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Résumé. Cet article passe des investissements log-optimales en revue. Considerous un
commercant qui vent distribuer ses moyens financiers entre des titres variés. Le comportement
de son capital engagé pendant long temps est analysé en detail. Quand la distribution de
probabilités dans la bourse est connue, on peut compter un “portefeuille” log-optimale. Le pro-
priétés de cet investissement sont discutées. Des stratégies d’apprentissage, qui re dépendentes
que d’observation de la bourse, sont ansi révisées.

Abstract. The present paper provides a survey on log-optimum investment. Suppose an
investor who is facing the problem how to distribute his funds among various shares. The.
long-run behaviour of his capital is in the focus of the present paper. If the probability law
(probability distribution) governing the stock market is known then the so called log-optimal
portfolio can be calculated. The properties of log-optimal investment are analysed. Learning
strategies which depend solely on observation of the stock market are also surveyed.

1. INTRODUCTION

The present paper deals with the portfolio selection problem as follows. Suppose an investor
who wants to distribute his funds among various shares. He makes transactions, that is, buys
and sells shares at discrete times. ( Let us say at every noorl. In this case the investment period
is one day, but any other time interval is also good.) So, he goes to the stock market every
noon, and buys and sells shares. The obvious question is how to choose the shares to sell and
the shares to buy. Consider the assumptions as follows:

1. Transactions can be made at discrete times.
2. The investor cannot lose more than the invested capital.
3. There is no cost on transactions.

4. The investor can buy arbitrary small fraction of shares.

Assumption 1 is not really a restriction since the time interval can be chosen arbitrary
small. Assumption 2 is natural. Assumption 3 and 4 are quite unrealistic, but they make the
analysis easier. However, if a good investment strategy is given which performs well under these
assumptions, it can be adapted to real world situation.
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Suppose the probability law governing the stock market is known. That is, the investor
knows the statistical behaviour of the stock market. In this case, the so called log-optimal
strategy can be calculated (the definition will be given later).

Let S, S» denote capitals achieved by the log-optimal and by an arbitrary strategy after
n investment periods, respectively. In this paper the focus is on the long run behaviour of the
capitals. For short-run properties of log-investment we refer to Bell and Cover (1980, 1988).
Then without any condition on the probability law (the probability distributiori which governs
the stock market) the following properties hold (cf. Algoet and Cover (1988)).

(1) E(&'—) <1 for all n.

Sa
(2) E(lim é%) <1
. 1 1 . .
(3) limsup—In S, € lim —InS; with probability one,
n—oco N n-—o0 1

provided that lim, l;ln S, exists with probability one.

(4) limsup 1 In T e limsup (—1— InS, - ! In S,‘,) < 0 with probability one.
n n

n—oo N S,: n—oo

For arbitrary € > 0,
(5) Sp < Sne™ eventually with probability one.

Property | says that the expected value of the ratio of the capitals achieved by an arbitrary
strategy and the log-optimal one is at most one.

Property 2 states that the limit of the ratio of the capitals is a random variable with the
expected value less or equal one.

Property 3 is very significant. It says that if the asymptotic growth rate of capital
limy—oo 2 In S} achieved by the log-optimal strategy exists with probability one, then it is the
highest one (note that expression X In,S; may diverge).

To see how common the notion of capital growth rate %ln S, is consider a bank account
with interest rate 10 %. Let S, denote capital on this account after n years and suppose that
the initial capital is one unit. Clearly, S, = (1 40.1)" = ""(14%) hen ce capital S, grows

exponentially fast with exponent In (1 4 0.1). Thus, the asymptotic growth rate (in strict sense
the asymptotic exponential growth rate) is

o1
lim ~In S, =In(l+40.1).
n—00 72
This quantity is closely related to the interest rate: the higher is the interest rate the higher
the growth rate. So, it is the interest rate (hence the growth rate) that really matters.
" Property 4 eliminates the previous assumption on the existence of lim,_.o %ln Sy, It says

that the asymptotic difference between the growth rate of capital achieved by an arbitrary and
the log-optimal strategy can not be positive.

Property 5 is of great significance as well. Roughly, it says that the log-optimal strategy
can not be beaten by any other strategy very often by very much. It states that the log-optimal
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strategy can not be beaten by an arbitrarily small exponential factor infinitelly often. Choose
arbitrarily small € > 0. Then S, > Sze™ will happen only for finitely many n. That is, for n
large enough, S. < S;e™ will hold. So, it is the capital achieved by the log-optimal strategy
that grows with the highest exponent.

The significance of properties 3, 4, and 5 i¢ that they compare the performances of the
log-optimal strategy and an arbitrary strategy on stock market sequences, instead of merely
comparing their expected values.

‘ Now suppose that the price relatives of shares constitute a stationary and ergodic process.
(We will make the meaning of this precise later.) Then

.1 ; -
(6) lim ;ln S: = constant with probability one.
n—o00
Property 6 says that in this case the asymptotic growth rate of capital limp—oo % In S}, exists,
and is constant. So, the capital S; grows with the highest asymptotic exponential rate.

In real world situation, the probability distribution which governs the stock market is not
known in advance. In this case the log-optimal strategy can not be calculated. What then
can be done? A natural goal is to find a strategy which solely depends on the observetions
(outcomes) of the stock market (that is, it does not assume foreknowledge about the probability
distribution), and performs asymptotically as well as the log-optimal one, at least to first order
in the exponent. That is, the goal is to find a strategy which learns the behaviour of the stock
market and achieves the same asymptotic growth rate of capital as the log-optimal strategy
does. We will refer to such strategies as optimal learning strategies.

To make it more precise, let Sn,S;, and . denote capitals achieved by an arbitrary, the
log-optimal, and an optimal learning strategy after n investment periods, respectively. Then

n lim —In S, = lim —1-111 St with probability one.
n—o0 1 n—oo )
For arbitrary € > 0,
(8) SreT™ < Sa < Ste™ eventually with probability one.
R . 1 . s
9 lim - In S, > limsup - InS, with probability one.

For arbitrary € > 0,
(10) S. < S.e™ eventually with probability one.

Property 7 says that an optimal learniﬁg strategy achieves the same asymptotic growth

rate of capital as the log-optimal strategy does provided lim,—~oo Lln S; exists almost surely.

Sn grows with the same exponent as S, does.

Property 8 says that the log-optimal, and an optimal learning strategy will not beat each
other by any small exponential factor infinitely often. That is, for n large enough, Spe™™ <
'\ < Stem will hold, with probability one.

Property 9 says that no other strategy can achieve higher asymptotic growth rate of capital
than an optimal learning strategy.

Ty

Property 10 says that no other strategy will beat an optimal learning strategy infinitelly
often by an exponential factor.
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2. THE MATHEMATICAL MODEL OF THE STOCK MARKET

A stock market is represented as a random vector of stocks X = (X1, Xa,.. o Xm), Xi 20,
i =1,2,...,m, where m is the number of stocks and the price relative X; represents the ratio
of the price at the end of the investment period to the price at the beginning of the period. For
example if X; = 1.03 it means that the ith stock went up 3 % during that period.

A portfolio b = (b1, by, b)), b > 0, 2wy bi = 1is an allocation of wealth across the
stocks. Here b; is the fraction of one’s wealth invested in stock i. Let B denote the set of
portfoios, that is, B = {b: ; > 0, 2z bi = 1}. If one uses a portfolio b and the stock vector

is X, the ratio of wealth at the end of the period to the beginning of the period is S = bX.

(We assume that P(X =0) = 0, that is, all the stocks can not yield zero capital at the
same time. This is the case e.g. when one may always keep some money in the pocket. This
could be included in the model by a virtual share X = I, that is, one keep b; fraction of the
capital in the pocket.)

Our objective is to maximize S in some sense. But S is a random variable. Which dis-
tribution of S is the best? The standard theory of stock market investment is based on the
consideration of the moments of S. The objective is to maximize the expected value of S,
subject to a constraint on the variance. Since it is easy to calculate these moments, the theory
is simpler than the theory that deals with the entire distribution of S. Looking at the mean of a
random variable gives information of the sum of samples of a random variable. But in the stock
market, one normally reinvests every period, so that the wealth after n periods is the product
of factors, one for each period of the market. The behaviour of the product is determined not
by the expected value but by the expected logarithm.

More precisely, suppose an investor who wants to distribute his funds among various stocks.
The stocks are described at period i by their price relatives, that is, by vector X;. Let (X},
denote the stock market process. The investor distributes his funds according to portfolio b; at
the beginning of period i. So, if he has initial capital one unit, then his capital after period 1 is
Sy = b X;. He reinvest his entire capital according to portfolio b, at the beginning of period 2,
and so his compounded capital at the end of period 2 is S, = (4, X,) (b, X3). After n periods
of investment, he has capital

Sn = I, 6, X.
We allow that the portfolio b; used in period i may depend on the past outcomes B.ATP. S, S
Where we want to emphasize this fact, we will use the notation b; (A’l,i\iz,...,ﬁi_,). In
fact, b (A:I’i\—’m""ii-l) is a function which maps from the past outcomes of the stock
market to the set of portfolios B. A strategy is described by a series of such functions
{l_)i (_/\_,né\_’_z’ e a-/\ii~l) ?‘21'

Suppose one has a good strategy {); (X, X, .. y Xi_1)}224, and he would like to use it, but
there is cost on each transaction, and an arbitrary fraction of share can not be bought. First
of all, notice that if one already has some shares, and he wants to restructure his possessions
according to portfolio b he usually has to sell only some of his shares, and then buy some
other ones. He need not sell all of them. In this way, transaction costs will not be high. In
Practice, one need not follow the theorctically optimal strategy all the time. If there is only a
small difference between the theoretically optimal structure of possession and the actual one,
an investor need not change it. One may consider the optimal strategy as a guideline. But if
there is already big difference between the theoretically optimal structure and the actual one,
one should follow the guideline, and restructure his possession.
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3. THE LOG-OPTIMAL STRATEGY

Now we can introduce the notion of log-optimal strategy (cf. Cover and Thomas (1991)).
Definition. A strategy {8 (X,,X,,... , X, 1)}, is said to be log-optimal if and only if,
for all i,

bX,;
11 Elin —
( ) ( Q: (&1’.{\:2’-"1;{—1).&{

ll!.&b"wi{_{-]) <0forallbe B.

Nota bene, the log-optimal strategy always exists (cf. Algoet and Cover (1988)).
Essentially, definition 11 says that if the past sequence of the stock market variables is
Z,,Zg- -y Zi_y then portfolio bf (gl,g:_z, aE s ,g;_i) is to be chosen so that

E (1“9; (QI’EZ""N‘Q—I)A’-{'A:] =z, Xy =g Xin = Ei-l) =

(12) Tea";XE (ln WX =2, Xy =29, Xy = L‘—l) .

This form shows that the log-optimal strategy maximizes the conditional expected log-return.

Consider an arbitrary stock market process {X;}i2,. Then it follows from Algoet and Cover
(1988) that properties 1, 2, 3, 4, and 5 hold.

If the stock market process {X;}i, is assumed to be stationary and ergodic then property 6
holds as well (cf. ibid.).

"In a special case, when the stock market process {X;}32, is independent, and identically

distributed, the log-optimal strategy is a constant b, that is, b} (_)il,&z, ies ,A’,-_l) = b" for all
i, and definition 11 has the simple form,

bX
¢ o o < .
(13) D(lné'_)i) <0 forallbe B

Essentially, it says that portfolio " maximizes expected log-return, that is,
(14) Elnb'X = max ElnbX.
beB

Note that Vajda and Osterreicher (1993) used exactly this property as a definition of log-optimal
portfolio b* and found necessary and sufficient conditions for the existence and uniqueness.
As we have seen, the log-optimal strategy is optimal in some sense as we have seen but
in order to calculate it we have to know the probability distribution which governs the stock
market process. In fact, there exits an algorithm which calculates the log-optimal strategy,
provided the probability distribution is known (cf. Cover (1991)). So, if we know the statistical
behaviour of the stock market process, the best we can do is to employ the log-optimal strategy.
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4. OPTIMAL LEARNING STRATEGIES FOR INDEPENDENT
AND IDENTICALLY DISTRIBUTED PROCESSES

The only problem is that the probability distribution is usually unknown, hence we can
not calculate the Jog-optimal strategy. (We can not evaluate expressions 11,12, or 13 without
knowing the probability distribution.) The goal is to find a strategy which performs as well
as the log-optimal strategy (at least to first order in the exponent), and depends solely on the
past outcomes of the stock market. In other words, this strategy learns the stock market from
observations, in some sense.

Let the stock market process {X;}:2, be independent and identically distributed.
Let further

=(1/m,l/m,...;1/m)
b; (_4\:,,4\:2,...,&_,) —argmaxnk VoX, fori>2.

(That is, b; (X, X,,.. ., X;_;) denotes the portfolio which would have gained the biggest capital
if we had known the pa.st. sequence in advance.)

The proposed strategy is
b (X, Koy s Xim) = Ay (X, Xy Xoy) 4 (1= X)) by

where 0 < ); < 1, and limje A; = 1.

This strategy is due to Morvai (1992). Let S, denote the capital achieved by this strategy.
Properties 7-10 hold S in place of S,, It also holds

(15) lim b, =b=> bis log — optimal.

i~ 00

Property 15 says that the accumulation points of {@, (X, X, .. v Xi_1)}82, are log-optimal.
That is, each convergent subsequence {b,,}2, tends to a log-optimal portfolio.

However, a very simple strategy a,clneves the same goal (cf. Cover (1991)). Let By =
{0, 6M..} be a dense subset of B. Let pi > 0, 3°2, mi = 1. Use initial capital p;

to play with portfolio b®. It will yield ;1.-5,(.{) amount of money at time n, where s =

e O )X Thus limsup,_,, 11n (E._l i S(')) > limsup, _,,, L1lnp;Sn O = limpace Lng +
lim,_ 1 In S = limpmco 3oy In ot )X; = ElnbX a.s. by the strong law of large numbers.
Thus limsup,_, 1 — ln( oy BiSs l~) 2 supyep, EInbX = supyep ElnbX = lim_.o, LIn S}a. s.
Hence this strategy achieves the highest exponential growth rate and properties 7-10 hold. It
suffices to put S, = [T', b; (X, X;,..., X, 1) X, in place of 5,.

j=1= LA B
* In a closed form this strategy can be expressed as follows
i=1 ”‘S( ) b( )
|'=l /I;S,(,,'..;

Let us mention that the Cover's (1991) universal strategy has a very similar form:

b (Xyy Xy, X)) =

1 Lin-1]
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b (X4y Xoy oo X e fBSi—I(.ll)dé,

LR AN |
where S; (b) = Hj.=l bX ;.
T. M. Cover examined the performance of this strategy on individual sequences. He did not

make any statistical assumption. Here we will not go into details. However, if b" is unique and
lies in the interior of B then properties 7-10 hold - just put S, in place of S

For the rest of this chapter suppose one can always keep some money in the pocket. For-
mulating this, let X; = 1 (this is a ‘virtual’ share). Assume that the log-optimal portfolio §" is
unique and b} > 0 for i = 2,...,m. T.F. Méri (1982) proposed the strategy

b, =(1,9,...,0)

bi (X1, Xgye oo Xiy) = arg max M2h0X, fori>2,

vghere B,={b€B:b>e}, 126 >0, andlimyco s =0. ( Note that now X; = 1). Let
S, denote the capital achicved by Méri's strategy. Then properties 7- 10 hold just replace S,
by S,

(16) lim b, =b".

The following properties hold as well:
For arbitrary ¢ > 0, 6§ > 0,

(17) JELLP( b, - 0l > 5)

For arbitrary ¢ > 0,
(18) S,',n"%l"‘ < Sp < §zn~T* eventually with probability one.

Property 17 determines how fast the empirical strategy converges to the log-optimal one.
Roughly, it says that the rate of convergence is of order n='/2.

Property 18 says that S, is worse than S2 by a polynomial factor. This is a much stronger
result than property 8. It is interesting (but not surprising) that there appears the dimension
m, that is, the number of shares in the stock market. Property 18 implies that 22 5 tends to
zero with probability one. That is the price we have to pay for not knowing the probability
distribution in advance. Note however that usually both S2, S, tend to infinity.
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5. OPTIMAL LEARNING STRATEGIES FOR STATIONARY
AND ERGODIC PROCESSES '

Under the assumptlion that the stock market process {X;}2, is stationary and ergodic,
there also exits a strategy {J, (A’l,&,,...,_/\;,_l)}ﬁ?__, (this strategy is due to Algoet (1992)
such that it does not assume the foreknowledge of the probability distribution, and achieves
the best (optimal) asymptotic growth rate of capital. That is, properties 7-10 hold.

Let {Gy}22, be a series of finite quantizers such that they asymptotically generate the Borel

o-algebra. Let G (X) be a quantized version of X using the finite quantizer G. Consider the
estimate of the conditional distribution as follows:

j‘)k _ 61-‘_0 (d.’l}) + ZTGIf 6£\:.- ((1.'5)
’ L+ LN '

where 25 # 0 otherwise it is an arbitrary stock vector, and ={r:1<r<s(Gs O g e o

s Gk (4\’_,.“)) = (Gk (if.;.k_]) oo Gy (_/!7))}

Now let
W (X, Xoy. o Xos) = (1m0 /m) if n—=1<k,
W (X, Xa oo X)) = arglw/m'@ﬁ:_k_, (dz) if n—1> k.
Let () :
(19) ..l!n (ix,&m' "’Lx—l) = AYIQ,(;L) (&1!.&21' b '1&7.—1) + (1 - /\n)ﬁv

where § = (1/m,...,1/m),0 < A, < 1, and limpoyoo A, = 1.

Now the same procedure is applied as before. Let Be >0, 300 e = 1. Algoet’s strategy
is as follows: ’

) © wS®IP (x, X, x
() by (& Ko o) = EmtttBimrde (B Ko
Zkzl I‘kSn.—l

v(k
where S:(.k) = ;=1 L)ﬁ )(i’xaizv . ',.A_’j—l)lj.

For capital S, properties 7-10 hold. To this end it suffices to write
So =11k (X Xao. ., X,0) X,
i=1

in place of $,.
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