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Abstract. It is well-known that the Hausdorff dimension of the

Sierpinski triangle Λ is s = log 3/ log 2. However, it is a long

standing open problem to compute the s-dimensional Hausdorff

measure of Λ denoted by Hs(Λ). In the literature the best existing

estimate is

0.670432 ≤ Hs(Λ) ≤ 0.81794.

In this paper we improve significantly the lower bound. We also

give an upper bound which is weaker than the one above but ev-

erybody can check it easily. Namely, we prove that

0.77 ≤ Hs(Λ) ≤ 0.819161232881177

holds.
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1. Introduction

In this paper we consider the Sierpinski triangle or gasket Λ. This is

constructed as follows: take an equilateral triangle of side length equal

to one, remove the inverted equilateral triangle of half length having

the same center, then repeat this process for the remaining triangles

infinitely many times as showed on Figs. 1, 2.
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Figure 1. The triangles at the 1st, 2nd and the 3rd level

Figure 2. The Sierpinski triangle

In this paper we assumed that the diameter of the Sierpinski triangle

is equal to 1. If the Sierpinski triangle is rescaled in such a way that

its diameter is equal to t then the lower and upper bounds should be

multiplied by tlog 3/ log 2.
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The Sierpinski triangle is one of the most famous fractals, and the

Hausdorff dimension and measure are the most important characteris-

tics of a fractal sets. The Sierpinski triangle is defined by an iterated

function system, which satisfies a technical condition called the open

set condition (OSC). Thus it follows from Hutchinson’s Theorem [1]

that the Hausdorff dimension is equal to s = log 3/ log 2, and the s-

dimensional Hausdorff measure Hs(Λ) of Λ is positive and finite. Since

the Sierpinski triangle has an important role in many applications, it

would be desirable to get a better understanding of its size. There-

fore in the last two decades there have been a considerable attention

paid to the computation of the s-dimensional Hausdorff measure of the

Sierpinski triangle:

In 1987 Marion [2] showed that 0.9508 is an upper bound. In 1997

this was improved to 0.915, and later to 0.89 by Z. Zhou [3], [4]. In

2000 Z. Zhou and Li Feng proved that Hs(Λ) ≤ 0.83078 in [5]. The

best upper bound is 0.81794, which was given by Wang Heyu and

Wang Xinghua [6] in 1999 (in Chinese) with a computer algorithm.

In 2002 B. Jia, Z. Zhou and Z. Zhu [7] showed that 0.5 is a lower bound

on the s-dimensional Hausdorff measure of the Sierpinski triangle. In

2004 R. Houjun and W. Weiyi [8] improved it to 0.5631. Finally, in

2006 B. Jia, Z. Zhou and Z. Zhu [9] proved that 0.670432 is a lower

bound.

The main result of this paper is that Hs(Λ) ≥ 0.77.

The difficulty comes from geometry. The s-dimensional Hausdorff mea-

sure of Λ is defined by
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(1.1) Hs(Λ) = lim
δ→0

inf
{∑

k

|Ak|s, where |Ak| < δ and

Ak is a countable cover of Λ
}
,

where |Ak| denotes the diameter of the set Ak. When we estimate the

Hausdorff measure we need to understand what is the most economical

(in the sense of (1.1)) system of covers . Our most natural guess for this

system is the covers by the level n triangles (the equilateral triangles

on Fig. 1). However, this system of covers would result that the s-

dimensional Hausdorff measure of Λ was equal to 1. On the other

hand it is known that Hs(Λ) < 0.81794. Therefore the best system of

covers cannot possibly be the trivial one and this makes the problem

difficult. To improve the existing best estimate on Hs(Λ) we use a

Theorem of B. Jia. [10]. To state this Theorem we need to introduce

some definitions.

It is well known (see [11]) that

Λ =
3⋃
i=1

Si(Λ),

where

S1(x, y) =

(
1

2
x,

1

2
y

)
,

S2(x, y) =

(
1

2
+

1

2
x, 0 +

1

2
y

)
,

S3(x, y) =

(
1

4
+

1

2
x,

√
3

4
+

1

2
y

)
.
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Let E be the equilateral triangle of side length one with vertices: (0, 0),

(1, 0),
(

1
2
,
√

3
2

)
. Now we define the level n triangles

Ei1...in := Si1...in(E) = Si1 ◦ · · · ◦ Sin(E)

for all (i1 . . . in) ∈ {1, 2, 3}n. Let µ be the uniform distribution measure

on the Sierpinski triangle that is for all n and for all i1 . . . in

µ(Ei1...in) =
1

3n
.

After B. Jia we introduce the sequence

(1.2) an = min
|
⋃kn

j=1 ∆
(n)
j |s

kn/3n
= min

|
⋃kn

j=1 ∆
(n)
j |s

µ(
⋃kn

j=1 ∆
(n)
j )

,

where the minimum is taken for all non-empty sets of distinct level n

triangles
{

∆
(n)
1 , . . . ,∆

(n)
kn

}
. It is easy to see that an is non-increasing

(see [10]). Further B. Jia showed ([10]) that an is an upper bound on

the Hausdorff measure of the Sierpinski triangle, and he also gave a

lower bound using an :

Theorem 1 (B. Jia). The Hausdorff measure of the Sierpinski triangle

satisfies:

(1.3) ane
− 16

√
3

3
·s·( 1

2)
n

≤ Hs(Λ) ≤ an

This Theorem implies that an tends to Hs(Λ).

Unfortunately there seems to be no way to compute an for n ≥ 6. B.

Jia [10] calculated a1 and a2. We can calculate a3, a4, a5, but by (1.3)

it results only that Hs(Λ) > 0.54, which is not an improvement on the
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already existing lower bound. So instead of this direct approach we

give a lower bound on an for every n. By using (1.3) this lower bound

is also a lower bound on Hs(Λ). Using some complicated algorithm

described in Sec. 4, 5 we point out that

an ≥ 0.77

for all n ∈ N. With Theorem 1 this implies that

Hs(Λ) ≥ 0.77.

We remind the reader that the best existing lower bond in the literature

[9] was given in 2006: Hs(Λ) ≥ 0.670432.

Using the second inequality of Theorem 1, in Sec. 2 an upper bound

is given on Hs(Λ) as follows: we provide a carefully selected col-

lection of level 30 triangles
{

∆
(30)
1 , . . . ,∆

(30)
k30

}
. This collection re-

sults an upper bound on a30 which in return gives the upper bound

Hs(Λ) ≤ 0.819161232881177. In 1999 two Chinese mathematicians [6]

published an upper bound which is better than this but their paper was

published in Chinese giving in this way limited opportunity to check if

their algorithm was correct.

Remark 1. I want to thank my supervisor, Károly Simon for his sup-

port writing this article.

2. Upper bound

In the definition of an (1.2) the minimum is taken for all non-empty

sets of distinct level n triangles. We provide a collection of level n
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triangles for all n, which gives an upper bound on an by definition, and

an upper bound on Hs(Λ) by Theorem 1.

Take the following 6 points:

{(1/4, 0), (3/4, 0), (1/8,
√

3/8), (3/8, 3
√

3/8), (5/8, 3
√

3/8), (7/8,
√

3/8)}.

Let D1, D2, . . . , D6 be the closed discs centered at these six points with

radius 0.75. We write D := D1 ∩ D2 ∩ · · · ∩ D6. Take all those level

n triangles, which are contained in D (see Fig. 3 for an example). It

is easy to see that the maximum distance between the chosen triangles

will be exactly 0.75. Let us denote

cn =
0.75log 3/ log 2

kn/3n
,

where kn is the number of the chosen level n triangles, which are in the

region of intersection of the six discs.

The values for the cn for small n are given by the following table:
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Figure 3. The black triangles are the chosen 174 level

5 triangles, so c5 = 0.75log 3/ log 2

174/35 . Six arrows show the six

given points.

Number of chosen

n triangles (kn) kn/3
n 0.75log 3/ log 2

kn/3n

2 6 0.666666666666667 0.950753749115186

3 18 0.666666666666667 0.950753749115186

4 54 0.666666666666667 0.950753749115186

5 174 0.716049382716049 0.885184525038276

6 546 0.748971193415638 0.846275315146484

. . .

28 17701192624554 0.773761997421774 0.819161234146210

29 53103577928148 0.773761998215679 0.819161233305724

30 159310733867010 0.773761998616697 0.819161232881177

Therefore using Theorem 1 we obtain that
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c30 ≥ a30 ≥ Hs(Λ)

holds. This implies:

Theorem 2. The Hausdorff measure of the Sierpinski triangle is less

than 0.819161232881177.

One can show we cannot get a better upper bound on the s-dimension

Hausdorff measure of the Sierpinski triangle than 0.819161232089868.

3. Lower bound, basic idea

For the convenience of the reader after giving the necessary definitions

we are going to present a strongly simplified rough version of the idea

of the algorithm. In Sec. 5. we will present the algorithm itself.

Definition 1. Let g > h be positive integers, and let ∆
(g)
1 ,∆

(g)
2 , . . .∆

(g)
k

be a set of distinct level g triangles, ∆
(h)
1 ,∆

(h)
2 , . . .∆

(h)
l be a set of dis-

tinct level h triangles. We say that the set {∆(g)
i }ki=1 is a descendant

of the set {∆(h)
j }lj=i and we write {∆(h)

j }lj=i
desc−→ {∆(g)

i }ki=1, if both of

the following conditions hold:

• For all i ∈ {1, 2, . . . k} there is a j, such that ∆
(g)
i ⊂ ∆

(h)
j .

• For all j ∈ {1, 2, . . . l} there is at least one i, such that ∆
(g)
i ⊂

∆
(h)
j .

See Fig. 4 for an example. This relation naturally defines a tree T for

which the equilateral triangle E is the root. The set of level n nodes is

equal to the set of all (non-empty) union of level n triangles. A level
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Figure 4. The set in the middle is a descendant of the
left one, but the set on the right is NOT a descendant
of the left one.

n node {∆(n)
j }lj=1 is connected to a level (n + 1) node {∆(n+1)

i }ki=1 if

{∆(n+1)
i }ki=1 is a descendant of {∆(n)

j }lj=1. Figure 5 shows the top of

the tree.

Figure 5. The top of the tree T .

Let v = {∆(n)
i }ki=1 be a level n node. Then we write v0 = n and we

denote Tv the sub tree of T having v as root. (Tv consists of v and all

those nodes w, which are descendant of v.) Let Ev := ∪ki=1∆
(n)
i .
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We define

av :=
|Ev|s

k/3n
=
|Ev|
µ(Ev)

.

Our purpose is to give a lower bound on an (defined in (1.2)) for suf-

ficiently large n, so we obtain a lower bound on its limit, Hs(Λ). It

comes directly from the definitions that

an = min
v◦=n

av.

By using an ↓ Hs(Λ) and taking infimum on both sides on n we obtain

(3.1) inf
v∈T

av = lim
n→∞

an = Hs(Λ).

Let v = {∆(n)
i }ki=1. We write

bv := max
1≤i,j≤k

min
x∈∆

(n)
i ,y∈∆

(n)
j

|x− y|s

k/3n
.

Observe that for these x, y we have

|x− y| = max
1≤i,j≤k

dist(∆i,∆j).

Lemma 1. The value bv is a lower bound for aw whenever v
desc−→ w

holds. Namely,

bv ≤ inf
w∈Tv

aw.

Proof. For v = {∆(n)
i }ki=1 let w = {∆(g)

t }lt=1 ∈ Tv be arbitrary. To give

a lower bound on aw first we give a lower bound on the diameter of Ew,

then we give an upper bound on µ(Ew). We consider ∆
(n)
i and ∆

(n)
j for

some 1 ≤ i, j ≤ k. w is a descendant of v, so Ew ∩∆
(n)
i and Ew ∩∆

(n)
j

are non-empty (see Fig. 6 for example). Thus the diameter of Ew is at
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All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

All the descendants
will have a part in
these places,

so the
diameters
will be
at least
this
long.

Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.
Diameter
of a descendant.

Figure 6. The set on the right is a descendant of the left one.

least

|Ew| > min
x∈∆

(n)
i ,y∈∆

(n)
j

|x− y| = dist(∆
(n)
i ,∆

(n)
j ).

This inequality holds for all 1 ≤ i, j ≤ k, so we can take the maximum

over these pairs:

|Ew| > max
1≤i,j≤k

min
x∈∆

(n)
i ,y∈∆

(n)
j

|x− y|.

Because v
desc−→ w, we have Ew ⊂ Ev. This yields

l/3g = µ(Ew) ≤ µ(Ev) = k/3n,

therefore

bv = max
1≤i,j≤k

min
x∈∆

(n)
i ,y∈∆

(n)
j

|x− y|s

k/3n
≤ |Ew|

s

l/3g
= aw.

�
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First of all we give a lower bound only on a subtree defined by a finite

set of nodes A. We define the set TA as follows: v ∈ TA if v ∈ A, or v

is a descendant of a node w, which is in A. Namely,

TA =
⋃
w∈A

Tw.

We write

BA = min
v∈A

bv.

We can apply the previous Lemma for every node in the set A, thus

we have

(3.2) BA ≤ inf
v∈TA

av.

We are going to apply this inequality for the so called cross-sections.

These are some subsets C ⊂ T of the nodes such that the lower bound

on av, v ∈ TC is a lower on the Hausdorff measure of the Sierpinski

triangle. To make this definition precise first we define the set of the

parents of C called PC as

PC = {v | v desc−→ w,w ∈ C},

namely PC is the set of nodes, which have a descendant in C.

Definition 2. We call a finite set C ⊂ T a cross-section, if there exists

a function ϕ, ϕ : T \ (TC ∪ PC) → TC ∪ PC such that for every node

v ∈ T \ (TC ∪ PC) we have

aϕ(v) ≤ av,



14 PÉTER MÓRA

and

µ(Eϕ(v)) ≥ 3µ(Ev).

Let v be a level n node. For a k > n we write Γk(v) for that level k

descendant of v which has maximal µ measure. That is

Γk(v) = {Ei1,...ik |Ei1,...ik ⊂ Ev}.

See Fig. 7. We remark that

(3.3) av = aΓk(v).

Namely, |Ev| = |EΓk(v)| and µ(Ev) = µ(EΓk(v)) hold.

Fact 1. Let H be an arbitrary subset of T .

Then for every k ≥ 0 we have

(3.4) inf
v∈TH

av = inf
v∈TH

T
{w |w◦≥k}

av.

Proof. It is enough to verify that

inf
v∈TH

av ≥ inf
v∈TH

T
{w |w◦≥k}

av

holds. To do so, let u ∈ TH \ {w |w◦ ≥ k} be arbitrary. By using

Γk(u) ∈ TH
⋂
{w |w◦ ≥ k} and (3.3) we have

au = aΓk(u) ≥ inf
v∈TH

T
{w |w◦≥k}

av,

which completes the proof. �
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Figure 7. The node v on the left is a level 2 node, the
node on the right is the node Γ4(v).

For a cross-section C we define

BC = min
v∈C

bv.

Lemma 2. For every cross-section C we have

(3.5) inf
v∈T

av = inf
v∈TC

av,

and

(3.6) BC ≤ inf
n
an = Hs(Λ).

Proof. It is easy to see that (3.6) is an immediately consequence of

(3.5). Namely, using (3.1) and (3.2) we have

BC ≤ inf
v∈TC

av = inf
v∈T

av = inf
n
an = Hs(Λ)
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Let MC be the maximum level of the nodes which are contained in the

set C. We define

KMC
=
{
v | v0 ≥MC

}
.

Using Fact 1 we have

inf
v∈T

av = inf
v∈T ∩KMC

av, and inf
v∈TC

av = inf
v∈TC∩KMC

av.

Thus to prove (3.5) it is enough to verify that

(3.7) inf
v∈T ∩KMC

av = inf
v∈TC∩KMC

av

holds.

We fix a v ∈ KMC
\ TC . To verify (3.7) we will show that there exists

a node t ∈ KMC
∩ TC such that

(3.8) av ≥ at

holds. Since KMC
∩PC = ∅, thus v ∈ T \(TC∪PC). C is a cross-section,

by definition there exists ϕ such that ϕ(v) ∈ TC ∪ PC . If ϕ(v) ∈ KMC
,

then ϕ(v) ∈ TC as well, so (3.8) follows from choosing t = ϕ(v) and by

using

av ≥ aϕ(v).

If ϕ(v) ∈ PC , then let us consider ΓMC
(ϕ(v)). If ΓMC

(ϕ(v)) ∈ TC then

t := ΓMC
(ϕ(v)) yields (3.8). If ΓMC

(ϕ(v)) /∈ TC then by (3.3) and by
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the definition of ϕ and ΓMC
we have

av ≥ aϕ(v) = aΓMC
(ϕ(v))

µ(EΓMC
(ϕ(v))) ≥ 3µ(Ev)(3.9)

ΓMC
(ϕ(v)) ∈ KMC

\ TC

So, we can repeat the same for the node w1 := ΓMC
(ϕ(v)) instead

of v. If ΓMC
(ϕ(w1)) ∈ TC then we are ready as we saw above. If

not then (3.9) holds for w1 instead of v. Note that this follows that

0 < 9µ(Ev) ≤ µ(EΓMC
(ϕ(w1))) ≤ 1. This shows that there must exists

a finite N such that ΓMC
(ϕ(wN)) ∈ TC , where wk+1 := ΓMC

(ϕ(wk)).

This completes the proof of (3.8)

�

Take the following set:

(3.10) C0 = {v | v0 = 2, v ∈ ∪T{E1,E2} ∪ T{E1,E3} ∪ T{E2,E3},

v 6= {E1,2, E2,1}, v 6= {E1,3, E3,1}, v 6= {E2,3, E3,2}} ∪ {{E1, E2, E3}}.

See Fig. 1 for labelling. There are 7 · 7 = 49 descendants of the

node {E1, E2} at level 2. Counting the same for {E1, E3} and {E2, E3}

we have 3 · 49 = 147 nodes. Let us remove the nodes {E1,2, E2,1},

{E1,3, E3,1}, {E2,3, E2,3}, and take the node {E1, E2, E3}, so we get the

set C0. Thus C0 consists of 147− 3 + 1 = 145 nodes.

Proposition 1. The set C0 is a cross-section.
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Proof. Note that

T \ (TC0 ∪PC0) = TE1 ∪TE2 ∪TE3 ∪T{E1,2,E2,1} ∪T{E1,3,E3,1} ∪T{E2,3,E2,3}.

To define the function ϕ in the Definition 2, first we define an auxiliary

function ψ : T \ (TC0 ∪ PC0)→ T . (See Figs. 8 and 9.)

• For v ∈ T{Ej}, where j = 1, 2, 3 let

ψ(v) := {Ei2,i3,...,in |Ej,i2,i3,...,in ∈ v},

• for v ∈ T{E1,2,E2,1} let

ψ(v) := {E1,i1,i2,...,in |E1,2,i1,i2,...,in ∈ v} ∪ {E2,i1,i2,...,in |E2,1,i1,i2,...,in ∈ v},

• for v ∈ T{E1,3,E3,1} let

ψ(v) := {E1,i1,i2,...,in |E1,3,i1,i2,...,in ∈ v} ∪ {E3,i1,i2,...,in |E3,1,i1,i2,...,in ∈ v},

• for v ∈ T{E2,3,E3,2} let

ψ(v) := {E2,i1,i2,...,in |E2,3,i1,i2,...,in ∈ v} ∪ {E3,i1,i2,...,in |E3,1,i1,i2,...,in ∈ v}.

Clearly,

|Eψ(v)| = 2|Ev|

and

µ(Eψ(v)) = 3µ(Ev).

Thus we have

aψ(v) = av.
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Figure 8. The node v on the left is a descendant of the
node {E1}, the node on the right is ψ(v). The arrow
shows the fix point of rescaling.

Figure 9. The node v on the left is a descendant of
the node {E2,3, E3,2}, the node on the right is ψ(v). The
arrow shows the fix point of rescaling.

This follows that for every v ∈ T \ (TC0 ∪ PC0) there exists an N such

that C0 is a cross-section with the function

ϕ(v) := ψN(v) = ψ ◦ · · · ◦ ψ︸ ︷︷ ︸
N

(v) ∈ TC0 ∪ PC0 .

(See Fig. 10.)

�
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Figure 10. The node v on the left is a descendant of
the node {E1,3, E3,1}. The node in the middle is Ψ(v).
The node on the right is ϕ(v) = Ψ(Ψ(v)).

For the convenience of the reader we present a simplified algorithm for

choosing cross-sections Cn in the next Sec. Finally, in Sec. 5 we im-

prove this algorithm significantly by using symmetries and a convexity

argument.

4. Algorithm

Our purpose is to choose cross-sections Cn in such a way that BCn gets

as large as possible, but a computer can check it in acceptable length

of time. It is a natural idea to choose a starting cross-section, and

modify it in hope to get a better lower bound. For n = 0 take the set

C0 defined in (3.10). For every n in the n-th step find a node v ∈ Cn

where

bv = min
w∈Cn

bw.

To obtain Cn+1 from Cn we throw away v from Cn and we add to Cn

all the next level descendants of v. It follows from the definition of bv

that BCn+1 ≥ BCn .
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The following algorithm consists of three steps. It gives a lower bound

on the s-dimensional Hausdorff measure of the Sierpinski triangle every

time it reaches Step 2. It will run forever, but during its running it will

give better and better lower bounds.

Algorithm 1. Step 1. Start with the set C0 from the previous Section.

Let n := 0.

Step 2. Find minv∈Cn bv. Below we prove that Cn is a cross-section. So,

it follows from Lemma 2 that we have

min
v∈Cn

bv ≤ Hs(Λ).

Step 3. Find a node v ∈ Cn for which bv = minw∈Cn bw (if such a v is

not unique, then choose any of them). Let us suppose v is level

m node. We define Sn as the set of all of those level m + 1

nodes, which are descendants of the node v. That is

Sn := {w |w0 = m+ 1, v
desc−→ w},

Let

Cn+1 := Sn ∪ Cn \ {v}.

Increase n by 1. Go to Step 2.

Above we used the fact that Cn is a cross-section for every n. This is

so because we have already seen that C0 is a cross-section and

TCn+1 ∪ PCn+1 = TCn ∪ PCn

holds for all n.
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5. Lower bound, making the algorithm faster

Our aim here is to improve the algorithm presented in the previous

Section. To do so, for every n we define a cross section Qn. Namely,

let Q0 := C0. Assume that Qn is already defined. To define Qn+1 first

we define a certain set of nodes Dn ⊂ Qn as it is detailed later in the

Section. It is important that the set Dn is much smaller than Qn. We

choose a v ∈ Dn for which

(5.1) bv = min
w∈Dn

bw.

Then the special choice of Dn will guarantee that

(5.2) bv ≤ Hs(Λ).

To get Qn+1 we replace v (defined in (5.1)) with its next level descen-

dants.

To define Dn we need to introduce the notion of the convexity of a

node. We remark that Dn will consist only of convex nodes.

Definition 3. Let v be a level n node. We write

conv(v) = {Ei1,i2,...,in |Ei1,i2,...,in is contained in the convex hull of Ev}.

See Fig. 11. for an example. We call a node v convex, if v = conv(v),

otherwise we call it non-convex.

Lemma 3. Let v be a non-convex level n node. If v′ is a level m

descendant of the node v, and Θ ∈ conv(v) \ v is a level n triangle,

then the closed convex hull of Ev′ intersects Θ.



ESTIMATE OF THE HAUSDORFF MEASURE OF THE SIERPINSKI TRIANGLE23

Figure 11. The node v consists of the black triangles.
The convex hull of Ev is showed with dashed lines. The
black and the gray triangles together form the node
conv(v).

Proof. We assume that v = {∆i}ki=1. By definition of convexity we

have

Θ ⊂

{
k∑
i=1

αixi |xi ∈ ∆i, αi ≥ 0,
k∑
i=1

αi = 1

}
.

For i = 1, 2, . . . , k let ti ∈ ∆i be arbitrary points. To verify the asser-

tion of the Lemma it is enough to show that

(5.3) Θ ∩

{
k∑
i=1

αiti |αi ≥ 0,
k∑
i=1

αi = 1

}
6= ∅

holds for every choice of t1, . . . , tk. We prove it by contradiction. Let

us suppose there exist t1, . . . , tk such that (5.3) does not hold. Then

there exists a line e, such that e separates Θ and the convex hull of

t1, . . . , tk. Let a be one of the normal unit vectors of e. Put r := z · a,

where z ∈ e arbitrary, and dot means the scalar product. Let us define

(5.4) q := max
x,y∈Θ

(x− y) · a.
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Without loss of generality we may assume that

max

{(
k∑
i=1

αiti

)
· a |αi ≥ 0,

k∑
i=1

αi = 1

}
< r

and

min
x∈Θ

x · a > r

hold, otherwise take −a instead of a. The last inequality and (5.4)

implies that

max
x∈Θ

x · a > q + r,

let us denote x0 where the maximum is attained. Since Θ ∈ conv(v)\v,

thus for i = 1, 2, . . . , k there exist ui ∈ ∆i, and β ≥ 0 such that

x0 =
k∑
i=1

βiui

holds. Using the fact all level n triangles are translations of each others

and using (5.4), for i = 1, 2, . . . , k we have

(ui − ti) · a ≤ q.

Observe that

q + r < x0 · a =

(
k∑
i=1

βiti

)
· a +

(
k∑
i=1

βi(ui − ti)

)
· a < r + q,

which is a contradiction, and completes the proof.

�
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The next Lemma shows that for any descendant w of a non-convex

node v the value of aw can be at most slightly bigger than some of the

same level descendants of conv(v). We will need this to verify (5.2).

Lemma 4. Let v be a non-convex level n node and let m > n be

arbitrary. If v
desc−→ v′, v′◦ = m, then there exists a node w′, w′◦ = m,

conv(v)
desc−→ w′, such that

(5.5) |Ew′ | ≤ |Ev′ |+
2

2m

and

Ev′ ⊂ Ew′

hold.

Proof. We write v = {∆i}ki=1, and conv(v)\v = {Θj}lj=1. Let us define

the polygon H as the closed convex hull of Ev′ . We proved in Lemma

3 that Θj intersects H for 1 ≤ j ≤ l. If the polygon H intersects

a triangle Θj, then for all j there exists at least one level m triangle

Θ′j ⊂ Θj, such that Θ′j intersects H as well. We write tj for a point

where H intersects the triangle Θ′j. Let

w′ = v′ ∪ {Θ′j}lj=1.

Let q0,w0 ∈ Ew′ be some points where the maximum

|Ew′ | = max
q,w∈Ew′

|q−w|,

is attained. If q0,w0 ∈ Ev′ then we have |Ew′| = |q0 − w0| ≤ |Ev′ |,

thus the inequality (5.5) holds. If one of them is not in Ev′ , let say q0,
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then there exists a j such that q0 ∈ Θ′j and w0 ∈ Ev′ . Using triangle

inequality we have

|Ew′ | = |q0 −w0| ≤ |q0 − tj|+ |tj −w0| ≤ |Θ′j|+ |Ev′ | =
1

2m
+ |Ev′ |

because q0, tj ∈ Θ′j. If both q0 and w0 are not in Ev′ , then using

triangle inequality twice we have |Ew′| ≤ 2
2m + |Ev′ |. �

The following Lemma helps us to reduce the number of cases to be

checked in an analogous way to the previous Lemma.

Lemma 5. Let v = {∆i}ki=1 be a level n node, ∆ = Ei1,...,in be a level

n triangle such that ∆ 6∈ v. Further, let x be one of the vertices of

the triangle ∆. We write D(x, r) for the closed disc centered at x with

radius r. If

Ev ⊆ D(x, max
1≤i,j≤k

dist(∆i,∆j))

holds then for all level m descendant v′ of the node v there exists a level

m triangle ∆′ ⊂ ∆, such that

|Ev′ ∪∆′| ≤ |Ev′ |+
1

2m

Proof. Let ∆′ be that level m triangle, which has x as one of its vertices,

and ∆′ ⊂ ∆. As we saw in the proof of Lemma 1, max1≤i,j≤k dist(∆i,∆j))

is a lower bound on |Ev′ |. Furthermore,

|Ev′ ∪∆′| = max
q,w∈Ev′∪∆′

|q−w|.

Let q0,w0 be those points where this maximum is attained. Either

q0,w0 ∈ Ev′ , or one of the points, let us say q0 ∈ ∆′, and w0 ∈ Ev′ .
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By using |∆′| = 1/2m and triangle inequality both cases implies the

statement.

�

The following Theorem will show (with D = Dn) how the sequence of

sets {Dn}∞n=0 mentioned in the introduction of this Section gives us a

lower bound on the Hausdorff measure Hs(Λ). Then after this theorem

we will construct {Dn}∞n=0.

Theorem 3. Let Q ⊂ T be a cross-section. We choose an arbitrary

D ⊂ Q which satisfies the following assumption:

For all v ∈ Q \D there exists a node w ∈ TQ ∪ PQ, such that

• w◦ = v◦,

• Ev ( Ew,

• for v
desc−→ v′ there exists a w

desc−→ w′ with v′◦ = w′◦ =: m

such that

Ev′ ⊂ Ew′ and |Ew′| ≤ |Ev′|+
2

2m
.

Then

BD = min
t∈D

bt ≤ Hs(Λ).

Proof. Let us denote the finitely many elements of Q \D by:

Q \D = {v1, v2, . . . , vk} .

Let ε > 0 be arbitrary. Choose an M > maxv∈Q v
◦ which also satisfies(

1 +
2

δ2M

)k·s
< 1 + ε,
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where

δ := inf
v∈τC0

|Ev|.

We remind the reader that C0 was defined in (3.10). It is easy to

see that δ > 0. Recall that KM = {v | v0 ≥M} . Fix an arbitrary

v′0 ∈ KM ∩ TQ. To prove the assertion of the Theorem, it is enough to

show that

(5.6) av′0 ≥
BD

1 + ε
.

Namely,

Hs(Λ) = inf
v∈T

av = inf
v∈TQ

av = inf
v∈KM∩TQ

av ≥
BD

1 + ε
,

here we used first (3.1) then (3.5) and at the third equality we used

Fact 1.

Now we define by mathematical induction a finite (at least one and at

most k elements) sequence of nodes

v′0, v
′
1, . . . , v

′
l,

where v′l ∈ TD and v′0, v
′
1, . . . , v

′
l−1 ∈ TQ \ TD. Namely, assume that we

have already defined v′n for an n ≥ 0. If v′n ∈ TD, then let v′l = v′n

be the last element of the sequence. Otherwise v′n ∈ TQ \ TD, so there

exists a node vin ∈ {v1, v2, . . . , vk} such that vin
desc−→ v′n. By the

assumptions of the Theorem there exist nodes win and w′in , such that

win
desc−→ w′in , v′◦n = w′◦in , Ev′n ⊂ Ew′in and |Ew′in | ≤ |Ev′n|+

2
2m . Now we
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let v′n+1 := w′in . From this it immediately follows that

|Ev′n|
|Ev′n+1

|
≥

|Ev′n|
|Ev′n |+

2
2M

≥ δ

δ + 2
2M

=
1

1 + 2
δ2M

.

So, using that µ
(
Ev′n
)
≤ µ

(
Ev′n+1

)
we obtain that

(5.7) av′n =
|Ev′n|s

µ(Ev′n)
≥

|Ev′n+1
|s

µ(Ev′n+1
)(1 + 2

δ2M )s
=

av′n+1

(1 + 2
δ2M )s

.

Note that for n = 0, 1, 2, . . . , l − 1 we have Evin
( Ewin

, vin
desc−→ v′n,

win
desc−→ v′n+1 and Ev′1 ( Ev′2 ( · · · ( Ev′l . This yields that vi0 , vi1 , . . . , vil−1

are all different. This follows that l ≤ k holds and v′l ∈ TD. By applying

(5.7) l times we get

av′0 ≥ av′l

/(
1 +

2

δ2M

)l·s
≥ BD

/(
1 +

2

δ2M

)k·s
≥ BD

1 + ε
,

which gives (5.6) and completes the proof. �

In the following we present the Algorithm. We remark that the starting

set can be reduced by using symmetry. We will consider it at the end

of this Section.

Algorithm 2. Step 1. Let Q0 := C0 (which was defined in (3.10)).

Step 2. Let

D0 = {v | v ∈ C0, v is convex}.

Let n := 0.

Step 3. Find minv∈Dn bv. Below we prove that

(5.8) min
v∈Dn

bv ≤ Hs(Λ)
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holds.

Step 4. Find a node v ∈ Dn for which bv = minw∈Dn bw (if such a v

is not unique, then choose any of them). Let Un be the set of

non-convex descendants of v in one generation. That is

Un := {w |w◦ = v◦ + 1, v
desc−→ w,w is non-convex }.

Vn := {w |w◦ = v◦ + 1, v
desc−→ w, ∃ a level v◦ + 1 triangle ∆ /∈ w,

such that the conditions of Lemma 5 holds

by replacing n with w◦ and v with w in Lemma 5.}

Moreover, we define

Wn := {w |w◦ = v◦ + 1, v
desc−→ w} \ (Un ∪ Vn).

Note that the set Un∪Vn∪Wn contains all of those nodes which

are descendants of the node v in one generation. Let

Dn+1 := Wn ∪ (Dn \ {v}) .

Increase n by 1. Go to Step 3.

The only thing remained to be done is to verify (5.8). To do so, we

will use Theorem 3. Let us fix n, and consider the set

Qn = Dn ∪ (C0 \D0) ∪
n−1⋃
k=0

Uk ∪ Vk.
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In the following we will check the assumptions of Theorem 3 by replac-

ing Q with Qn and D with Dn.

It is easy to see that Qn is a cross-section, because

TQn ∪ PQn = TC0 ∪ PC0 .

For v ∈ Qn \ Dn there exists an i = 0, 1, 2, . . . , n − 1 such that an

v ∈ Ui ∪ Vi, or v ∈ C0 \ D0. If v ∈ Ui or v ∈ C0 \ D0, then v is

non-convex. Let w = conv(v). We have v◦ = w◦, and Ev ( Ew. Let

v
desc−→ v′ be arbitrary. By using Lemma 4 for v and m = v′◦, there

exist w′, w′◦ = v′◦ = m, such that

Ev′ ⊂ Ew′ and |Ew′| ≤ |Ev′|+
2

2m
.

If v ∈ Vi, then the conditions of Lemma 5 holds for v, n = v◦ and for

a level n triangle ∆ /∈ v. Let w = v ∪ {∆}. We have v◦ = w◦, and

Ev ( Ew. Let v
desc−→ v′ be arbitrary. By using Lemma 5 there exists

a level m := v′◦ triangle ∆′, such that

|Ev′ ∪∆′| ≤ |Ev′ |+
1

2m
.

By choosing w′ = v′ ∪ {∆′}, we obtain that

Ev′ ⊂ Ew′ and |Ew′ | ≤ |Ev′|+
2

2m
.

Using Theorem 3 we get

BDn ≤ Hs(Λ)
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which completes the proof of (5.8).

By symmetry we can assume that for every level 4 descendants v of

the node {E1, E2, E3} we have

#(v ∩ (T{E11} ∪ T{E12} ∪ T{E13})) ≤ #(v ∩ (T{E21} ∪ T{E22} ∪ T{E23})) ≤

≤ #(v ∩ (T{E31} ∪ T{E32} ∪ T{E33})).

To reduce the usage of the computer memory we modify the Algorithm

2. First we fix a constant Z. We store only those nodes, which are

necessary to prove that a fixed constant Z is a lower bound on the

Hausdorff measure of the Sierpinski triangle. Let

Dn = {v | v ∈ Dn, bv ≤ Z}.

During the modified Algorithm we store Dn instead of Dn. We use Dn

to find a node v ∈ Dn such that bv = minw∈Dn bw. If Dn is the empty

set, then

Z < min
v∈Dn

bv ≤ Hs(Λ),

otherwise we have

min
v∈Dn

bv = min
v∈Dn

bv.

If this modified Algorithm reaches a state where Dn = ∅, then by using

inequality (5.8) we have

Z < Hs(Λ).
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6. Running results

I wrote the program in C++ language. For Z = 0.73 the program runs

for half an hour, for Z = 0.77 it runs for a 4 days. The best result,

what I managed to reach, is 0.77.

The program is available as an electric supplement at my homepage:

http://www.math.bme.hu/˜morap/sierpinski.zip
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Prog. Nat. Sci., 7 (1997), 401-6.

[4] Zuoling Zhou, Hausdorff measures of Sierpiński gasket, Sci. China, A 40 (1997),
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