
Budapest University of Technology and Economics
Institute of Mathematics

Department of Stochastics

Networks and fractals
BSc Thesis

Roland Molontay

Supervisors:
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Preface

My thesis was written based on the following thesis topic:

Fraktálok és hálózatok

Az elmúlt években egyre nagyobb figyelem irányul a hálzatok elméletére.
A téma dr. Simon Károly, dr. Komjáthy Júlia és Vágó Lajos jelenleg is zajló
kutatásaihoz kapcsolódik. A hallgató megismerkedik a hálózatelmélet leg-
fontosabb fogalmaival, áttekintést ad néhány fontos hálózatmodellról. Körül-
járja a fraktálok elméletét, illetve hálózatokkal való kapcsolatát. Tanulmá-
nyozza a különböző fraktáldimenziók fogalmát, törekszik összefüggést találni
a gráfok fizikusok által definiált fraktáldimenziója és a matematikusok által
ismert fogalom között. Vizsgálja, hogy lehet-e kapcsolat az euklideszi térbe
ágyazott fraktál dimenziója és a hálózat gráftávolsággal definiált fraktáldimen-
ziója között.
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Chapter 1

Introduction

The study of complex networks has received tremendous amount of attention
recently, mainly because they are used in several disciplines of science, such
as in Information Technology (World Wide Web, Internet), Sociology (social
relations), Biology (cellular networks) etc. Understanding the structure of
such networks has become essential since the structure affects their perfor-
mance, for example the topology of social networks influences the spread of
information and disease.

1.1 Historical overview

In most cases real networks are too large to describe them explicitly. In order
to surmount this problem, network models must be considered. Mathemati-
cal modeling of networks dates back to the late 1950s, when thanks to Erdős
and Rényi the field of random graphs came into the focus of research inter-
est. The Erdős-Rényi random graph arises by taking a finite set of vertices
and placing an edge between any pair of distinct vertices with some fixed
probability p [11].

Later, the advent of computer age has opened up new approaches to the
investigation of real networks. It has become possible to study real networks
which lead to the striking conclusion that many real networks - irrespective of
their function share fascinating features, for instance the fact that they are
small worlds and scale-free (this means that they obey a power-law degree
distribution). The Erdős-Rényi random graph and its generalizations fail to
match some of these very important properties, and therefore, new graph
models were introduced. In fact already in [11] Erdős and Rényi remark
that:

“Of course, if one aims at describing such a real situation, one
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should replace the hypothesis of equiprobability of all connection
by some more realistic hypothesis.”

The question naturally came up: what more realistic procedure could
give rise to networks with the above features? Barabási and Albert found an
answer to this question in their ground-breaking paper [2] in 1999, which has
attracted an enormous amount of attention within the research community.
Their answer was the heuristically introduced Preferential Attachment Model
(also known as Barabási-Albert model). The principle behind the model is
that our world is not perfectly egalitarian, the rich get richer: if a newcomer
arrives to a community, they are more likely to get acquainted with socially
active people, a new webpage is more likely to link to a popular site rather
than a randomly chosen one. In other words, new elements are more likely to
attach to elements with high degree compared to elements with small degree.
The mathematically rigorous construction of this model is linked with the
names of Bollobás, Riordan, Spencer and Tudnády [6].

At the same time another pioneering paper turned the attention to com-
plex networks: Watts and Strogatz results on modeling small-world networks
[28]. Their model is given as follows: One starts with a ring of n nodes in
which each node is connected to its k nearest neighbours, for a given k. Then,
each link is rewired with probability p by choosing randomly a new extrem-
ity. A completely different observation - that real networks often obey some
hierarchical structure - motivated Barabási, Ravasz and Vicsek [3] to intro-
duce deterministic network models generated by a method which is common
in constructing fractals. A similar, fractal based model was introduced by
Zhang, Comellas, Fertin and Rong [30].

1.2 Real networks and their fascinating fea-

tures

In this section we describe a number of real networks and observe some
interesting phenomenon. First of all, we present some of the most researched
complex networks [14] with the pretension of spanning the variety of contexts
in which complex networks appear.

• Internet: The topology of the Internet can be modeled by graphs
where the nodes are routers (or autonomous systems such as computers
at a company/university) linked with physical links.

• World Wide Web: The elements of the WWW are web pages, and

5



there is a directed connection between two pages when the first links
to the second.

• Co-occurrence: Considering any specified unit of text (a book, the
queries to a search engine, or a chat on an interactive system), co-
occurrence networks are generated by connecting two words if they
appear in the same sentence or query. An example is shown in Figure
1.1.

Figure 1.1: The co-occurence network of U.S. President Barack Obama’s
2013 inaugural speech. Text network visualization - in comparison with “tag
clouds” - emphasizes both the most frequently mentioned words, as well as
the relationships between them, making it much easier to understand what
the text is about. The figure is from Nodus Labs 2.

• Social contacts: We define the vertices of the social network to be
the inhabitants of the world, an edge is drawn between two people if
they know each other. More precisely “know each other” could mean
that the two people involved have shaken hands, or that they know
each other on a first name basis. The main difficulties of such networks
is that they are notoriously hard to measure.

• Actors: In this social network two actors are connected if they have
played together in at least one movie. The data of this evolving network
is easily available through the Internet Movie Database3.

2http://noduslabs.com/cases/presidents-inaugural-speeches-text-network-analysis/
3http://www.imdb.com/
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• Co-authoring: In this example of complex networks the vertices are
mathematicians and two of them share an edge if they have co-authored
a paper. This is popularized under the name “Erdős number project”
and has drawn substantial attention [12],[4].

• Proteins: This cellular network is composed of proteins of a given
biological system (Escherichia coli, Homo sapiens, etc.) that linked
together if they influence each other. More specifically, the edges are
physical, biochemical or functional interactions [27], [15].

The first observation that we can make concerning the real complex net-
works is that most of them are large. For example the Indexed Web contains
at least 14.52 billion pages4 according to WorldWideWebSize.com5, and there
are over 7.1 billion (and counting) people on the Earth according to Wor-
dometers6.

Another conspicuous feature of real-world networks is being sparse, in the
sense that the nodes have a relatively low degree compared to the size of the
graph. To put in other words, according to Dunbar’s number [10] a human
being can maintain approximately 150 social relationships [9], i.e. approx.
150 edges start from an arbitrary node of the graph of social contacts, which
is negligible small in comparison with the all 7 billion nodes of the network.

In addition, many real networks display small world effect, in the sense
that typical distances between vertices are small. In the context of social
networks this phenomenon is popularized as the six degrees of separation.
The idea that any number of people can be reached by a chain of at most 6
intermediaries was originally set out by Frigyes Karinthy. He writes in the
short story called “Chain-links”, published in the volume titled “Everything
is different” in 1929 [16]:

“[. . . ] A fascinating game grew out of this discussion. One of
us suggested performing the following experiment to prove that
the population of the Earth is closer together now than they have
ever been before. We should select any person from the 1.5 bil-
lion inhabitants of the Earth - anyone, anywhere at all. He bet us
that, using no more than five individuals, one of whom is a per-
sonal acquaintance, he could contact the selected individual using
nothing except the network of personal acquaintances. [. . . ]”

4Retrieved Tuesday, 12 February, 2013
5http://www.worldwidewebsize.com/
6http://www.worldometers.info/world-population/
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In 1967 Stanley Milgram confirmed Karinthy’s intuition with the help of
an interesting experiment based on observing the path of letters [19]. The
idea was refreshed by Duncan Watts in 2001, and the new experiment lead to
the same result: the average number of intermediaries was six [29]. It makes
the common phrase “What a small world!” scientifically based.

We have seen that in most real networks typical vertices can be reached
from every other by a small number of steps. It may be of interest to exam-
ine a node’s degree of separation from a particular vertex. With respect to
the collaboration graph of mathematicians this particular vertex is mostly
considered to be Pál Erdős, since he published more papers than any other
mathematician in history [20], most of them with co-authors. The Erdős
number of a mathematician is how many papers they are away from the leg-
endary mathematician, thus Pál Erdős has an Erdős number of zero. Any-
body else’s Erdős number is k+ 1 where k is the lowest Erdős number of any
coauthor.7 See Table 1.1 for the number of mathematicians with a certain
Erdős number.

A second similar example that has attracted some attention is the Kevin
Bacon number regarding the movie actor network. The computation of a
Bacon number for an actor uses the same algorithm that we have introduced
in the previous paragraph. 1902 actors have played in a movie starring Kevin
Bacon, hence their Bacon number is one, and 160463 actors have played in a
movie in which another movie star played who had played in a movie starring
Kevin, but did not work directly with him, which implies these actors have
a Bacon number of two.8 For more details see Table 1.1. We must remark
that it turned out that Kevin Bacon is not the most central vertex in the
graph, Sean Connery is a more central actor in terms of the average Connery
number is 2.731 in comparison with the average Bacon number of 2.954 [26].

A further important structural feature of small-world networks is the high
clustering coefficient, which means it is likely that two neighbours of a vertex
are adjacent to each other. From a social network perspective it means that
the friend of one’s friend is also likely to be their friend. This property
implies that real networks tend to contain cliques, and near-cliques, meaning
sub-networks which have connections between almost any two nodes within
them, as we can see in Figure 1.2.

7One can see what Erdős number their own professors have or what the distance is
between them on the following website operated by the American Mathematical Society:
http://www.ams.org/msnmain/cgd/index.html

8One can see what Bacon number one’s favourite actors have or what the dis-
tance is between them at the Oracle of Bacon maintained by Virginia University on
http://www.cs.virginia.edu/oracle/
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Erdős number # of mathematicians Bacon number # of actors
0 1 0 1
1 504 1 1902
2 6593 2 160463
3 33605 3 457231
4 83642 4 11310
5 87760 5 8168
6 40014 6 810
7 11591 7 81
8 3146 8 14
9 819
10 244
11 68
12 23
13 5

Table 1.1: Erdős and Bacon Numbers

Another, maybe more surprising, fundamental property of many real net-
works is that they are scale-free, meaning the degree distribution obeys a
power law: the number of nodes with a degree k decays polynomially with
k. It implies that although most nodes have a low degree, there exists few
hubs, nodes with very large degree. An example of this is Pál Erdős who had
509 collaborators in comparison with the average number of collaborators
per person of 3.36 [26]; popular websites, hyperlinked by several other pages
are also hubs. Power laws deeply connected to the Pareto principle, best
known under the name “80/20” rule: 80% of the land is owned by 20% of
the population, 80% of the total income is earned by 20% of the people, or
even maybe 80% of the papers is written by 20% of the scientists. Note that
there is nothing special about the 80% mathematically, but it is in strong
connection with the typical value of exponent k of real networks [21].

The above features make real networks signicantly different from the clas-
sical Erdős-Rényi random graph and its generalizations. This recognition
lead to the introduction of many network models.

1.3 Structure of the thesis

My thesis is organized as follows:

• This is the first chapter. We have already given a brief summary of the
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Figure 1.2: This is my social network as seen through my Facebook. The
graph is made with the help of Wolfram Alpha’s Facebook report 10. Ba-
sically, my social network consists of three near-cliques: my primary school
mates, my friends from secondary school and my fellow students at univer-
sity. We can also observe that there are some “social outsiders” (the isolated
vertices) and some “social connectors” or “bridges” (friends of mine with
whom I attended the same schools) in the graph.

ever-growing importance of network theory. After a short historical
overview of the topic we have made mention of some real complex
networks. In particular, their common properties have been illustrated
heuristically. Mathematical modeling and analysis of such networks
provides the motivation of this thesis.

In the remainder of this chapter we offer a brief survey on what the
reader can find in each chapter.

• In Chapter 2 we study how one can model real complex networks. We
cover the background material related to network theory, including the

10http://www.wolframalpha.com/facebook/
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terminology of graph theory. We observe some fundamental proper-
ties that many real-world networks share. A few different approaches
of modeling real networks are shown in this chapter. We give the de-
scription of the Barabási-Albert model, more versions of Apollonian
networks and the hierarchical graph sequence model.

• Chapter 3 is devoted to the self-similarity and fractality of complex
networks. We show some methods to investigate the self-similar nature
and we give the definitions of the most important concepts of network
dimension.

• In Chapter 4 we investigate the hierarchical graph sequence model.
Using box-counting method we prove the existence of a limit that can
serve as an analogue box dimension of the hierarchical graph sequence
model. The proof consists of two main parts: giving a lower and an
upper bound on the dimension.

• We give a short summary in chapter 5 of this thesis. In addition, we
give some plans, and discuss future research directions in this area.

11



Chapter 2

Mathematical modeling of
complex networks

Modeling a real-world object means producing an artificial object that is
similar to the real one. In addition, the purpose is to create a mathematically
tractable model that allows for rigorous analysis. The first step is getting
some information on the properties of the network using a measurement
procedure and an analysis of the result. After collecting information there are
basically two ways to propose a model. One may focus on static snapshots of
networks and obtain a model with the general properties. The other modeling
approach attempts to reproduce real world construction processes with the
aim of generating networks with such structures. It is essential to create
more accurate network models that can produce more realistic models for the
future, for instance: How well will a given protocol run on the Internet five
years from now? How can search engines explore the WWW more efficiently?
How to reduce the spread of the next influenza pandemic?

2.1 Notation

Considering that when we think of a network we mean a system that can be
modeled by a graph, to start with, we need to introduce the most important
definitions of graph theory and fix the notation used throughout this paper.
Here we follow [7] and the corresponding Wikipedia articles1.

• A graph G is an ordered pair G = (V,E), where V is the set of vertices
or nodes together with a set E of edges, which are two-element subsets

1http://en.wikipedia.org/wiki/List of graph theory topics,
http://en.wikipedia.org/wiki/Glossary of graph theory
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of V . To be more precise, this is the definition of undirected and simple
graph, since it does not allow neither loops (self-edges) nor multiple
edges between elements of V .

• An undirected graph is one in which edges have no orientation. The
edge (i, j) is identical to the edge (j, i). A directed graph is an ordered
pair D = (V, A) with V as before, and A a set of ordered pairs of
vertices, called directed edges, or arrows.

• The degree of a vertex v is the number of edges that connect to it,
where an edge that connects to the vertex at both ends (a loop) is
counted twice, usually denoted by deg(v). By simple consideration∑

v∈V deg(v) = 2 |E|.

• The neighbourhood Γu of a vertex u is the set of vertices v which are
connected to u by an edge. Clearly deg(u) = |Γu|.

• An isolated vertex is a vertex with degree zero.

• In an undirected graph G, two vertices u and v are called connected if
G contains a path from u to v. Otherwise, they are called disconnected.
A graph is said to be connected if every pair of vertices in the graph
is connected. A connected component is a subgraph in which any two
vertices are connected to each other, and which is connected to no
additional vertices in the graph.

• A bridge is an edge whose deletion increases the number of connected
components.

• The maximal subgraph of V1 ⊂ V is G1 = (V1, E1), where (i, j) ∈ E1 if
and only if i, j ∈ V1 and (i, j) ∈ E.

• Dyads and triads are the maximal subgraphs of two or three vertices
respectively.

• A clique in an undirected graph is a subset of its vertices such that
every two vertices in the subset are connected by an edge.

• A complete graph is a simple undirected graph in which every pair of
distinct vertices is connected by a unique edge. A complete graph on
n vertices is denoted by Kn.

• A planar graph is a graph that can be embedded in the plane, i.e., it
can be drawn on the plane in such a way that no edges cross each other.

13



A simple graph is called maximal planar if it is planar but adding any
edge (on the given vertex set) would destroy that property.

• A path is a sequence of edges such that the target of the previous edge
is the source of the next edge. The length of a path is the number of
its edges.

• A path is geodesic if its end points cannot be connected by shorter
path.

• The length of a geodesic between to vertices u and v is the distance
d(u, v) of these vertices.

• We write Diam(G) (diameter) for the maximal graph-distance in the
graph G within components of G. It is not hard to see that Diam(G) ≤
|V (G)| − 1.

• Local clustering coefficient at v ∈ V :

Cv(G) :=
number of edges between neighbours of v(

deg(v)
2

) .

• The degree of clustering of a whole network can be captured by the
average clustering coefficient. The most often stated, “C(G) is the
average of Cv(G)”, i.e.:

C(G) :=< C(G) >=
∑
v∈V

Cv(G)

|V |
.

• Another way to define the clustering coefficient of a whole network is
global clustering coefficient :

C(G) := Cg(G) =

(∑
v∈V

(
deg(v)

2

)
Cv(G)

)
/
∑
v∈V

(
deg(v)

2

)
.

An equivalent form of this:

Cg(G) =
#{((a, b), (a, c)) ∈ E × E : (b, c) ∈ E}

#{((a, b), (a, c)) ∈ E × E}
.

We can re-write the equation above as

Cg(G) =
3× number of triangles

number of pairs of adjacent edges

=
number of closed triplets

number of connected triples of vertices
.
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The second definition has the advantage that it makes sense when some
degrees are less than 2 and there is no problem applying the definition
to graph that are not simple, thus we use the second one. It is very
important to point out that these definitions are not equivalent.

• The degree distribution P (k) is the probability that the degree of a
randomly (uniformly) chosen vertex is equal to k.

• Given two variables x and y, y is directly proportional to x if there is
a non-zero constant C such that y = Cx. In this paper sometimes we
denote this relation by x ∝ y or by x ≈ y.

2.2 Properties of real networks

In this section, we describe what it means for a model of a real network to
satisfy the properties that we have introduced in Section 1.2 empirically.

• Large: The number of nodes are on the scale of ten of thousands to
billions.

• Sparse: The number of edges is a constant multiple of vertices, i.e. a
node has a bounded number of neighbours.

• Small worlds: The characteristic path length ` grows proportionally
to the logarithm of the number of nodes in the network, i.e. ` ∝ log |V |.
The characteristic path length ` is defined as the number of edges in the
shortest path between two vertices, averaged over all pairs of vertices.
It can be shown analytically that scale-free networks (for the definition
see below) are ultra-small worlds, in the sense that: ` ∝ log log |V |[8],
[7].

• Highly clustered: A network is said to be highly clustered, if it has
a much higher clustering coefficient than expected for an Erdős-Rényi
random graph of similar number of nodes and edges. In a random graph
clustering coefficient C depends on the system size as 1

N
. In contrast,

measurements indicate that for real networks C decreases with the
degrees of vertices and is largely independent of the system size [26].

• Scale free: The degree distribution of the graph follow a power law,
i.e. P (k) is proportional to a power of k, for some number γ ≥ 1:
P (k) ∝ k−γ. (This definition is widely spread among network scientists,
however more sophisticated definitions - two weaker formulation - can
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be found in [26] on page 5.) For real networks the degree exponent γ
usually satisfies 2 < γ < 3. This property is visualized in Figure 2.1,
where the degree distribution is plotted on log-log scale. Thus, we see
a plot of log(k) 7→ logP (k). Therefore, logP (k) = logC − γ log k, so
that the slope is a straight line and the negative of the slope of the
line is the power law exponent. One can estimate the exponentγ of
a real network by substituting P (k) with Nk, the number of vertices
with degree k, since - counter to the probability - it can be measured
empirically.

Figure 2.1: The visualization of the scale free property. The figure is from
[7].

2.3 Preferential Attachment Model

A possible and convincing explanation for the scale-free nature of real-world
networks is offered by the preferential attachment model introduced by Barabási
and Albert in [2]. The principle behind the model is the “popularity is at-
tractive” or the “rich get richer” paradigm. In the preferential attachment
model, vertices arrive one by one with a number of edges connected to them.
The newly added vertices are connected to the already existing vertices with
a probability proportional to the degree of the receiving vertex at that time,
thus favoring vertices with large degrees.

In [2] the authors describe the preferential attachment graph informally
by the following ingredients:

16



• Initial condition: To start with the network consists of a small number
(m0) of isolated vertices.

• Growth: One vertex v with m (≤ m0) edges is added every time step.
The edges link the new vertex to m different vertices already present
in the system.

• Preferential attachment: The probability Pu for a new vertex v to be
attached to u is:

Pu =
deg(u)∑
w∈V deg(w)

.

The first to investigate the model rigorously, were Bollobás et al.[6], they
criticize [2] due to lack of a formal definition. In [7] Bollobás writes: “From a
mathematical point of view, however, the description above, repeated in many
papers, does not make sense.”

The description of the model does not explain how to get started. Initially
there are no edges, thus we can not take probabilities proportional to the
degrees, since they are all zero. (Provided that, we start instead from a
small graph G0 with no isolated vertices, then the choice of G0 can make
notable difference.) The second problem is with the preferential attachment
rule itself, and arises only for m ≥ 2; it is not clear whether these edges are
independent, whether we allow for self-loops, whether we should update the
degrees after each attachment of a single edge, etc. (One might hope that
the exact choice does not make much difference, but in [7] it is shown that
there is a wide range of models fitting the Barabási-Albert description with
very different properties.)

Now we define precisely a random graph model introduced in [5] satis-
fying the obscure description above. Here we consider graphs of labelled
graphs, meaning that if the graph has n vertices, the vertex set is [Vn] =
{v1, v2, . . . , vn}. Let m ≥ 1 be a natural number. We construct a sequence
of graphs {Gt

m}∞t=1 as follows: We define inductively a random graph process
{Gt

1}∞t=1, starting with {G1
1} a graph with one vertex and one loop. Given

{Gt−1
1 } with V ({Gt−1

1 }) := [Vt−1] = {v1, v2, . . . , vt−1}. Then we form {Gt
1} by

adding the vertex vt and one more additional edge between vt and a vertex
vi ∈ [Vt] which is chosen randomly proportionally to the degree of vi at the
time counting the new edge as already contributing one to the degree of vt,
i.e.:

P (i = s) =


deg

Gt−1
1

(vs)

(2t−1) , if 1 ≤ s ≤ t− 1;
1

(2t−1) , if s = t.
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Finally, we can define {Gt
m}∞t=1 by identifying the consecutive m tuples of

vertices in Gmt
1 . Bollobás and Riordan proved rigorously the most important

features of the model: The power law exponent turned to be γ = 3 and the
diameter is log n for m = 1 and logn

log(logn)
for m > 1, where |V | = n.

2.4 Apollonian networks

The class of Apollonian networks was introduced by Andrade et al. in [1].
These networks have some advantageous properties making them interesting
for a wide range of applications. Apollonian networks - that can be either de-
terministic or random - are scale free, small world and in the two-dimensional
case they are maximal planar graphs.

2.4.1 Deterministic Apollonian Network

Figure 2.2: The three-dimensional Apollonian gasket. The figure is from
Wolfram MathWorld 3.

Apollonian networks are named after the ancient Greek mathematician
Apollonius of Perga (ca. 262 BC - ca. 190 BC)[25]. These networks are
derived from the Apollonian packing, hence first we introduce the problem
of Apollonian packing. Apollonian gasket is constructed as follows: Initially
there are three circles C1, C2 and C3, each one of which is tangent to the
other two (in the general construction, these three circles can be any size, as

3http://mathworld.wolfram.com/ApollonianGasket.html
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long as they have common tangents) inside a circular space which is to be
filled. Apollonius discovered that there are two other non-intersecting circles,
C4 and C5, which have the property that they are tangent to all three of the
original circles these are called Apollonian circles or Soddy circles (this is
a consequence of Descartes’ theorem [18]). Take one of the two Apollonian
circles, without loss of generality let it be C4. It is tangent to C1 and C2, so
the triplet of circles C4, C1 and C2 has its own two Apollonian circles: one of
them is C3, but the other is a new circle C6. In a similar way we get C7 that
is tangent to C4, C2 and C3 and so on. Continuing the construction stage
by stage in this way, we add 2 · 3n new circles at stage n, giving a total of
3n+1 + 2 circles after n stages. In the limit of infinite generations, we obtain
the two-dimensional Apollonian gasket.

The two-dimensional Apollonian gasket can be generalized to higher di-
mensions (d-dimensional, d ≥ 2). Describing the construction we follow
[30]. We start with d + 1 mutually tangent d-dimensional hyperspheres (d-
hyperspheres). (The 3-dimensional case is visualized in Figure 2.2) The hy-
perspheres are in a d-dimensional simplex which is enclosed and tangent to a
larger hypersphere. The interstices correspond to curvilinear d-dimensional
simplices (d-simplices). In the first iteration, and inside each of the inter-
stices, we add d-hyperspheres tangent to each of the d + 1 d-hyperspheres
bounding the curvilinear d-simplex. The added hyperspheres will not fill the
interstice and each produces d + 1 smaller interstices. In the second itera-
tion, d + 1 d-hyperspheres are added inside all of the d + 1 new interstices,
being again tangent to the enclosing d-hyperspheres. The process is repeated
iteratively obtaining the high-dimensional Apollonian packing.

Figure 2.3: This is how to derive the two-dimensional Apollonian network
from the packing. The figure is from Wolfram MathWorld 5.
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This Apollonian packing can be used to design the Deterministic Apol-
lonian Network (DAN), where the vertices of the network correspond to the
circles (d-hypersperhes in higher dimension) and vertices are connected by
an edge if the corresponding circles (d-hypersperhes) are tangent. Figure 2.3
shows a network based on the two-dimensional packing.

2.4.2 Random Apollonian Network

The Random Apolloninan Network (abbreviated as RAN or HDRAN if we
would like to emphasize the high-dimensional nature of these networks)
can be derived from DAN. In the d-dimensional Apollonian packing, if we
add only one d-hypersphere inside a randomly selected interstice, then we
get a high dimensional random Apollonian packing. Analogously, if each
d-hypersphere corresponds to a vertex and vertices are connected by an
edge if the corresponding d-hyperspheres are tangent, then we obtain a d-
dimensional random Apollonian network.

Here we delineate the iterative algorithm of RAN based on [30], then
we implement the algorithm in Mathematica with purpose of further inves-
tigation and simulation. The code is shown in Figure 2.4. In the iterative
process for the construction of RAN, for each new vertex added, d + 1 new
d-simplices are created in the network, into which vertices may be inserted in
one of the following iterations. We denote the d-dimensional random Apollo-
nian network after n iterations by RAN(n, d), d ≥ 2, n ≥ 0. Initially (n = 0),
RAN(0,d) is the complete graph Kd+2. At each step, we choose an existing
subgraph isomorphic to a (d + 1)-clique that has never been selected before
(we can call them active cliques), then we add a new vertex and join it to all
the vertices of the selected subgraph. The growing process is repeated until
the network reaches the desired size.

Despite the stochastic nature of this network it has some deterministic
properties. It is easy to see that after n steps the network consists of V =
n+d+2 vertices. The total degree equals (d+1)(2n+d+2). So, when n is large
the average vertex degree at step n is equal approximately to a constant value
2(d+1), which shows that this network is sparse like many real-life networks.
In [30] the authors showed that RANs obey power-law degree distributions
and the average path length of the networks grows logarithmically with the
number of nodes.
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Figure 2.4: The iterative algorithm of the RAN implemented in Mathematica
by me.

Figure 2.5: The visulaization of the EAN[3, 3, 0.5] in each step: n = 0, n =
1, n = 2 and n = 3 respectively. The graphs are made with the help of the
programme code shown in Figure 2.6.

2.4.3 Evolutionary Apollonian Network

The evolving Apollonian networks (EAN) were introduced by Zhang et al.
in [31]. The initial configuration is the same as for the DAN or RAN. Then
in each subsequent generation, each d-simplex is filled with probability q. In
a special case q = 1, it is reduced to the DAN. If q approaches but is not
equal to 0, it coincides with the RAN.

Here we also give the iterative algorithm of EAN based on [31], using
which we can write a computer program. The Mathematica implementation
is shown in Figure 2.6. The d-dimensional EAN with filling probability q
after n generations are denoted by EAN(n, d, q), d ≥ 2, n ≥ 0, 0 ≤ q ≤ 1.
Then at step n, the d-dimensional EAN is constructed as follows: For n = 0,

5http://mathworld.wolfram.com/ApollonianGasket.html

21

http://mathworld.wolfram.com/ApollonianGasket.html


EAN(0,d,q) is a complete graph Kd+2. For n ≥ 1, EAN(n, d, q) is obtained
from EAN(n−1, d, q). For each of the existing subgraphs of EAN(n−1, d, q)
that is isomorphic to a (d+ 1)-clique and has never generated a node before
(i.e. active (d + 1)-cliques), with probability q, a new node is created and
connected to all the nodes of this subgraph. The growing process is repeated
until the network reaches a desired order. The illustration of the evolving
can be seen in Figure 2.5.

Figure 2.6: The iterative algorithm of the EAN implemented in Mathematica
by me.
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2.5 Hierarchical graph sequence model

In this section we follow Komjáthy and Simon [17] who introduced a general
hierarchical graph sequence model derived from a graph directed self-similar
fractal, motivated by the deterministic scale-free network model of Barabási,
Ravasz and Vicsek [3].

Starting from an arbitrary initial bipartite graph G on N vertices, we
construct a hierarchical sequence of deterministic graphsGn. Namely, V (Gn),
the set of vertices of Gn is {0, 1, . . . , N − 1}n. To construct Gn from Gn−1,
we take N identical copies of Gn−1, each of them identified with a vertex of
G. Then we connect these components in a complicated way described in
2.1. In this way, Gn contains Nn−1 copies of G1, which are connected in a
hierarchical manner, see 2.3 and 2.4 for two examples.

Let G, our base graph, be any labeled bipartite graph on the vertex set
Σ1 = {0, . . . , N − 1}. We partition Σ1 into the non-empty sets V1, V2 and
one of the end points of any edge is in V1, and the other is in V2. We write
ni := |Vi|, i = 1, 2 for the cardinality of Vi. The edge set of G is denoted
by E(G). If the pair x, y ∈ Σ1 is connected by an edge, then this edge is
denoted by

(
x
y

)
.

Now we define our graph sequence {Gn}n∈N generated by the base graph
G.

The vertex set is Σn = {(x1x2 . . . xn) : xi ∈ Σ1}, all words of length n
above the alphabet Σ1. To be able to define the edge set, we need some
further definitions.

Definition 2.1.

1. We assign a type to each element of Σ1. Namely,

typ(x) =

{
1, if x ∈ V1;
2, if x ∈ V2.

2. We define the type of a word z = (z1z2 . . . zn) ∈ Σn as follows: if all
the elements zj, j = 1, . . . , n of z fall in the same Vi, i = 1, 2 then
typ(z) the type of z is i. Otherwise typ(z) := 0.

3. For x = (x1 . . . xn), y = (y1 . . . yn) ∈ Σn we denote the common prefix
by

x ∧ y = (z1 . . . zk) s.t. xi = yi = zi,∀i = 0, . . . , k and xk+1 6= yk+1.
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4. Given x = (x1 . . . xn), y = (y1 . . . yn) ∈ Σn, the postfixes x̃, ỹ ∈
Σn−|x∧y| are determined by

x = (x ∧ y)x̃, y = (x ∧ y)ỹ,

where the concatenation of the words a, b is denoted by ab.

Now we can define the edge set E(Gn). Two vertices x and y in Gn are
connected by an edge if and only if the following assumptions hold:

(a) One of the postfixes x̃, ỹ is of type 1, the other is of type 2,

(b) for each i > |x ∧ y|, the coordinate pair
(
xi
yi

)
forms an edge in G.

That is, E(Gn) ⊂ Σn × Σn:

E(Gn) =

{(
x

y

) ∣∣∣ {typ(x̃), typ(ỹ)} = {1, 2} and

∀|x ∧ y| < i ≤ n,

(
xi
yi

)
∈E(G)

}

Remark 2.2 (Hierarchical structure of Gn). For every initial digit x ∈
{0, 1, . . . , N−1}, consider the set Wx of vertices (x1 . . . xn) of Gn with x1 = x.
Then the induced subgraph on Wx is identical to Gn−1.

The following two examples satisfy the requirements of our general model.

Example 2.3 (Cherry). The “cherry” model was introduced in [3], and is
presented in Figure 2.7: Let V1 = {1} and V2 = {0, 2}, E(G) = {(1, 0), (1, 2)}.

Example 2.4 (Fan). Our second example is called “fan”, and is defined in
Figure 2.8. Note that here |V1| > 1.

2.5.1 Properties of the graph sequence

In this subsection we see that this model shares three very important features
of many real networks. Namely

(1) the hierarchical structure (as we have seen in 2.2),

(2) the power law decay and

(3) the small world property.
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Komjáthy and Simon computed [17]the degree distribution of the graph
sequence Gn under some regularity assumption on the base graph G and
found that it has an extreme-end power law decay.

They also calculated the average length of shortest path between two
nodes in Gn, for arbitrary bipartite graph G; and proved that the magnitude
of the average length of a shortest path between two uniformly chosen vertices
in Gn is the logarithm of the size of Gn.

In Chapter 5 we make a further investigation on the hierarchical graph
sequence model.

Figure 2.7: The first three elements of the “cherry” model: G1, G2 and G3.
Note that in this figure the graphs contain all of the loops additionally. The
figure is from [17].
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Figure 2.8: The first two elements of the “fan”. Here V1 = {2, 4} and
V2={0,1,3,5}. The figure is from [17].
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Chapter 3

Self-similarity and fractality of
complex networks

In addition to the fascinating features of real networks presented in Section
1.2 we mention two more essential properties of some complex networks:
self-similarity and fractality, introduced by Song, Havlin and Makse in[23].
An object is called self-similar, if it is exactly or approximately similar to
a part of itself, i.e it looks the same on all length scales. Having regard to
the fact that self-similarity is a typical property of fractals, to unravel the
self-similar property of some networks we use methods that were introduced
to investigate fractals.

3.1 Box-counting and renormalization

If one would like to unfold the self-similar property of real-world networks,
box-counting method turns to be practical [23]. The method works as follows:
We partition the vertices into boxes of size lB. The maximal distance between
nodes within a box is at most lb − 1. The resulting number of boxes needed
to tile the network is denoted by NB(lb).

Definition 3.1. The box dimension dB is defined by

NB(lB)

|V (G)|
≈ ldBB (3.1)

in the sense that

dB :≈
log NB(lB)

|V (G)|

log lB
(3.2)

exists.
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In [23] it was pointed out based on numerical evidence that such limit
exists for a number of real networks including WWW and actor network.

After tiling the system with lB-boxes we can apply a renormalization
procedure to it. We replace each box by a single node. Two vertices of the
renormalized graphs are connected if there is at least one link between the
corresponding boxes in the original graph. The renormalization procedure
is applied again and repeated until we get a single node. The procedure is
visualized in Figure 3.1.

Figure 3.1: Demonstration of the box-counting and renormalization method
for different lB in a sample network. The figure is from [23].

It appears to be useful to investigate this process since the probability
distribution of some real-world networks is invariant under the renormaliza-
tion

P ′(k) ∝ k−γ, (3.3)

where P ′(k) is the probability that a node chosen randomly in the renor-
malized graph has degree k. (In [23] the authors considered the first three
elements of the sequence of graphs obtained by successive renormalizations
for lB = 3 and get the result in 3.3 by numerical evidence.)

Now we can define the two properties appearing in the title of this chapter.

Definition 3.2. The self-similarity of a network means that the degree
distribution is invariant under the renormalization, i.e. a network is self-
similar if satisfies 3.3 for an appropriate renormalization procedure.

Definition 3.3. The fractality of a network (also called fractal scaling or
topological fractality) stands for the power-law relation between the minimum
number of boxes needed to cover the entire network and the size of the boxes,
i.e a network is fractal if the box dimension dB exists, in the sense of 3.2.
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Regarding that this topic is very fresh and researched mainly empirically
from a more practical point of view, the terminology is not always consequent
in the papers, here we followed [13].

Topological fractality have been observed in some complex networks, such
as the WWW, actor network or protein interaction networks [24]. In addi-
tion in [24] the authors find that the degree distribution of these networks is
invariant under renormalization, thus they are also self-similar. On the other
hand, some networks are self-similar, yet are not fractal. A typical example
of such networks is the Internet and hierarchical graph sequence model (in-
troduced in Section 2.5) also belongs here. Thus the self-similarity and the
fractality do not always imply each other with respect to complex networks
[13].

3.2 Other definitions for network dimension

Another method for calculation of fractal dimension on networks is the
cluster-growing method [23]. The method works as follows: We pick a vertex
v at random and consider the `-neighourhood Γ`v which is the set of vertices
having distance not greater than ` from v, Γ`u can be called a cluster. For
the cluster c = Γ`u let

Mc := |c| .

We write
< Mc >:= E(Mc).

Definition 3.4. The fractal cluster dimension df is defined by

E(Mc) ≈ `df . (3.4)

in the sense that

df :≈ logE(Mc)

log `
(3.5)

exists.

For a complex network of small world property df = ∞ holds. Since for
sufficiently big ` and for an average v, we have

∣∣Γ`v∣∣ ≈ e`. Hence

log < Mc >

log `
≈ `

log `
→∞.

On the other hand for a homogenous network characterized by a narrow
degree distribution the cluster-growing and box-counting methods yield the
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same exponent, i.e. db = df , since in this case every node typically has the
same number of neighbours [23].

We can get an other interesting result after introducing the scaling trans-
formation of the degree distribution. Referring to the box-counting method,
for a given lb we define the scaling factor

s(lB) :=
the degree of the greatest hub in the renormalized network

the degree of the greatest hub in the unrenormalized network
.

It was found in [23] that the scaling factor s < 1 scales with lB with an
exponent dk:

s(lB) ≈ ldkB . (3.6)

The following assertion was made in [23]:

γ = 1 +
dB
dk
, (3.7)

where γ is the power law exponent of the complex network. Other definitions
for network dimension also appear in the literature (for instance in [22]). In
Chapter 4 we also introduce a new concept of dimension that turned to be
useful to investigate the hierarchical graph sequence model.
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Chapter 4

Modified box dimension of the
hierarchical graph sequence
model

In this chapter we investigate the hierarchical graph sequence model intro-
duced in Section 2.5. Using the box counting method (see Section 3.1) we
prove the existence of the following limit.

Definition 4.1.

d̃im
(
{Gn}n∈N

)
:= lim

k→∞
lim
n→∞

log
Bn

k

|V (Gn)|

−lk
, (4.1)

where lk := diam(Gk) + 1 and Bn
k denotes the minimal number of boxes of

size lk that we need to cover Gn.
This limit can serve as a certain box dimension of the hierarchical graph
sequence model.

The introduction of this modified definition of box dimension was moti-
vated by the fact that in the case of the hierarchical graph sequence model
the original definition of box dimension (see Definition 3.1) is infinite. On
the other hand our new concept of dimension does exist and is finite for this
model as the next result shows.

Theorem 4.2. For the hierarchical graph sequence model the modified box
dimension:

d̃im
(
{Gn}n∈N

)
=

log |V (G)|
2

(4.2)
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In the rest of this chapter we prove the theorem above. The proof consists
of two main parts: In the first part we give an upper bound on Bn

k that gives
a lower bound on the dimension. In the second part of the proof we use
a similar procedure with the aim of constructing an upper bound on the
dimension.

4.1 Proof of the lower bound

The following lemma is a useful tool to examine the modified box dimension
of the graph sequence.

Lemma 4.3. The diameter of the graph Gn is 2(n− 1) + Diam(G).

Proof of Lemma 4.3. (The proof follows the line of [17, Lemma 2.3.8].) For
two arbitrary vertices x, y ∈ Σn we denote the length of their common prefix
by k = k(x, y) := |x ∧ y|. Furthermore, let us decompose the postfixes x̃, ỹ
into blocks of digits of the same type:

x̃ = b1b2 . . . br, ỹ = c1c2 . . . cq, (4.3)

such that all of the blocks have a nonzero type and the consecutive blocks
are of different types. That is, for i = 1, . . . , r − 1, j = 1, . . . q − 1 we have

typ(bi) 6= typ(bi+1) ∈ {1, 2}, and typ(cj) 6= typ(cj+1) ∈ {1, 2}.

Note, that we denoted the number of blocks in x̃, ỹ by r and q, respectively.
Recall that it follows from Definition 2.1 that for any path Q(x, y) = (x =

q0, . . . , q` = y), the consecutive elements of the path only differ in their
postfixes, which have different types. That is,

∀i, qi = wizi, qi+1 = wiz̃i, with typ(zi) 6= typ(z̃i) ∈ {1, 2}.

Now we fix an arbitrary self-map p of Σ1 such that

(x, p(x)) ∈ E(G) ∀x ∈ G.

Most commonly, p(p(x)) 6= x. Note that x and p(x) have different types
since G is bipartite. For a word z = (z1 . . . zm) with typ(z) ∈ {1, 2} we define
p(z) := (p(z1) . . . p(zm)). Then,

(tz, tp(z)) is an edge in G`+m, ∀t = (t1 . . . t`), (4.4)

follows from Definition 2.1. Mind that in each step on the path, the number of
blocks in 4.3 changes by at most one. Recall that |x∧y| = k, so xk+1 6= yk+1.
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Since the digit on the k+1-th position changes on the path, we have to reach
a point where all the digits to the right from the k-th position are of the same
type. Starting from p̃0 = x, to reach the first vertex a of this property, we

need at least r− 1 steps on any path P̃ , where r was defined in formula 4.3.
Similarly, starting from y, we need at least q−1 steps to reach the first vertex
b where all the digits after the k-th position are of the same type. Because
xk+1 6= yk+1, we need at least one more edge and at most Diam(G) edges.

Considering the worst case scenario, i.e. choosing x and y such that

• |x ∧ y| = k,

• q = r = n and

• d(x1, y1) = Diam(G) (using Definition 2.1 it is not hard to see that this
can be done), yields that

Length(P (x, y)) ≥ n+ n+ Diam(G)− 2 = 2(n− 1) + Diam(G) (4.5)

On the other hand, now we construct a path P (x, y) between two arbitrary
vertices x and y that is no longer than 2(n− 1) + Diam(G). Starting from x
the first half of the path P (x, y) is as follows:

x̂0 = x = (x ∧ y)b1 . . . br−1br

x̂1 = (x ∧ y)b1 . . . br−1p(br)

. . .

x̂r−1 = (x ∧ y)b1p(b2 . . . p(br−1p(br))),

Starting from y the first half of the path P (x, y) is as follows:

ŷ0 = y = (x ∧ y)c1c2 . . . cr

ŷ1 = (x ∧ y)c1 . . . cr−1p(cr)

. . .

ŷq−1 = (x ∧ y)c1p(c2 . . . p(cr−1p(cq))).

It follows from 4.4 that

Px : = (x̂0, x̂1, . . . , x̂r−1)

Py : = (ŷq−1, · · · ŷ1, ŷ0)

are two paths in Gn. To construct P (x, y) the only thing remained is to

connect x̂r−1 and ŷq−1. Using 4.4 it is easy to see that this can be done with
a path Pc of length at most Diam(G). In this way,

P (x, y) := PxPcPy.
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Clearly,

Length(P (x, y)) ≤ r + q + Diam(G)− 2 ≤ 2(n− 1) + Diam(G)

This completes the proof.

The following two lemmas give us an upper bound on Bn
k . For a better

understanding these lemmas are visualized in Table 4.1: primarily we show
that the first row can serve as an upper bound for the other rows, then we
give an upper bound for the first row.

NB(lb) G1 G2 G3 G4 G5 . . . Gn . . .
...

. . . . . . . . . . . . . . . . . . . . . . . .

l1 B1
1 = 1 B2

1 ≤ N B3
1 ≤ N2 B4

1 ≤ N3 B5
1 ≤ N4 . . . Bn

1 ≤ Nn−1 . . .
↘ ↘ ↘ ↘ ↘ ↘ ↘

l2 . . . B2
2 = 1 B3

2 ≤ B2
1 B4

2 ≤ B3
1 B5

2 ≤ B4
1 . . . Bn

2 ≤ Bn−1
1 . . .

↘ ↘ ↘ ↘ ↘ ↘
l3 . . . . . . B3

3 = 1 B4
3 ≤ B2

1 B5
3 ≤ B3

1 . . . Bn
3 ≤ Bn−2

1 . . .
↘ ↘ ↘ ↘ ↘

l4 . . . . . . . . . B4
4 = 1 B5

4 ≤ B2
1 . . . Bn

4 ≤ Bn−3
1 . . .

...
. . . . . . . . . . . . . . . . . . . . . . . .

lk . . . . . . . . . . . . . . . . . . Bn
k ≤ Bn−k+1

1 . . .
...

. . . . . . . . . . . . . . . . . . . . . . . .

Table 4.1: Nb(lb): the number of lb boxes that we need to cover the graph
sequence

Lemma 4.4 (Upper bound on Bn
k ). The following inequality holds for ∀n >

k :
Bn
k ≤ Bn−k+1

1 ;

and if n ≤ k holds then Bn
k = 1.

Proof of Lemma 4.4. The second part of the lemma follows immediately from
the fact that k ≥ n ⇒ lk = Diam(Gk) + 1 ≥ Diam(Gn) + 1, i.e. all of the
vertices of Gn can be covered by one box. For the first part we consider the
meaning of the inequality in the lemma. It means that if we can cover Gn−k+1

with some number of l1-boxes, then the same number of lk-boxes is sufficient
to cover Gn with. The proof works with an “anti-projection” procedure, we
“blow up” all of the vertex of Gn−k+1 with a Gk−1 in order to create Gn. We
show that the same l1- boxing that we have used in Gn−k+1 is an appropriate
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lk-boxing for Gn (in the sense that Gk−1 is substituted for each vertex) since
the substitution increases the maximum distance within the box with 2(k −
1). In other words, let x = (x1, . . . , xn−k+1) and y = (y1, . . . , yn−k+1) two
arbitrary vertices in Gn−k+1, contained by the same l1-box, i.e. the distance
between x and y is not greater than Diam(G). If we blow them up, we
get two sets of vertices: X = {(x̆1, . . . , x̆n)|(x̆1, . . . , x̆n−k+1) = x} and Y =
{(y̆1, . . . , y̆n)|(y̆1, . . . , y̆n−k+1) = y}. It is not hard to see that within X or Y
the maximal distance is Diam(Gk−1), since they are isomorphic to Gk−1.
To end the proof, it remains to calculate the maximal distance between
the element of X and Y . Let x̆ ∈ X and y̆ ∈ Y and we compute the
distance between them. Considering the worst case scenario, namely that
x̆ = {(x̆1, . . . , x̆n)|(x̆1, . . . , x̆n−k+1) = x and typ(x̆j) 6= typ(x̆j+1),∀j ≥ n −
k + 1} and similarly y̆ = {(y̆1, . . . , y̆n|(y̆1, . . . , y̆n−k+1) = y and typ(y̆j) 6=
typ(y̆j+1),∀j ≥ n − k + 1}. Starting from x̆ it takes k − 1 steps to reach
the first vertex a where all the digits after the n − k-th position are of the
same type. Similarly, starting from y̆ we need k − 1 steps to reach the first
vertex b of the same property. To connect a and b we need at most Diam(G),
since their “preimages” x and y are in the same l1-box in Gn−k+1. Thus the
distance between x̆ and y̆ is not greater than 2(k−1)+Diam(G) = Diam(Gk).
This is what we wanted to show.

Lemma 4.5 (Upper bound on Bn
1 ). The following inequality holds for ∀i ≥

1 :
Bi

1 ≤ N i−1.

Proof of Lemma 4.5. It is easy to see that we need one l1-box to cover G1. It
follows from the hierarchical structure of Gi (Remark 2.2) that Gi contains
N i−1 copies of G1, since for every prefix z = (z1 . . . zi−1) ∈ Σi−1 , consider the
set Wz of vertices (x1 . . . xi) of Gi with (x1 . . . xi−1) = z. Then the induced
subgraph on Wz is identical to G1 and |Σi−1| = N i−1. This implies that we
can cover Gi with N i−1 l1-boxes.

Corollary 4.6. Putting together Lemma 4.4 and Lemma 4.5 we get

∀n > k : Bn
k ≤ Bn−k+1

1 ≤ Nn−k. (4.6)

Proof of the lower bound in Theorem 4.2. Using Corollary 4.6 we get a lower
bound on 4.1:
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d̃im
(
{Gn}n∈N

)
= lim

k→∞
lim
n→∞

log
Bn

k

|V (Gn)|

−lk
= lim

k→∞
lim
n→∞

log |V (Gn)|
Bn

k

lk

= lim
k→∞

lim
n→∞

log |V (Gn)| − logBn
k

Diam(Gk) + 1

= lim
k→∞

lim
n→∞

logNn − logBn
k

Diam(G) + 2k − 1

≥ lim
k→∞

lim
n→∞

logNn − logNn−k

Diam(G) + 2k − 1

= lim
k→∞

lim
n→∞

n logN − (n− k) logN

Diam(G) + 2k − 1

= lim
k→∞

k logN

Diam(G) + 2k − 1
= lim

k→∞

k logN

k
(

2 + (Diam(G)−1)
k

)
=

logN

2
=

log |V (G)|
2

In the second row we use the definition of lk (see 4.1) and the bound
comes from Corollary 4.6.

4.2 Proof of the upper bound

Lemma 4.7 (Lower bound on Bn
1 ). The following inequality holds for ∀i ≥

n1 + 1 :
Bi

1 ≥ N i−n1 ,

where ni := |Vi|, i = 1, 2 and we assume that n1 ≤ n2 without loss of
generality.

Proof of Lemma 4.7. Notice that Diam(G) ≤ 2n1 (since the connectivity of
the base graph). It is enough to show that we can find N i−n1 vertices in
Gi (∀i ≥ n1 + 1) such that the pairwise distances between the vertices are
greater than 2n1 (hence greater than Diam(G)) so all of these vertices must
be in distinct boxes, i.e. we need at least N i−n1 boxes to cover Gi.

First let us consider the i = n1 + 1 case: we need Nn1+1−n1 = N witness
vertices such that all the pairwise distances are large enough. The con-
struction of these zw0 , . . . , z

w
N−1 vertices are the following: For every initial

digit x ∈ {0, 1, . . . , N − 1}, we define an appropriate zwx witness as follows:
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zwx ∈ Zw
x , and the set Zw

x consists of words (z1 . . . zi) with z1 = x and typ(zj)
6= typ(zj+1), j ∈ {1, . . . , i− 1}. Let zwx be an arbitrary element of Zw

x . (Note
that choosing zwx is not unique, all of the vertices that satisfies the above
condition are appropriate witnesses.)

Now we give a lower bound on the shortest path between zwxj and zwxk ,
where xj, xk ∈ {0, 1, . . . , N − 1}, xj 6= xk. Recall the method and notation
that we have used in Lemma 4.3. Notice that |zwxj ∧ z

w
xk
| = 0 and q = r =

i = n1 + 1, thus we need at least r − 1 + q − 1 + 1 = 2n1 + 1 steps on any
path between zwxj and zwxk . Using Diam(G) ≤ 2n1 these witnesses must be in
distinct l1boxes, so we need at least N l1-boxes to cover Gn1+1.

We have proved the lemma for i = n1 + 1, but this procedure works for
arbitrary i : i ≥ n1 + 1. Let be i = n1 + 1 + j, j > 0. The extensibility of the
procedure follows from the hierarchical structure of Gn, i.e. Gn1+1+j consists
of N j copies of Gn1+1. In other words in Gn1+1+j the corresponding witnesses
are the following: For every y word of length j over alphabet {0, 1, . . . , N−1}
we construct words yzwx with all x ∈ {0, 1, . . . , N − 1}, where yzwx means the
concatenation of y and zwx . Hence we have created N · N j = N j+1 = N i−n1

vertices whom pairwise distance is greater than Diam(G) (it is easy to see
in the same way as we did in i = n1 + 1 case). Thus we need at least N i−n1

boxes to cover Gi: B
i
1 ≥ N i−n1 .

Lemma 4.8 (Lower bound on Bn
k ). Using the notation of the previous

lemma, the following inequality holds if n− k ≥ n1 :

Bn
k ≥ Nn−k−n1+1 = Nn−k · C.

Proof of Lemma 4.8. We have seen in Lemma 4.7 that Bi
1 ≥ N i−n1∀i ≥

n1 + 1. We have constructed N i−n1 vertices in Gi whose pairwise distance is
greater than Diam(G). It is enough to show that we can find the same number
of vertices (i.e. N i−n1) in Gj+i−1∀j ≥ 1, such that the pairwise distances
between them are greater than Diam(Gj), this implies Bj+i−1

j ≥ N i−n1 . We
can find them with the method of “lifting up” or “anti-projection”, meaning
that we “lift up” the witnesses from Gi to Gj+i−1: we continue the code
of a witness in a way that the type alternates (i.e. it is changed in every
character), otherwise arbitrarily. To put in mathematically precise terms the
“anti-projection” works as follows:

zwx ∈ Σi 7−→ źwx ∈ Σi+j−1; ź
w
x = (ź1, ź2, . . . , źi+j−1),

where (ź1, ź2, . . . , źi) := zwx and typ(źk) 6= typ(źk+1), k ∈ i, . . . , i+ j − 1. No-
tice that due to having chosen zwx we can also write: typ(źk) 6= typ(źk+1), k ∈
1, . . . , i+ j − 1.
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Now we give a lower bound on the shortest path between źwxj and źwxk ,
where xj, xk ∈ {0, 1, . . . , N − 1}, xj 6= xk with a similar procedure that we
have used in Lemma 4.3 and in Lemma 4.7. Notice that |źwxj ∧ ź

w
xk
| = 0 and

q = r = i+ j − 1, thus we need at least

r − 1 + q − 1 + 1 = 2i+ 2j − 3 ≥ 2n1 + 2 + 2j − 3 = 2n1 + 2(j − 1) + 1

≥ Diam(G) + 2(j − 1) + 1 ≥ Diam(Gj) + 1

steps on any path between źwxj and źwxk . Hence these witnesses must be

in distinct lj boxes, so we need at least N i−n1 lj-boxes to cover Gj+i−1, i.e.

substituting n = j+i−1 and k = j yields thatBn
k = B

k+(n−k)
k ≥ Nn−k+1−n1 =

Nn−k · C.

Proof of the lower bound in Theorem 4.2. Using 4.8 we get an upper bound
on 4.1 if n− k ≥ n1 :

d̃im
(
{Gn}n∈N

)
= lim

k→∞
lim
n→∞

log
Bn

k

|V (Gn)|

−lk
= lim

k→∞
lim
n→∞

logNn − logBn
k

Diam(G) + 2k − 1

≤ lim
k→∞

lim
n→∞

logNn − logNn−k−n1+1

Diam(G) + 2k − 1

= lim
k→∞

lim
n→∞

n logN − (n− k − n1 + 1) logN

Diam(G) + 2k − 1

= lim
k→∞

(k + n1) logN

Diam(G) + 2k − 1
= lim

k→∞

k(1 + n1

k
) logN

k
(

2 + (Diam(G)−1)
k

)
=

logN

2
=

log |V (G)|
2

In the first row we use the definition of lk (Definition 4.1) and the bound
comes from Lemma 4.8.

Combining this with Lemma 4.1 yields Theorem 4.2, hence:

d̃im
(
{Gn}n∈N

)
=

log |V (G)|
2

.

38



Chapter 5

Summary

The aim of the thesis was to study network science from a mathematical
point of view, especially with regard to the connection between networks
and fractals. First of all, we overviewed some of the most important results
and concepts of network theory. After examining the fascinating features
of real-world networks empirically, we described them more precisely. Next,
we presented some ways of mathematical modeling of complex networks, we
introduced the preferential attachment model and two fractal based models,
the Apollonian networks and the hierarchical graph sequence model. Mo-
tivated by the observation of the self-similar nature of a few real networks,
we described some methods, that were adopted from the study of fractals
with the aim of investigating networks. One of these methods is the box
counting procedure and the corresponding concept of dimension. As an own
new result (joint with J. Komjáthy), we introduced a modified definition of
box dimension and gave a rigorous proof for its existence in the case of the
hierarchical graph sequence model. The proof consisted of two main parts:
we gave an upper and a lower bound on the dimension.

There are several relevant open questions and possible directions for fur-
ther study. We propose the following problems for future research:

• An interesting direction is to modify the graph sequence model (see
Section 2.5) in order to satisfy the property of fractality (see Definition
3.3).

• Another promising research topic is to study the multifractal analysis
of some appropriately chosen network models.
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