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Abstract—Let {X,}52, be a stationary real-valued Gaus-
sian time series. We estimate the conditional expectation
E(Xn+1|Xo,...,Xn) from a growing number of observations
Xo,..., X, in a pointwise consistent way along a sequence of
stopping times.

Index Terms—Gaussian process, estimation, conditional expec-
tation, stopping time

I. INTRODUCTION

Suppose {X,,}°2, is a stationary real-valued time series
with apriori unknown distribution. The goal is to estimate
the conditional expectation E(X,1|Xo,...,X,) from the
observations Xy, ..., X, such that the difference between the
estimate and the conditional expectation should tend to zero
almost surely as the number of observations n tends to infinity.
The importance of this estimation problem origins from the
fact that the conditional expectation minimizes the conditional
mean squared error.

This type of problem (for binary time series) was introduced
in Cover [4]. When one is obliged to estimate for all n, Bailey
[3], Ryabko [27], Gyoérfi,Morvai and Yakowitz [9], Morvai
and Weiss [16] proved the nonexistence of such a universal
algorithm even over the class of all stationary and ergodic
binary time series.

However using Cesaro mean one can estimate the condi-
tional mean for all n which is a much simpler problem, for
the discrete case see Ornstein [25], Gyorfi Lugosi and Morvai
[8], and for the real valued case see Algoet [1], [2], Morvai,
Yakowitz and Algoet [23], Morvai, Yakowitz and Gyorfi [24],
Gyorfi and Lugosi [7], Morvai and Weiss [14].

In the intermittent estimation problem we consider the orig-
inal problem (not the Cesaro mean), but instead of requiring
estimaton for all time instances n we estimate merely along a
stopping time sequence. That is, looking at the data segment
Xo,...,X, our rule will decide if we estimate for this n or
not, but anyhow we will definitely estimate for infinitely many
n. Algorithms of this kind were proposed for binary time series
in Morvai [11], Morvai and Weiss [12]. For a restricted class
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of real valued processes cf. Morvai and Weiss [13], [17], [15].
(For further reading see [18], [19], [20], [21], [22].)

Schifer [28] considered stationary and ergodic Gaussian
processes. He constructed an algorithm which can estimate
the conditional expectation for every time instance n for an
extremely restricted and narrow class of Gaussian processes.

In this paper we consider stationary Gaussian (not necessar-
ily ergodic) processes and estimate the conditional mean along
a stopping time sequence for a much wider class of processes
than in Schifer [28].

II. RESULTS

Consider a stationary Gaussian process {X,, } with autoco-
variance function v(k) = F(X,,+1X,) and EX,, = m. Define
the following subclasses of stationary Gaussian processes: In
®; we have Gaussian processes satisfying the condition

Y () < oo (D
§=0

and are not Markovian of any order. In ®, we have all
Gaussian processes (not necessarily satifying (1)) which are
Markov of some order. In this paper we are dealing with
processes in ® = ®; U P5. Note that P, is not a subset of P,
see Example 2.5. Although estimating the conditional mean
in the class ®5 is much easier, our algorithm will be valid
universally for every process in ®.

Example 2.1: Consider the class of Gaussian processes
given by

(o)
Xn = Z¢j€n—j +m,
=0

o0
where 19 = 1, > |¢j|] < oo and ¢-s are independent
i=0

and identically di;tributed Gauss innovations distributed as
N(0,0). Then condition (1) is satisfied and {X,,} is a real-
valued stationary and ergodic Gaussian process in ®, see Hida
and Hitsuda [10].

Let
Lo = (v(li = J1)ig=1,..n. =
7(0) (1) y(n —1)
(1) 7(0) v(n —2)
An—1) A(n—2) +(0)
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and
Tn = (7(”)? s ’7(1))'

For Gaussian processes with nonsingular I',, ( every process
in @, has this property ) we have

E(Xn|Xo,... Xn—1) =
I (Xog—my ., X1 —m)T +m =
frXo—m) 4ot (K —m)+m @)

For Gaussian processes in ¢ with singular I',,, which are all
in fact in ®5 let

E(X,|Xo, ..
fo(Xo—m)+...+ f{' (X1 —m) +m, 3)

where for ¢ > k ( k is the order of the Markov process )
fI* = 0. For references to (2) and (3) see chapters 7-8 in [6].
Schifer [28] investigated the restricted model class consid-
ered in the following example.
Example 2.2: Consider the model class described in Ex-
ample 2.1 with the very strong additional condition that the
Taylor coefficients of

1 o0
o

k=0

Xno1) =

(2] > 1)

satisfy

o0 C T
D el < (1 ) @)
ogn

k=dn+1
for sufficiently large n with some C' > 0 and r > 1, where

P(z) = > 1p;27 is the transfer function for |2| < 1. For this

model cjlass Schifer proved that the difference between his
estimate and the conditional expectation E(X,,11|X{') tends
to zero as n tends to infinity. For general Gaussian processes it
is hard to check condition (4). Two special extremely narrow
classes of Gaussian processes have been given in Schifer [28]
where this condition is satisfied.

In this paper we only consider estimation along a sequence
of stopping times. For general stationary (not necessarily
Gaussian) processes the notion of intermittent estimation was
introduced in Morvai and Weiss [13], [15]. There the notion
of almost sure continuity was used to prove consistency. For
this reason we need some basic definitions. Consider a two-
sided stationary (not necessarily Gaussian) real-valued process
{X,}22 _ . A one-sided stationary time series {X,,}22, can
always be considered to be a two-sided stationary time series
{Xn}52 _ - Let R be the set of all real numbers and put &*~
the set of all one-sided sequences of real numbers, that is,

R :{(~-~7$71,$0):mi € R for all —00<i§0},

Define the metric d*(-,-) on R*~ as

d*(("'5x—1a'r0)?("'7y—17y0)):
o0
Zz—i—l |z — Y-l )
s L+ [z — y—if

Definition 2.3: The conditional expectation
E(Xq|...,X_1,X0) is said to be almost surely continuous
if for some set B C R*~ which has probability one the
conditional expectation F(Xi|...,X_1,Xo) restricted to
this set B is continuous with respect to metric d*(-,-).

Morvai and Weiss [13], [15] suggested an algorithm and
sequence of stopping times along which the error tends to zero
almost surely under the condition that the conditional expecta-
tion E(X1|...,X_1,Xo) is almost surely continuous. Unfor-
tunately the conditional expectation F(X1|...,X_1,Xp) is
not almost surely continuous in the Gaussian case in general
and so this result of Morvai and Weiss [13], [15] is not
applicable for Gaussian processes in general. To prove it, first
we need the following lemma. For notational convenience, let
X =(Xm,...,X,), where m < n.

Lemma 2.4: Consider a stationary Gaussian process { X, }
and assume that it is not Markov of any order. Then for
any K > 0 the conditional expectation F(X1|X"_) has a
non degenerate Gaussian conditional distribution given X© -
almost surely.

Proof: Observe that F(X;|X°_) is a normally dis-
tributed random variable. Let us fix a K > 0 and assume
that the conditional expectation E(X1|X" ) has degenerate
conditional distribution given X ;- on a set with positive prob-
ablity. We prove that this assumption leads to a contradiction.

The above assumption is equivalent with P(D) > 0, where

7930)}7

.,xg) is a function depending merely on

D={2" :E(X1|X° =2 )=C(z_k,...

and C(z_g,..
T_Ky---,20.
Consider an arbitrary £ > K. On one hand on D

B(X1]1X%)) = B(B(X1]1X20)|X%)) = C(X-k, ..., Xo),
on the other hand
B(X1X%,) = f (Xo —m) + . fE (X —m) +m.
Thus we have that for all £k > K on D

P Xo—m)+ . e (X —m) =

FE (X —m) + .. fEFN(X g —m).

Thus we have two linear functions which are equal on a set
with positive Lebesgue measure. (Indeed, since the process is
not Markov of any order, the (Xj, ... X}) is a non-degenerate
k + 1 dimensional normal distribution.) This implies that the
coefficients are equal. Hence we get that

=g <K
and fF=0if i > K for all k> K. Thus we have
E(X:|X%) = ffH (Ko —m) + . fe i (X —m) +m

for all £ > K. Considering the limit of the left hand side we
get
lim B(X1|X%,)=FE(X|X°, )=

k—o0

flKJrl(Xo —m) +f;((ill(X,K —m) +m,
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which implies that the Gaussian process is a Markov process
with order at most K + 1, which contradicts with the assump-
tion of the lemma. ]

Example 2.5: Let Xy be a standard normal random vari-
able. For n > 0 let X, 41 = X,,. Then {X,,} is a stationary,
non-ergodic, first order Gauss-Markov process in ®3. Since
v = 1 (1) is not satisfied. The distribution of X,, 1 given
X' is degenerate.

Theorem 2.6: Consider a stationary Gaussian process
{X,,}. The conditional expectation E(X1|X? ) is not almost
surely continuous if the process {X, } is not Markov of any
order.

Proof: Assume that the statement of the theorem is
not true and consider a Gaussian process {X,} which is
not Markov and the conditional expectation F(X1|X°_ ) is
almost surely continuous. The convergence

E(X11X°_ ) = lim B(X1|X_,,...,Xo) (5)
n—oo

is fulfilled almost surely. Let {2 C Q be such that on ) the
limit (5) is fulfilled, the conditional expectation F(X1|X° )
is continuous and the conditional expectation E(X;|XY )
has non-degenerate conditional distribution given X ;- almost
surely for all K. By Lemma 2.4 we have P(Q) = 1.

Let us choose an @ € (). By the almost sure continuity
assumption for a fix € > 0 there exists a § > 0 such that if
d*(@,w') < 6, w' € Q then

[E(X1|X20) (@) — B(X|X2 ) (W) <e. (6)

Identify @ = (...,%_1,%0) and ' = (...,2" ¢, (). Due
to the definition of the metric d* if K = [log, 3] and Z_x =
x' ... 70 = x}, then d*(Q,w’) < §/2. Since & € Q by
Lemma 2.4 we have that F(X;|X°_) has a non-degenerate
conditional distribution given X° ;- = 7% ... Thus there exists
an ' € Q with o’ = (..,2 g 1, %_K,...,%0) such that

|B(X11X00)(@) — B(X1|X2 ) (w')] > e,

which contradicts (6). |

Remark 2.7: We note that for Gauss-Markov processes the
conditional expectation E(X1|X°_ ) is continuous.

Now we consider an extension of the algorithm discussed
in Morvai and Weiss [13], [15].

Define the nested sequence of partitions {Py}7°, of the
real line as follows. Let

Pk = {[i2_(k+1)3, (Z + 1)2_(k+1)3) . fori = O’ 1’ _17 . }

The choice of {Py}72,, in such form has technical reasons,
see (11) in the proof of Theorem 2.8. Let x — [z]* denote a
quantizer that assigns to any point x € ¥} the unique interval
in Py that contains x. Let

[X)E = (Ximl®, .- [Xa]").
We define the stopping times {)\,} along which we will
estimate. Set A\g = 0. For n = 1,2,..., define \,, recursively.
Let \,, be

An_1 4 min{t > 0: [X) TP = (X P ()

Note that the quantizer used at step n depends on the data and
An > n. Let the nth estimate m,, be defined as

n—1
1

my, = ﬁz;XW' ®)
p=

The main result of the paper is the following.
Theorem 2.8: Consider a stationary Gaussian process from
the model class ®. Then

lim
n— oo

’mn — BE(Xx, 1]X3")| =0 almost surely.  (9)

Proof: Consider the following decomposition

n—1

1 A
n > X1 — E(Xa, 11|Xg") =
7=0

n—1
1 )
=3 (K = B 1X0))
j=0

n—1
1 N
+ﬁ Z E(X);+11X07) — E(Xx,411X0").

§=0

First we prove that
P(X\,_,+1 € C\[Xa\"*l]/\n—l) _

P(X», 41 € O|[Xg" ) (10)

for any Borel set C' C R. Indeed,
P(Xx,11 €C, [Xg"—l])\nﬂ

> P(Xa,1 € O [Xg

t>1

S P(TH X, 11 € C (X" M=t = Ag™ ", By(t,1)) =

t>1

= Agn_la/\n—l = l) =

= A())\n_laBn(tv l)) =

P(Xy, i+1 € CUXG Pt = A5 Ay =)
where B, (t,1) denotes the event
A1 =LA, =1},

T is the left shift operator, and we have used the stationarity
property of the process {X,,}.

It follows that X, 11 has the same distribution as Xj.
Now observe that X, ;1 — E(X,\j+1|X6\j) is a sequence of
orthogonal random variables with zero mean and the variance
is less than or equal to E (|Xy,41]?) = E(]X1]?). Now
by Theorem 3.2.2 in Révész [26], the average of orthogonal
random variables tends to zero almost surely.

What remains to prove is that

n—1
2D B, lX07) = B(Xa, 1] Xg")
n =
tends to zero. Observe that E(X, 1] [Xé‘ 7123 converges with

probability 1 since it forms a martingale by (10). Thus to finish
the proof it is enough to show that

E(Xx, 1|[X0"]) — E(Xx, 11]|X3™) — 0 almost surely.
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Indeed, using the linearity of the autoregression function we
have that

lim [E(X (X" - B(XL X7 <
lim sup | n—z yl)| <
n%OOygfle[Xg—l]n—l Z
LN Zlf LillX il <
vy E[Xg T =0
. —n? - n
lim 2 Z;Ifi | =
: —n TL TL
Jm 27 sup Z
where &, = {e" : e" = (e’f,...,eg),ef € {-1,+1}}. If

{X,} belongs to the class P, i.e. the process is Markov of
some order k, then for n,i > k f' = 0, and therefore the

limit
sup an n _

eneé,

. .3
lim 27"
n— o0

We have to deal with the case when the process belongs to

®,. Since
n

Z ane:L = ’an‘n 17’”7

i=1

(cf. (2)) we get
lim |E(X,|[Xg ') — B(X,|Xg )| <
n— o0

3
27" sug Yol len ] <
enely

. _n3 — n
Tim (27 ] T3 ™) - an
Assumption (1) implies that y(k) — 0 as k — oo, thus

O(v/n). 12)

lim
n— o0

Vel =

Trivially

le"]] = v/n. (13)

To estimate ||T';;!|| we should estimate the minimal eigen-
value of I',,. For this we use the results of Serra [29]. Since I,
is a Toeplitz matrix, see Doob [5] (page 476), by Theorem 3.1
of [29], we have that ¢t"("t1)/2 is an absolute lower bound
for the minimal eigenvalue of I',,, where ¢ > 0and 0 <t < 1
are constants. Thus we have that

Tt < o2, (14)
Putting together (12), (13), and (14) we get that

tim sup. [y, | 07| fle"] < O(nt=("+172)
Combining this with (11) we have that

. _,3 —
Jim (27 ] 103 ") = 0
n— 00
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