, we uncovered the origin of fractality of networks with the help

of different mathematical principles, then we reviewed the importance and

influence of fractal networks.

Finally, we presented stochastic and deterministic fractal network mod-

els: Song-Havlin-Makse model along with (u, v)-flowers and -trees. We also

examined specific aspects of these models, including the calculation of the

diameter, degree distribution, modularity exponent and box dimension.

There are several possible future directions for the further study of frac-
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tality of complex networks, especially regarding the mathematical aspects of

the field. We have pointed out a number of dubious concepts (e.g. the ne-

cessity to distinguish between fractality and other notions in terms of static

networks and evaluational networks or graph processes), we have also shown

some assertions that are difficult to derive with mathematical rigor. On the

other hand, laying the foundations of the mathematical theory of fractal

networks remains to be completed.

Real-world networks are known to exhibit spatial heterogeneity, to treat

this it is useful to investigate their multifractal properties. Accordingly, a

promising research topic is to study the multifractal analysis of complex

networks [15], [66].

There are also several relevant open questions in this topic from an em-

pirical research perspective, such as investigating the stability of fractality or

understanding why both fractal and non-fractal networks are present in na-

ture. A bulk number of open questions can be found in [51] from a physicist’s

point of view.
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