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Abstract. We outline a discretization approach to determine the
maximal number of mutually unbiased bases in dimension 6. We
describe the basic ideas and introduce the most important defini-
tions to tackle this famous open problem which has been open for
the last 10 years. Some preliminary results are also listed.
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1. Introduction

This paper is based on the talk given by the second author at the
International Conference on Design Theory and Applications, NUI,
Galway, July 1-3, 2009.

The notion of mutually unbiased bases (MUBs) constitutes a basic
concept of Quantum Information Theory and plays an essential role
in quantum-tomography [15, 23], quantum criptography [4, 6, 20], the
mean king problem [1] as well as in constructions of teleportation and
dense coding schemes [22].

Recall that two orthonormal bases of Cd, A = {e1, . . . , ed} and B =
{f1, . . . , fd} are said to be unbiased if, for every 1 ≤ j, k ≤ d, |〈ej, fk〉| =
1√
d
. A set B0, . . .Bm of orthonormal bases is said to be (pairwise)

mutually unbiased if any two of them are unbiased. It is well-known
(see e.g. [2, 5, 23]) that the number of mutually unbiased bases in Cd

cannot exceed d + 1. It is also known that d + 1 such bases can be
constructed if the dimension d is a prime or a prime power (see e.g.
[2, 11, 12, 13, 15, 17, 23]). Apart from this, very little is known except
for the fact that there are always p + 1 mutually unbiased bases in Cd
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where p is the smallest prime divisor of d. Thus, the first case where
the largest number of mutually unbiased bases is unknown is d = 6:

Problem 1.1.
What is the maximal number of pairwise mutually unbiased bases in
C6?

Although this famous open problem has received considerable atten-
tion over the past few years ([5, 7, 8, 19, 21]), it remains wide open.
Since 6 = 2 × 3, we know that there are at least 3 mutually unbiased
bases in C6, but so far tentative numerical evidence [7, 8, 10, 24] sug-
gests that there are no more than 3, a fact apparently first conjectured
by Zauner [24].

Conjecture 1.2.
The maximal number of pairwise mutually unbiased bases in C6 is 3.

One reason for the slow progress is that mutually unbiased bases
are naturally related to complex Hadamard matrices. Indeed, if the
bases B0, . . . ,Bm are mutually unbiased we may identify each Bl =

{e(l)
1 , . . . , e

(l)
d } with the unitary matrix

[Hl]k,j =

[〈
e

(l)
k , e

(0)
j

〉
1≤k,j≤d

]
,

i.e. the k-th row of Hl consists of the coordinates of the k-th vector
of Bl in the bases B0. (Throughout the paper the scalar product 〈., .〉
of Cd is linear in the first variable and conjugate-linear in the second.
Note also that for convenience of computer programming we use the
unconventional definition that the rows of the matrices correspond to
the vectors of the bases.) With this convention, H0 = Id the identity
matrix and all other matrices are unitary and have entries of modulus
1/
√

d. Therefore, the matrices
√

dHl have all entries of modulus 1
and complex orthogonal rows (and columns). Such matrices are called
complex Hadamard matrices. It is clear that the existence of a family of
mutually unbiased bases B0, . . . ,Bm is thus equivalent to the existence
of a family of complex Hadamard matrices

√
dH1, . . . ,

√
dHm such that

for all 1 ≤ j 6= k ≤ m,
√

dHjH
∗
k is again a complex Hadamard matrix.

In such a case we will say that these complex Hadamard matrices are
mutually unbiased.

A complete classification of complex Hadamard matrices is only
available up to dimension 5 (see [14]) which allows for a complete clas-
sification of MUBs (see [9]). The classification in dimension 6 is still
out of reach despite recent efforts [3, 19, 21]. This is one of the reasons
for Problem 1.1 to be difficult.
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In this paper we outline a discretization approach that is likely to
lead to the proof of Conjecture 1.2 in the near future. Once all the ideas
are properly implemented in a computer code, an exhaustive search will
be carried out to prove Conjecture 1.2. We will include all the basic
definitions and ideas as well as some preliminary results here. Let us
recall here that the non-existence of a projective plane of order 10 was
also proved by an exhaustive computer search [18].

2. Discretization

The proof proceeds by contradiction, via a discretization scheme.
Assume that there exists a collection of 4 MUB’s in C6. Equivalently,
there exist 6×6 complex Hadamard matrices A,B,C having all entries
of modulus 1, such that the rows (and thus the columns) are complex
orthogonal, and we have the unbiased condition: for any two rows
u, v coming from different matrices we have |〈u, v〉| =

√
6. (Recall

that for the purposes of this note the rows of the matrices correspond
to the vectors of the bases.) In such a case the orhtonormal bases
1√
6
A, 1√

6
B, 1√

6
C accompanied with the identity matrix Id correspond

to a family of 4 MUB’s. We assume that such matrices A,B, C exist
and try to reach a contradiction.

After multiplying rows and columns by appropriate scalars if neces-
sary, we can assume that all coordinates of the first row and column of
A are 1’s, and all coordinates of the first column of all other matrices are
1’s (i.e. we assume that all appearing vectors in the bases A,B, C have
first coordinate 1, and the first vector in basis A consists of all 1’s). All
the other coordinates in the matrices are complex numbers of modulus
1, i.e. they are of the form e2πiρ with ρ ∈ [0, 1). We will use a dis-
cretization approach. Let N be a positive integer, called the discretiza-
tion parameter. We partition the interval [0, 1) into N sub-intervals

I
(N)
0 , I

(N)
1 , . . . , I

(N)
N−1 of equal length, i.e. I

(N)
j = [j/N, (j+1)/N). (Other

partitions are also possible, but this seems most convenient for pro-
gramming.) Now, any entry e2πiρ in any of the matrices A,B, C will

be represented by the integer j if ρ ∈ I
(N)
j (note that 0 ≤ j ≤ N − 1).

This means: whenever we see an entry j somewhere in a matrix then
we conclude that the original phase ρ must lie somewhere in the in-

terval I
(N)
j . We have no more and no less information than this. We

also agree that the first coordinate of each row will be represented by
0, keeping in mind that it represents exactly 1, without error (and not

the interval I
(N)
0 ).
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In short: we will exclusively be dealing with row vectors of the form

(1) u = (0, j1, j2, j3, j4, j5)

where 0 ≤ jk ≤ N − 1 and the first coordinate 0 represents 1 without
error, while the other coordinates jk mean that the actual entry ρk falls

into the interval I
(N)
jk

. In notation, the original matrix will be denoted

by A, while its representative integer matrix will be denoted by Ã. The
entries of A will be denoted by ρm,k, while those of Ã will be denoted
by jm,k.

There are altogether N5 vectors of the form (1).

Also, there is a natural ordering among these vectors: u ≤ v if
and only if it is so in lexicographical order. We will use this ordering
throughout this note.

3. The search for the discretized Hadamard matrix Ã

The matrix Ã is an integer matrix with first row and column con-
sisting of 0’s and the core of the matrix containing integers between 0
and N − 1. We introduce the following definition:

Definition 3.1. Given an integer matrix Ã with first row and column
consisting of 0’s and the core of the matrix containing integers jm,k be-

tween 0 and N−1, we will say that Ã is an N -discretized representative
of a complex Hadamard matrix if there exists a complex Hadamard ma-
trix A with entries ρm,k such that ρm,k ∈ Ijm,k

. In notation Ã ∈ HADN ,
where HADN denotes the set of N-discretized representatives of com-
plex Hadamard matrices.

The aim of this section is to describe an algorithm to efficiently search
for all possible matrices Ã ∈ HADN . Upon strong numerical evidence
[21], it is conjectured that the manifold of 6 × 6 complex Hadamard
matrices is 4-dimensional. Therefore we expect that the cardinality of
HADN will be approximately cN4 for some constant c. Nevertheless,
the task of finding all possible Ã is daunting at first glance. There are
N25 possible N -discretized matrices altogether, and we must select the
ones belonging to HADN . The number N25 is of course astronomical
even for N ≈ 50, but we will see that with an intelligent approach the
task can still be carried out.

There are a few properties we can assume about Ã without loss of
generality. We already assumed that the first row and column consist of
0’s. We can also assume that both the rows and columns are arranged
so that they increase with respect to lexicographical order. This can be
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arranged by repeated permutation of rows and columns. (This is not
entirely trivial because ordering the rows lexicographically can actually
spoil such an ordering of the columns and vice versa. However, if one
writes out the matrix entries row-after-row in one 36-long row vector,
then it is clear that this vector will decrease lexicographically irrespec-
tively of whether you make an ordering of the rows or the columns.
Therefore such a repeated ordering of rows and columns will terminate
in finite steps, and will produce a matrix such that both the rows and
the columns increase in lexicographical order.) This automatically im-
plies that the entries of the second row and second column are both
monotonically increasing. This is a very convenient property, because it
restricts the possibilities for the second row and column quite strongly.

We can also assume that the second row is less than or equal to
the second column in lexicographical order (this can be arranged by
transposition of Ã if necessary).

We must make use of the fact that the rows (and columns) of A
are complex orthogonal to each other. The first row and column of Ã
consist of 0’s (representing the entry 1 in A, without error). Therefore,
we have 5 unknown rows and columns of Ã. All of these rows and
columns have the form (1). The orthogonality condition with the first
row (and column) makes it natural to introduce the following definition:

Definition 3.2. We will say that a vector u of the form (1) belongs to
ORTN if there exist φk ∈ Ijk

such that 1 +
∑5

k=1 e2iπφk = 0.

Note that ORTN is a “small” subset of all the vectors of form (1),
containing only those vectors which represent vectors being orthogonal
to the vector (1, 1, 1, 1, 1, 1). Clearly, all rows and columns of Ã must
belong to ORTN . Therefore it is very important to determine the set
ORTN as precisely as we can. We achieve this by the following “check
the descendants” method.

Let u = (0, j1, j2, j3, j4, j5), and let rjk
denote the midpoint of the

interval Ijk
(the superscript N has been dropped from the notation for

convenience). If u ∈ ORTN then the trivial error bound (see Lemma
3.1 in [16]) gives

(2) |1 +
5∑

k=1

e2πirjk | ≤ 5π

2N
.

This is too crude, but we can iterate it to the “children” of u. Namely,
assume that the numbers φk exist as in Definition 3.2. For each interval
Ijk

the value φk must lie in either the left or the right half of Ijk
. There
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are 32 choices, according to whether we consider the left or the right
half of each interval Ijk

. These choices are called the 32 “children” of
u. Clearly, at least one of these children need to satisfy (2) with 5π

4N
on

the right hand side (and its own midpoints substituted to the left hand
side, of course, instead of rjk

). If none of the children satisfy this, then
u can be discarded. Of course we iterate this to grandchildren, and so
on, down to 7-8 generations. The vector u survives this test if it has
at least one surviving descendant in each generation.

Remark 3.1. The set ORTN is clearly invariant under permutations
of the last 5 coordinates j1, j2, j3, j4, j5. Therefore it makes sense to
introduce the set ORTN,mon of vectors in ORTN with monotonically
increasing coordinates. To save time, in the actual computer code we
first find the vectors of ORTN,mon by the method above, and then we
permute the last 5 coordinates to arrive at the set ORTN .

Remark 3.2. There exists also an improved error bound (see Lemma
3.2 in [16]). It is somewhat slower to check by computer and it is
reasonable to believe that we arrive at the same set ORTN by applying
either error bounds.

Remark 3.3. We have implemented a computer code for selecting
the set ORTN . For example, for N = 17 we have |ORTN | = 58450,
for N = 19, |ORTN | = 82630, and for N = 53, |ORTN | = 1875110.
Experience shows that the set ORTN is unexpectedly large if N is
divisible by 2 or 3. Therefore, we have mainly restricted our attention
to N being a prime.

Remark 3.4. The optimal choice of N seems to be crucial for the
success of the project. Clearly, if N is too small then the error bounds
are not good enough and we will not reach a contradiction in the forth-
coming steps (see Section 4 below). However, if N is too large then
the size of the sets ORTN and correspondingly HADN will be far too
large to be manageable. At present we believe that the optimal choice
of N is around N ≈ 50.

Let us turn back to the construction of Ã. All rows and columns
must come from ORTN , and they must be pairwise N − orthogonal in
the following sense:

Definition 3.3. We will say that the vectors u = (0, j1, j2, j3, j4, j5) and
v = (0,m1,m2,m3,m4,m5) are N -orthogonal if there exist numbers φk

and ψk in the intervals Ijk
and Imk

, such that 1+
∑5

k=1 e2iπ(φk−ψk) = 0.

This property is clearly shift-invariant in the sense that it only de-
pends on the values (j1−m1, . . . j5−m5) modulo N . We can therefore
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take m1 = · · · = m5 = 0 and correspondingly v0 = (0, 0 . . . , 0), (where
the last 5 coordinates represent the interval I0, of course) and define
the set ORTeps,N as the set of vectors of the form (1) which are N -
orthogonal to v0. (The notation ORTepsN indicates that the vector v0

contains an “epsilon” of error, because the last 5 coordinates represent
the interval I0 and not the exact number 1.) With this notation the
shift-invariance means that u and v will be N -orthogonal if and only
if the vector (j1 −m1, . . . j5 −m5)(mod N) is in ORTeps,N .

Having constructed the set ORTN previously, it is now easy to obtain
ORTeps,N . Indeed, by definition a vector u = (0, j1, . . . j5) can only be
N -orthogonal to v0 if there exist numbers φk in the intervals Ijk

and

ψk in [0, 1
N

), such that 1+
∑5

k=1 e2iπ(φk−ψk) = 0. But then the numbers
φk − ψk must fall in the intervals Ijk−εk

where εk is either 0 or 1, and
hence the vector uε = (0, j1 − ε1, . . . , j5 − ε5) is in ORTN .

Therefore, ORTeps,N will consist of all the vectors of the form uε =
(0, j1 + ε1, . . . , j5 + ε5), where εk is 0 or 1, and the vector (0, j1, . . . , j5)
is in ORTN .

Remark 3.5. Each u ∈ ORTN gives rise to 32 different uε above.
One could therefore expect that the size of ORTeps,N will be nearly 32
times the size of ORTN . This is not so, however, because there will
be many coincidences. Experience shows that the size of ORTeps,N is
approximately 4 times the size of ORTN , regardless of the value of N .

Now we are ready to conduct a search for the possible matrices Ã.
The first row and column are full of 0’s. We then build up the matrix
with a row-by-column approach. We fit in the second row, then the
second column, then the third row, then the third column, etc. At each
step we must consider that:

– each row and column must come from ORTN .

– each row (resp. column) must be lexicographically larger than
any previous rows (resp. columns). In particular, the entries of the
second row and column are monotonically increasing, i.e. they belong
to ORTN,mon.

– the second column must be lexicographically larger than or equal
to the second row.

– each row (resp. column) must be N -orthogonal to any previous
rows (resp. columns). This is equivalent to the fact that the pairwise
differences of the rows (resp. columns) modulo N must be contained
in ORTeps,N .
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– each row (resp. column) must be compatible with the already
existing entries of the matrix (e.g. when we fit in the fourth row, then
its first 3 coordinates are already fixed because the first three columns
of the matrix have already been filled out previously).

We have implemented a computer code which executes the search
as described above. The running time is still reasonable, within 1-4
days, depending on N . However, the number of selected matrices Ã is
unexpectedly large. It is in the range of 109− 5 · 1010 as N ranges from
17 to 53. Let PREHADN denote the set of matrices obtained by this
search. Clearly, HADN ⊂ PREHADN .

Have we made all possible restrictions so as to list exclusively the
matrices Ã belonging to HADN? In other words, is it true that
HADN = PREHADN? It turns out that this is not the case, and
there is an important possibility for further pruning. Consider a ma-
trix Ã ∈ PREHADN . There are 25 non-trivial entries in Ã (the first
row and column being trivial), all of which represent intervals Ijm,k

of

length 1/N . Once again we can “check the descendants” of Ã. That is,
we can take left or right halves of each 25 intervals Ijm,k

, and therefore

consider the 225 children of Ã. Obviously, at least one of these chil-
dren need to satisfy stricter pairwise orthogonality conditions of rows
and columns. If none of the children do, then Ã can be discarded, i.e.
it does not belong to HADN . Of course, checking 225 children is very
slow, but if one proceeds row-by-row then only a few thousand children
need to be actually checked. We have not rigorously implemented this
step in our computer code. Nevertheless, preliminary results suggest
that only a small fraction of the matrices in PREHADN will pass this
test, i.e. HADN will be significantly smaller in size than PREHADN .
This is very important for the running time of the overall algorithm,
as the size of HADN should definitely be kept in the range 108 − 109

even for N ≈ 50.

4. Stage 2: vectors unbiased to Ã, and reaching a
contradiction

Let us fix a matrix Ã ∈ HADN . We want to prove that the pair
(Id, Ã) cannot be extended by matrices B̃, C̃ so as to meet all orthog-
onality and unbiasedness conditions. The rows of B̃ and C̃ are of the
form (1) and they must be “unbiased” to all six rows of Ã. Therefore,
as a next step, we must obtain a list of all such vectors.

Remark 4.1. We are actually free to use a different discretization
parameter N ′ for the matrices B̃ and C̃. It may well reduce the running
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time if we use optimal choices for N and N ′. Experience shows (see
[16]) that it makes sense to choose N ′ considerably smaller than N .
However, for the sake of simplicity we will keep N = N ′ throughout
this note.

As the first row of Ã is invariably (0, 0, 0, 0, 0, 0) (representing 1’s
in the first row of A, without error) it makes sense to introduce the
following definition:

Definition 4.1. We will say that a vector u = (0, j1, j2, j3, j4, j5) be-
longs to the set UBN if there exist φk ∈ Ijk

such that |1+
∑5

k=1 e2iπφk | =√
6. We will say that u belongs to UBN,mon if the coordinates of u are

monotonically increasing.

The set UBN can be constructed in a similar way as ORTN . With
rjk

denoting the midpoint of the interval Ijk
the trivial estimate gives

(3)

∣∣∣∣∣ |1 +
5∑

k=1

e2iπrjk | −
√

6

∣∣∣∣∣ ≤
5π

2N
.

This is too crude, of course, and the descendants of u need to be checked
for some 7-8 generations.

Remark 4.2. Once again, the set UBN is invariant under the permuta-
tion of the last 5 coordinates j1, j2, j3, j4, j5. Therefore, in practice, we
first check monotonically increasing vectors only, and obtain UBN,mon.
Then we permute the coordinates to obtain UBN .

Remark 4.3. The set UBN is much larger than ORTN . This can be ex-
pected because orthogonality of complex vectors induces two conditions
(the real part and imaginary part both being zero) while unbiasedness
only induces one condition.

Remark 4.4. We have implemented a code for listing the set of vectors
UBN . For example, for N = 17 we have |UBN | = 479340, while for
N = 19, |UBN | = 764060.

We will also need a set UBeps,N which is analogous to ORTepsN .

Definition 4.2. We will say that the vectors u = (0, j1, j2, j3, j4, j5)
and v = (0,m1, m2, m3, m4, m5) are N -unbiased if there exist numbers
φk and ψk in the intervals Ijk

and Imk
, such that |1+

∑5
k=1 e2iπ(φk−ψk)| =√

6.

This property is again shift-invariant in the sense that it only depends
on the values (j1 −m1, . . . j5 −m5) modulo N . We can therefore take
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m1 = · · · = m5 = 0 and correspondingly v0 = (0, 0 . . . , 0), (where the
last 5 coordinates represent the interval I0, of course) and define the
set UBeps,N as the set of vectors of the form (1) which are N -unbiased
to v0. With this notation the shift-invariance means that u and v will
be N -unbiased if and only if the vector (j1 −m1, . . . j5 −m5)(mod N)
is in UBeps,N .

Let the vector v of the form (1) be any row of either B̃ or C̃. As the
first row of Ã is invariably (0, 0, 0, 0, 0, 0) (representing the 1’s in the
first row of A, without error), we conclude that v ∈ UBN . Let a2, . . . a6

denote the last five rows of Ã. Then, by definition, the differences v−aj

modulo N must belong to UBeps,N for all j = 2, . . . 6. Let UBÃ denote
the set of vectors v which satisfy these conditions. The notation UBÃ

reflects that these are the vectors which are “unbiased” to all rows of
Ã. By what has been said above, all rows of B̃ and C̃ must belong to
UBÃ.

Remark 4.5. We have implemented a code to obtain the set UBÃ.
Experience shows that the size of UBÃ is largely independent of the

choice of Ã, and it is between 103 − 104 vectors as N ranges from 17
to 53.

Having constructed UBÃ we must show that B̃ and C̃ cannot be built
from these vectors satisfying all orthogonality and unbiased conditions.

Consider the vectors in UBÃ and try to build the matrix B̃ out of
them. This means that we need to find 6 vectors b1, . . . b6 such that the
pairwise differences bk−bm modulo N all belong to ORTepsN . Counting
constraints and parameters one would expect that only a finite number
of triplets of MUB’s (Id, A,B) exists, and a MUB-pair (Id, A) can
generically not be extended to a triplet (Id, A, B). This would give us
hope that a contradiction is reached most of the times while trying to
build B̃. However, recent results [16, 8] show that infinite families of
MUB-triplets do exist. Numerical practice also shows that the matrix
B̃ can indeed be built from the vectors of UBÃ for all Ã. Therefore, we

do not get an immediate contradiction. Instead, for each B̃ we must
go on and select the vectors UBÃ,B̃ which are unbiased to all rows

of Ã and B̃, and we must try to build a matrix C̃ out of the vectors
UBÃ,B̃. The contradiction is reached only at this point. That is, if N is

large enough the matrix C̃ cannot be constructed from UBÃ,B̃ to meet
all orthogonality conditions. Experience shows that N must be larger
than 30 to reach a contradiction. This part of the project is currently
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under implementation. It would be desirable to reach a contradiction
for each Ã within a few seconds of computing time.

For the overall success of the project two tasks need to be considered
in the near future. One is the implementation of the ideas of the last
paragraph of Section 3 to bring down the number of possible Ã’s to the
region 108−109. The other is to reach a contradiction for each Ã within
a few seconds of computing time by not being able to construct B̃ and
C̃. A nice feature of the overall project is that once the algorithm is
completed, it is very easy to distribute the calculations among several
hundreds of computers, and thus reducing the running time by 2-3
orders of magnitude.

Finally, we remark that the entire discretization procedure described
above has already been completed in [16] in the restricted setting
when A is assumed to belong to the Fourier family F (a, b) of complex
Hadamard matrices.

Theorem 4.6. [Theorem 1.4 in [16]]
None of the pairs

(
Id, F (a, b)

)
of mutually unbiased orthonormal bases

can be extended to a quartet
(
Id, F (a, b), B, C

)
of mutually unbiased

orthonormal bases.

In that case we used the discretization parameters N = 180 for
Ã and N ′ = 19 for B̃ and C̃. Due to some well-known equivalence
relations only a few hundred possible discretized matrices Ã needed to
be considered, and a contradiction was quickly reached for all of them.
The documentation of that search is available at [25]. The difficulty in
the general case is that the number of matrices Ã becomes very large
if N is chosen large, while if N is small then a contradiction is reached
very slowly (or not reached at all!) in the second stage of the search.
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[5] I. Bengtsson, W. Bruzda, Å. Ericsson, J.-A. Larsson, W. Tadej &
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E-mail address: philippe.jaming@univ-orleans.fr
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