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Abstract

The problem of extracting as much information as possible from a

sequence of observations of a stationary stochastic process X0, X1, ...Xn

has been considered by many authors from different points of view.

It has long been known through the work of D. Bailey that no uni-

versal estimator for P(Xn+1|X0, X1, ...Xn) can be found which con-

verges to the true estimator almost surely. Despite this result, for

restricted classes of processes, or for sequences of estimators along

stopping times, universal estimators can be found. We present here

a survey of some of the recent work that has been done along these

lines.
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1 Introduction

In a short communication that appeared in the Proceedings of the First

International IEEE-USSR Information Workshop [7], Tom Cover formulated

a number of problems that have generated a substantial literature during

the past thirty years. We plan to survey a portion of these works, biased to

be sure by our own intersets. We begin by quoting from Cover’s paper and

recalling his first two questions:

” 1. A Question on the Prediction of Ergodic Processes

The statement that ”we can learn the statistics of an ergodic process from

a sample function with probability 1” is being investigated for operational

significance.

Let {Xn}
∞
−∞ be a stationary binary ergodic process with conditional

probability distributions p(xn+1|xn, . . . , x1), n = 1, 2, . . . . We know that

we can learn the statistics with probability 1, but can we learn p fast

enough? In other words, does there exist an estimate p̂ : X × X⋆ → [0, 1],

X⋆ = collection of all finite strings, for which

p̂(Xn+1|Xn, . . . , X1) − p(Xn+1|Xn, . . . , X1) → 0

with probability 1?

Does there also exist a predictor p̂ yielding the convergence of

p̂(X0|X−1, X−2, . . . , X−n) → p(X0|X−1, X−2, . . .)?

Since the statement of this problem, Bailey and Ornstein have obtained some

as yet unpublished results on this question that indicate a negative answer

to the first question and a positive answer to the second.”

Since the processes are stationary, the (second) backward prediction prob-

lem is equivalent to the (first) forward prediction problem as far as conver-

gence in probability is concerned. However, for almost sure results it turns

out that they are far from being the same. Ornstein [30] gave a rather

complicated algorithm for the backward prediction problem whereas Bailey
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provided a proof for the nonexistence of a universal algorithm guaranteeing

almost sure convergence in the forward estimation problem. To do this, Bai-

ley in [5], assuming the existence of a universal algorithm, used the Ornstein’s

technique of cutting and stacking [31] for the construction of a ”counterex-

ample” process for which the algorithm fails to converge (see Shields [34] for

more details on this method).

The problem came to life again in the late eighties with the work of

Ryabko [33]. He used a simpler technique, namely - relabelling a countable

state Markov chain, in order to prove the nonexistence of a universal esti-

mator for Cover’s first problem (cf. also Györfi, Morvai and Yakowitz [11]).

In addition there was a growing interest in universal algorithms of various

kinds in information theory and elsewhere, see Feder and Merhav [10] for a

survey.

Three approaches evolved in an attempt to obtain positive results for the

problem of forward estimation in the face of Bailey’s theorem.

The first modifies the almost sure convergence to convergence in prob-

ability or almost sure convergence of the Cesaro averages. This was done

already by Bailey in his thesis. Cf. Algoet [2, 3] and Weiss [36].

The second gives up on trying to estimate the distribution of the next

output at all time moments n, and concentrates on guaranteeing prediction

only at certain stopping times, while the third restricts the class of processes

for which the scheme is shown to succeed.

Our interest in this circle of ideas began with the PhD thesis of the first

author [15] in which he gave an algorithm for the backward prediction that

was much simpler than Ornstein’s original scheme (cf. Morvai, Yakowitz and

Györfi [27] ). Before describing briefly the contents of the survey we will

present this scheme with a sketch of the proof of its validity. Let {Xn}
∞
n=−∞

be a stationary and ergodic time series taking values from X = {0, 1}. (Note

that all stationary time series {Xn}
∞
n=0 can be thought to be a two sided

time series, that is, {Xn}
∞
n=−∞. ) For notational convenience, let Xn

m =

(Xm, . . . , Xn), where m ≤ n.
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Here is the algorithm. For k = 1, 2, . . ., define sequences λk−1 and τk

recursively. Set λ0 = 1 and let τk be the time between the occurrence of the

pattern X−1
−λk−1

at time −1 and the last occurrence of the same pattern prior

to time −1. Formally, let

τk = min{t > 0 : X−1−t
−λk−1−t = X−1

−λk−1
}.

Put

λk = τk + λk−1,

where λk is the length of the pattern

X−1
−λk

= X−1−τk

−λk−1−τk
X−1

−τk
.

The observed vector X−1
−λk−1

almost surely takes a value of positive proba-

bility; thus by stationarity, the string X−1
−λk−1

must appear in the sequence

X−2
−∞ almost surely. One denotes the kth estimate of P (X0 = 1|X−1

−∞) by Pk,

and defines it to be

Pk =
1

k

k
∑

j=1

X−τj
.

As in Ornstein [30], the estimate Pk is calculated from observations of random

size. Here the random sample size is λk. To obtain a fixed sample-size

0 < t < ∞ version, we apply the same method as in Algoet [1], that is, let

κt be the maximum of integers k for which λk ≤ t. Formally,

κt = max{k ≥ 0 : λk ≤ t}.

Now put

P̂−t = Pκt
.

The following theorem was established in the PhD thesis of Morvai [15].

Theorem 1.1 (Morvai [15]) For any stationary and ergodic binary time

series {Xn},

lim
t→∞

P̂−t = P (X0 = 1|X−1
−∞) almost surely.
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Proof. We have

Pk − P (X0 = 1|X−1
−∞)

=
1

k

k
∑

j=1

[X−τj
− P (X−τj

= 1|X−1
−λj−1

)]

+
1

k

k
∑

j=1

P (X−τj
= 1|X−1

−λj−1
) − P (X0 = 1|X−1

−∞).

Observe that the first term is an average of a bounded martingale differ-

ence sequence and by Azuma’s exponential bound for bounded martingale

differences [4] we get that the first term tends to zero. Morvai showed in his

PhD thesis that

P (X−τj
= 1|X−1

−λj−1
) = P (X0 = 1|X−1

−λj−1
).

This observation is the key to handling the second term:

1

k

k
∑

j=1

P (X−τj
= 1|X−1

−λj−1
) − P (X0 = 1|X−1

−∞)

=
1

k

k
∑

j=1

P (X0 = 1|X−1
−λj−1

) − P (X0 = 1|X−1
−∞).

By the martingale convergence theorem,

P (X0 = 1|X−1
−λj−1

) → P (X0 = 1|X−1
−∞) almost surely,

and since ordinary convergence implies Cesaro convergence this completes

the proof of the theorem. 2

In this survey we will restrict ourselves to finite or countably valued pro-

cesses. Some of the directions that we survey have been generalized to real

valued processes and some even to processes taking values in more general

metric spaces. Some of the key papers in these directions are Algoet [1, 2, 3],

Morvai et. al. [27, 26], Weiss [36] and Nobel [28].
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We turn now to a brief description of the contents of our survey. In §2

we will describe some classes of processes that will play an important role

for us. Next §3 will contain a scheme for forward prediction at all n which

can be shown to converge to the optimal prediction for the class of processes

with continuous conditional probabilities. This class includes of course k-step

Markov chains for any k.

In §4 we turn to a description of a sequence of stopping times together

with estimators which converge along that sequence to the conditional prob-

ability estimator for all processes. This sequence of stopping times grows

rather quickly and we give a sequence with a slower growth rate but we

can demonstrate the convergence only for processes whose conditional prob-

abilities are almost surely continuous. Then in §5 for finitarily Markovian

processes we give stopping times with an even slower growth rate. The fol-

lowing section considers this class in more detail with respect to the problem

of estimating the length of the memory word that occurs as the context at

time n.

We conclude with a series of constructions and examples in §§7 − 9 that

show the optimality of many of these results. Along the way several open

questions are mentioned since much remains to be done before we achieve a

complete understanding of what is possible and what is not.

2 Preliminaries - Classes of Stochastic Pro-

cesses

Let X be discrete (finite or countably infinite) alphabet. Let {Xn} be a

stationary and ergodic time series.

For notational convenience let p(x0
−k) and p(y|x0

−k) denote the distribution

P (X0
−k = x0

−k) and the conditional distribution P (X1 = y|X0
−k = x0

−k),

respectively.
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Definition 1. For a stationary time series {Xn} the (random) length K(X0
−∞)

of the memory of the sample path X0
−∞ is the smallest possible 0 ≤ K < ∞

such that for all i ≥ 1, all y ∈ X , all z−K
−K−i+1 ∈ X i

p(y|X0
−K+1) = p(y|z−K

−K−i+1, X
0
−K+1)

provided p(z−K
−K−i+1, X

0
−K+1, y) > 0, and K(X0

−∞) = ∞ if there is no such K.

Note that we denote the random variables by capital letters and particular

realizations by lower case letters. For example, p(y|X0
−K+1) is denoting the

random variable which is a function of the random variables X0
−K+1 taking

the value P (X1 = y|X0
−k = x0

−k) when X0
−k = x0

−k.

Definition 2. The stationary time series {Xn} is said to be finitarily Marko-

vian if K(X0
−∞) is finite (though not necessarily bounded) almost surely.

This class includes of course all finite order Markov chains but also

many other processes such as the finitarily determined processes of Kalikow,

Katznelson and Weiss [13], which serve to represent all isomorphism classes of

zero entropy processes. For some concrete examples that are not Markovian

consider the following example:

Example 1. Let {Mn} be any stationary and ergodic first order Markov

chain with finite or countably infinite state space S. Let s ∈ S be an arbitrary

state with P (M1 = s) > 0. Now let Xn = I{Mn=s}. By Shields ([35] Chapter

I.2.c.1), the binary time series {Xn} is stationary and ergodic. It is also

finitarily Markovian. (Indeed, the conditional probability P (X1 = 1|X0
−∞)

does not depend on values beyond the first (going backwards) occurrence of

one in X0
−∞ which identifies the first (going backwards) occurrence of state s

in the Markov chain {Mn}. ) The resulting time series {Xn} is not a Markov

chain of any order in general. (Indeed, consider the Markov chain {Mn} with

state space S = {0, 1, 2} and transition probabilities P (X2 = 1|X1 = 0) =

P (X2 = 2|X1 = 1) = 1, P (X2 = 0|X1 = 2) = P (X2 = 1|X1 = 2) = 0.5.

This yields a stationary and ergodic Markov chain {Mn}, cf. (Example I.2.8
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in Shields [35]. Clearly, the resulting time series Xn = I{Mn=0} will not be

Markov of any order. The conditional probability P (X1 = 0|X0
−∞) depends

on whether until the first (going backwards) occurrence of one you see even

or odd number of zeros.) These examples include all stationary and ergodic

binary renewal processes with finite expected inter-arrival times, a basic class

for many applications. (A stationary and ergodic binary renewal process

is defined as a stationary and ergodic binary process such that the times

between occurrences of ones are independent and identically distributed with

finite expectation, cf. Chapter I.2.c.1 in Shields [35]).

Let X ∗− be the set of all one-sided sequences, that is,

X ∗− = {(. . . , x−1, x0) : xi ∈ X for all −∞ < i ≤ 0}.

Let f : X → (−∞,∞) be bounded, otherwise arbitrary. Define the function

F : X ∗− → (−∞,∞) as

F (x0
−∞) = E(f(X1)|X

0
−∞ = x0

−∞).

E.g. if f(x) = 1{x=z} for a fixed z ∈ X then F (y0
−∞) = P (X1 = z|X0

−∞ =

y0
−∞). If X is countably infinite subset of the reals and f(x) = x then

F (y0
−∞) = E(X1|X

0
−∞ = y0

−∞).

Define the distance d∗(·, ·) on X ∗− as follows. For x0
−∞, y0

−∞ ∈ X ∗− let

d∗(x0
−∞, y0

−∞) =
∞
∑

i=0

2−i−11{x−i 6=y−i}.

Definition 2.1 We say that F (X0
−∞) is continuous if a version of the func-

tion F (X0
−∞) on the whole set X ∗− is continuous with respect to metric

d∗(·, ·).

As we have already mentioned any k-step Markov chain satisfies this, but

there are also many examples with unbounded memory. S. Kalikow showed
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in [12] that the class can also be characterized as those processes which can

be constructed as random Markov chains. In this procedure, given a past

X0
−∞ one invokes an auxiliary independent process which chooses a random

memory length K and then X1 is chosen according to a fixed transition table

from XK to X .

Definition 2.2 We say that F (X0
−∞) is almost surely continuous if for some

set C ⊆ X ∗− which has probability one a version of the function F (X0
−∞)

restricted to this set C is continuous with respect to metric d∗(·, ·).

This class is strictly larger than the processes with continuous conditional

distributions. It contains many of the examples that have been used to

demonstrate the limitations of universal schemes. In particular, it contains

the class of finitary Markov processes where the usual continuity may not

hold (cf. Morvai and Weiss [17]).

3 Forward estimation for processes with con-

tinuous conditional distributions

For simplicity we will restrict our detailed presentation to the case where

{Xn} is a stationary and ergodic binary time series. As we have remarked,

since we are interested primarily in pointwise results the restriction to ergodic

processes doesn’t lead to any loss of generality, while the extension to finite

state processes is completely routine. Our goal is to estimate the conditional

probability P (Xn+1 = 1|Xn
0 ) knowing only the samples Xn

0 but not the nature

of the process.

The following algorithm which was introduced in Morvai and Weiss [18]

has several nice features. For processes with continuous conditional distri-

bution the algorithm will almost surely give better and better prediction for

Xn+1 while for all other processes some type of convergence will obtain. For
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k ≥ 1 define the random variables τ k
i (n) which indicate where the k-block

Xn
n−k+1 occurs previously in the time series {Xn}. Formally we set τ k

0 (n) = 0

and for i ≥ 1 let

τ k
i (n) = min{t > τ k

i−1(n) : Xn−t
n−k+1−t = Xn

n−k+1}.

Let Kn ≥ 1 and Jn ≥ 1 be sequences of nondecreasing positive integers

tending to ∞ which will be fixed later.

Define κn as the largest 1 ≤ k ≤ Kn such that there are at least Jn occur-

rences of the block Xn
n−k+1 in the data segment Xn

0 , that is,

κn = max{1 ≤ k ≤ Kn : τ k
Jn

(n) ≤ n − k + 1}

if there is such k and 0 otherwise.

Define λn as the number of occurrences of the block Xn
n−κn+1 in the data

segment Xn
0 , that is,

λn = max{1 ≤ j : τκn

j ≤ n − κn + 1}

if κn > 0 and zero otherwise. Observe that if κn > 0 then λn ≥ Jn.

Our estimate gn for P (Xn+1 = 1|Xn
0 ) is defined as g0 = 0 and for n ≥ 1,

gn =
1

λn

λn
∑

i=1

Xn−τ
κn
i

(n)+1

if κn > 0 and zero otherwise.

Theorem (Morvai and Weiss [18]) Let {Xn} be a stationary and ergodic time

series taking values from a finite alphabet X . Assume Kn = max(1, ⌊0.1 log|X | n⌋)

and Jn = max(1, ⌈n0.5⌉). Then

(A) if the conditional expectation P (X1 = 1|X0
−∞) is continuous with respect

to metric d∗(·, ·) then

lim
n→∞

|gn − P (Xn+1 = 1|Xn
0 )| = 0 almost surely,
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(B) without any continuity assumption,

lim
n→∞

1

n

n−1
∑

i=0

|gi − P (Xi+1 = 1|X i
0)| = 0 almost surely,

(C) without any continuity assumption, for arbitrary ǫ > 0,

lim
n→∞

P (|gn − P (Xn+1 = 1|Xn
0 )| > ǫ) = 0.

Remarks:

We note that from the proof of Ryabko [33] and Györfi, Morvai, Yakowitz [11]

it is clear that the continuity condition in the first part of the Theorem can

not be relaxed. Even for the class of all stationary and ergodic binary time-

series with merely almost surely continuous conditional probability P (X1 =

1| . . . , X−1, X0) one can not achieve the convergence as in part (A).

We do not know if the shifted version of our proposed scheme gn solves the

backward estimation problem or not. That is, in the case when gn is evaluated

on (X−n, . . . , X0) rather than on (X0, . . . , Xn), we expect convergence to be

hold for all processes but we have been unable to prove this.

It is known that when the algorithms of Ornstein [30], Algoet [1], Morvai

Yakowitz and Györfi [27] for the backward estimation problem are shifted

forward parts (B) and (C) hold. For part (C) this is immediate from sta-

tionarity while for part (B) it follows from a generalized ergodic theorem,

usually attributed to Breiman, but first proved by Maker [14]. Thus there is

no novelty in the existence of some scheme with these properties. However,

for the above algorithm all three properties hold. We should also point out

that if one knows that the process is k-step Markov for some fixed k then of

course it is not very hard to see that that the empirical distributions of the

k + 1-blocks converge almost surely by the ergodic theorem and this easily

forms the basis of a scheme which will succeed in the forward prediction of

these processes.
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4 Estimating Along Stopping Times

The forward prediction problem for a binary time series {Xn}
∞
n=0 is to esti-

mate the probability that Xn+1 = 1 based on the observations Xi, 0 ≤ i ≤ n

without prior knowledge of the distribution of the process {Xn}. It is known

that this is not possible if one estimates at all values of n. Morvai [16]

presented a simple procedure which will attempt to make such a prediction

infinitely often at carefully selected stopping times chosen by the algorithm.

The growth rate of the stopping times can be determined. Here is his scheme.

Let {Xn}
∞
n=−∞ denote a two-sided stationary and ergodic binary time

series. For k = 1, 2, . . ., define the sequences {τk} and {λk} recursively. Set

λ0 = 0. Let

τk = min{t > 0 : X
λk−1+t
t = X

λk−1

0 }

and

λk = τk + λk−1.

(By stationarity, the string X
λk−1

0 must appear in the sequence X∞
1 almost

surely. ) The kth estimate of P (Xλk+1 = 1|Xλk
0 ) is denoted by Pk, and is

defined as

Pk =
1

k − 1

k−1
∑

j=1

Xλj+1.

Theorem 4.1 ( Morvai [16] ) For all stationary and ergodic binary time

series {Xn},

lim
k→∞

(

Pk − P (Xλk+1 = 1|Xλk
0 )

)

= 0 almost surely.

For some extensions of the algorithm see Morvai and Weiss [19].

One of the drawbacks of this scheme is that the growth of the stopping times

{λk} is rather rapid.
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Theorem 4.2 ( Morvai [16] ) Let {Xn} be a stationary and ergodic binary

time series. Suppose that H > 0 where

H = lim
n→∞

−
1

n + 1
E log p(X0, . . . , Xn)

is the process entropy. Let 0 < ǫ < H be arbitrary. Then for k large enough,

λk(ω) ≥ cc·
·
c

almost surely,

where the height of the tower is k− d, d(ω) is a finite number which depends

on ω, and c = 2H−ǫ.

Morvai and Weiss [17] exhibited an estimator which is consistent on a

certain stopping time sequence for a restricted class of stationary time series

but which has a much slower rate of growth.

Define the stopping times now as follows. Set ζ0 = 0. For k = 1, 2, . . ., define

sequence ηk and ζk recursively. Let

ηk = min{t > 0 : X
ζk−1+t

ζk−1−(k−1)+t = X
ζk−1

ζk−1−(k−1)} and ζk = ζk−1 + ηk.

One denotes the kth estimate of P (Xζk+1 = 1|Xζk

0 ) by gk, and defines it to

be

gk =
1

k

k−1
∑

j=0

Xζj+1.

Theorem 4.3 ( Morvai and Weiss [17] ) Let {Xn} be a stationary binary

time series. Then

lim
k→∞

∣

∣

∣gk − P (Xζk+1 = 1|Xζk

0 )
∣

∣

∣ = 0 almost surely

provided that the conditional probability P (X1 = 1|X0
−∞) is almost surely

continuous.
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Remark. We note that for all stationary binary time-series, the estimation

scheme described above is consistent in probability.

Next we will give some universal estimates for the growth rate of the stopping

times ζk in terms of the entropy rate of the process. This is natural since

the ζk are defined by recurrence times for blocks of length k, and these are

known to grow exponentially with the entropy rate.

Theorem 4.4 ( Morvai and Weiss [17] ) Let {Xn} be a stationary and

ergodic binary time series. Then for arbitrary ǫ > 0,

ζk < 2k(H+ǫ) eventually almost surely,

where H denotes the entropy rate associated with time series {Xn}.

This upper bound is much more favourable than the lower bound in Mor-

vai [16]. For some extensions of this algorithm see Morvai and Weiss [24].

5 Some Improvements for Finitarily Marko-

vian Processes

Let {Xn}
∞
n=−∞ be a stationary and ergodic (not necessarily finitarily Marko-

vian) time series taking values from a discrete (finite or countably infinite)

alphabet X . Morvai and Weiss [23] provided the following algorithm which

improves the performance of the previous one in case the process turns out

to be finitarily Markovian.

For k ≥ 1, let 1 ≤ lk ≤ k be a nondecreasing unbounded sequence of integers,

that is, 1 = l1 ≤ l2 . . . and limk→∞ lk = ∞.

Define auxiliary stopping times ( similarly to Morvai and Weiss [17]) as fol-

lows. Set ζ0 = 0. For n = 1, 2, . . ., let

ζn = ζn−1 + min{t > 0 : X
ζn−1+t

ζn−1−(ln−1)+t = X
ζn−1

ζn−1−(ln−1)}.
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Note that if ln = n then one gets ζn = ηn in Morvai and Weiss [17]. The

point here is that ln may grow slowly.

Among other things, using ζn and ln we can define a very useful process

{X̃n}
0
n=−∞ as a function of X∞

0 as follows. Let J(n) = min{j ≥ 1 : lj+1 > n}

and define

X̃−i = XζJ(i)−i for i ≥ 0.

In order to estimate K(X̃0
−∞) we need to define some explicit statistics.

Define

∆k(X̃
0
−k+1) =

sup
1≤i

sup
{z−k

−k−i+1
∈X i,x∈X :p(z−k

−k−i+1
,X̃0

−k+1
,x)>0}

∣

∣

∣p(x|X̃0
−k+1) − p(x|(z−k

−k−i+1, X̃
0
−k+1))

∣

∣

∣ .

We will divide the data segment Xn
0 into two parts: X

⌈n
2
⌉−1

0 and Xn
⌈n

2
⌉. Let

L(1)
n,k denote the set of strings with length k+1 which appear at all in X

⌈n
2
⌉−1

0 .

That is,

L(1)
n,k = {x0

−k ∈ X k+1 : ∃k ≤ t ≤ ⌈
n

2
⌉ − 1 : X t

t−k = x0
−k}.

For a fixed 0 < γ < 1 let L(2)
n,k denote the set of strings with length k + 1

which appear more than n1−γ times in Xn
⌈n

2
⌉. That is,

L(2)
n,k = {x0

−k ∈ X k+1 : #{⌈
n

2
⌉ + k ≤ t ≤ n : X t

t−k = x0
−k} > n1−γ}.

Let

Ln
k = L(1)

n,k

⋂

L(2)
n,k.

We define the empirical version of ∆k as follows:

∆̂n
k(X̃0

−k+1) = max
1≤i≤n

max
(z−k

−k−i+1
,X̃0

−k+1
,x)∈Ln

k+i

1{ζJ(k)≤⌈n
2
⌉−1}

∣

∣

∣

∣

∣

#{⌈n
2
⌉ + k ≤ t ≤ n : X t

t−k = (X̃0
−k+1, x)}

#{⌈n
2
⌉ + k − 1 ≤ t ≤ n − 1 : X t

t−k+1 = X̃0
−k+1}

−
#{⌈n

2
⌉ + k + i ≤ t ≤ n : X t

t−k−i = (z−k
−k−i+1, X̃

0
−k+1, x)}

#{⌈n
2
⌉ + k + i − 1 ≤ t ≤ n − 1 : X t

t−k−i+1 = (z−k
−k−i+1, X̃

0
−k+1)}

∣

∣

∣

∣

∣

.
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Note that the cut off 1{ζJ(k)≤⌈n
2
⌉−1} ensures that X̃0

−k+1 is defined from X
⌈n

2
⌉−1

0 .

Observe, that by ergodicity, for any fixed k,

lim inf
n→∞

∆̂n
k ≥ ∆k almost surely.

We define an estimate χn for K(X̃0
−∞) from samples Xn

0 as follows. Let

0 < β < 1−γ

2
be arbitrary. Set χ0 = 0, and for n ≥ 1 let χn be the smallest

0 ≤ kn < n such that ∆̂n
kn

≤ n−β.

Observe that if ζj ≤ ⌈n
2
⌉ − 1 < ζj+1 then χn ≤ lj+1.

Here the idea is that if K(X̃0
−∞) < ∞ then χn will be equal to K(X̃0

−∞)

eventually and if K(X̃0
−∞) = ∞ then χn → ∞.

Now we define the sequence of stopping times λn along which we will be able

to estimate. Set λ0 = ζ0, and for n ≥ 1 if ζj ≤ λn−1 < ζj+1 then put

λn = min{t > λn−1 : X t
t−χt+1 = X

ζj

ζj−χt+1}

and

κn = χλn
.

Observe that if ζj ≤ λn−1 < ζj+1 then ζj ≤ λn−1 < λn ≤ ζj+1. If χλn−1+1 = 0

then λn = λn−1 + 1. Note that λn is a stopping time and κn is our estimate

for K(X̃0
−∞) from samples Xλn

0 .

Let f : X → (−∞,∞) be bounded. One denotes the nth estimate of

E(f(Xλn+1)|X
λn
0 ) from samples Xλn

0 by fn, and defines it to be

fn =
1

n

n−1
∑

j=0

f(Xλj+1).

Fix positive real numbers 0 < β, γ < 1 such that 2β+γ < 1, fix a sequence ln

that 1 = l1 ≤ l2, . . ., ln → ∞ and fix a bounded function f(·) : X → (−∞,∞)
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and with these numbers, sequence and function define ζn, χn, κn, λn and

F (·) as described in the previous section. For the resulting fn we have the

following theorem:

Theorem 5.1 ( Morvai and Weiss [23] ) Let {Xn} be a stationary and

ergodic time series taking values from a finite or countably infinite set X . If

the conditional expectation F (X0
−∞) is almost surely continuous then almost

surely,

lim
n→∞

fn = F (X̃0
−∞) and lim

n→∞

∣

∣

∣fn − E(f(Xλn+1)|X
λn

0 )
∣

∣

∣ = 0.

For arbitrary δ > 0, 0 < ǫ2 < ǫ1, let ln = min
(

n, max
(

1, ⌊ 2+δ
ǫ1−ǫ2

log2 n⌋
))

.

Then

λn < n
2+δ

ǫ1−ǫ2
(H+ǫ1)

eventually almost surely, and the upper bound is a polynomial whenever the

stationary and ergodic time series {Xn} has finite entropy rate H.

If the stationary and ergodic time series {Xn} turns out to be finitarily

Markovian then

lim
n→∞

λn

n
=

1

p(X̃0
−K(X̃0

−∞
)+1

)
< ∞ almost surely.

Moreover, if the stationary and ergodic time series {Xn} turns out to be

independent and identically distributed then λn = λn−1 + 1 eventually almost

surely.

6 Estimation for Finitarily Markovian Pro-

cesses

In this section we broaden the scope of the estimation question that we will

discuss and describe first how well can we detect the presence of a memory
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word in a finitarily Markovian process ( cf. Morvai and Weiss [25] ). This

problem has been discussed often in the context of modelling processes. Here

we will show how it relates to prediction questions.

Recall that K was the minimal length of the context that defines the

conditional probability. We take up the problem of estimating the value of

K, both in the backward sense and in the forward sense, where one observes

successive values of {Xn} for n ≥ 0 and asks for the least value K such

that the conditional distribution of Xn+1 given {Xi}
n
i=n−K+1 is the same as

the conditional distribution of Xn+1 given {Xi}
n
i=−∞. We will consider both

finite and countably infinite alphabet size.

For the case of finite alphabet finite order Markov chains similar questions

have been studied by Bühlman and Wyner in [6]. However, the fact that we

want to treat countable alphabets complicates matters significantly. The

point is that while finite alphabet Markov chains have exponential rates of

convergence of empirical distributions, for countable alphabet Markov chains

no universal rates are available at all.

This problem appears in Morvai and Weiss [21] where a universal estima-

tor for the order of a Markov chain on a countable state space is given, and

some of the techniques that are used in the proofs of the results described

here have their origin in that paper. We note in passing, that in Morvai and

Weiss [20] it is shown that there is no classification rule for discriminating

the class of finitarily Markovian processes from other ergodic processes.

The key notion is that of a memory word which can be defined as

follows.

Definition 6.1 We say that w0
−k+1 is a memory word if for all i ≥ 1, all

y ∈ X , all z−k
−k−i+1 ∈ X i

p(y|w0
−k+1) = p(y|z−k

−k−i+1, w
0
−k+1)

provided p(z−k
−k−i+1, w

0
−k+1, y) > 0.

18



Define the set Wk of those memory words w0
−k+1 with length k, that is,

Wk = {w0
−k+1 ∈ X k : w0

−k+1 is a memory word}.

Our first result is a solution of the backward estimation problem, namely

determining the value of K(X0
−∞) from observations of increasing length of

the data segments X0
−n. We will give in the next subsection a universal

consistent estimator which will converge almost surely to the memory length

K(X0
−∞) for any ergodic finitarily Markovian process on a countable state

space. The detailed proofs in Morvai and Weiss [25] are pretty explicit and

given some information on the average length of a memory word and the

extent to which the stationary distribution diffuses over the state space one

could extract rates for the convergence of the estimators. We concentrate

however, on the more universal aspects of the problem.

As is usual in these kinds of questions , the problem of forward estimation,

namely trying to determine K(Xn
−∞) from successive observations of Xn

0

is more difficult. The stationarity means that results in probability can

be carried over automatically. However, almost sure results present serious

problems as we have already said. For some more results in this circle of

ideas of what can be learned about processes by forward observations see

Ornstein and Weiss [32], Dembo and Peres [9], Nobel [29], and Csiszár and

Talata [8].

Recently in Csiszár and Talata [8] the authors define a finite context to

be a memory word w of minimal length, that is, no proper suffix of w is a

memory word. An infinite context for a process is an infinite string with all

finite suffix having positive probability but none of them being a memory

word. They treat there the problem of estimating the entire context tree in

case the size of the alphabet is finite. For a bounded depth context tree,

the process is Markovian, while for an unbounded depth context tree the

universal pointwise consistency result there is obtained only for the truncated

trees which are again finite in size. This is in contrast to our results which

deal with infinite alphabet size and consistency in estimating memory words
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of arbitrary length. This is what forces us to consider estimating at specially

chosen times.

In the second subsection we will present a scheme which depend upon a

positive parameter ǫ, and we guarantee that density of times along which the

estimates are being given have density at least 1−ǫ. The last two subsections

are devoted to seeing how this memory length estimation can be applied to

estimating conditional probabilities. We do this first for finitarily Markovian

processes along a sequence of stopping times which achieve density 1 − ǫ.

We do not know if the ǫ can be dropped in this case for the estimation of

conditional probabilities.

We can dispense with ǫ in the Markovian case. For this we use an ear-

lier result of ours on a universal estimator for the order of a finite order

Markov chain on a countable alphabet in order to estimate the conditional

probabilities along a sequence of stopping times of density one.

6.1 Backward Estimation of the Memory Length for

Finitarily Markovian Processes

Let {Xn} be stationary and ergodic finitarily Markovian with finite or count-

ably infinite alphabet.

In order to estimate K(X0
−∞) we need to define some explicit statistics. The

first is a measurement of the failure of w0
−k+1 to be a memory word.

Define

∆k(w
0
−k+1) =

sup
1≤i

sup
{z−k

−k−i+1
∈X i,x∈X :p(z−k

−k−i+1
,w0

−k+1
,x)>0}

∣

∣

∣p(x|w0
−k+1) − p(x|z−k

−k−i+1, w
0
−k+1)

∣

∣

∣ .

Clearly this will vanish precisely when w0
−k+1 is a memory word. We need to

define an empirical version of this based on the observation of a finite data

segment X0
−n. To this end first define the empirical version of the conditional
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probability as

p̂n(x|w0
−k+1) =

#{−n + k − 1 ≤ t ≤ −1 : X t+1
t−k+1 = (w0

−k+1, x)}

#{−n + k − 1 ≤ t ≤ −1 : X t
t−k+1 = w0

−k+1}
.

These empirical distributions, as well as the sets we are about to introduce

are functions of X0
−n, but we suppress the dependence to keep the notation

manageable.

For a fixed 0 < γ < 1 let Ln
k denote the set of strings with length k +1 which

appear more than n1−γ times in X0
−n. That is,

Ln
k = {x0

−k ∈ X k+1 : #{−n + k ≤ t ≤ 0 : X t
t−k = x0

−k} > n1−γ}.

Finally, define the empirical version of ∆k as follows:

∆̂n
k(w0

−k+1) = max
1≤i≤n

max
(z−k

−k−i+1
,w0

−k+1
,x)∈Ln

k+i

∣

∣

∣p̂n(x|w0
−k+1) − p̂n(x|z−k

−k−i+1, w
0
−k+1)

∣

∣

∣

Let us agree by convention that if the smallest of the sets over which

we are maximizing is empty then ∆̂n
k = 0. Observe, that by ergodicity,

the ergodic theorem implies that almost surely the empirical distributions p̂

converge to the true distributions p and so for any w0
−k+1 ∈ X k,

lim inf
n→∞

∆̂n
k(w0

−k+1) ≥ ∆k(w
0
−k+1) almost surely.

With this in hand we can give a test for w0
−k+1 to be a memory word. Let

0 < β < 1−γ

2
be arbitrary. Let NTESTn(w0

−k+1) = Y ES if ∆̂n
k(w0

−k+1) ≤ n−β

and NO otherwise. Note that NTESTn depends on X0
−n.

Theorem 6.1 (Morvai and Weiss [25]) Eventually almost surely, NTESTn(w0
−k+1) =

Y ES if and only if w0
−k+1 is a memory word.

We define an estimate χn for K(X0
−∞) from samples X0

−n as follows. Set

χ0 = 0, and for n ≥ 1 let χn be the smallest 0 ≤ k < n such that

NTESTn(X0
−k+1) = Y ES if there is such and n otherwise.

Theorem 6.2 (Morvai and Weiss [25]) χn = K(X0
−∞) eventually almost

surely.
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6.2 Forward Estimation of the Memory Length for Fini-

tarily Markovian Processes

Let {Xn} be stationary and ergodic finitarily Markovian with finite or count-

ably infinite alphabet.

Define PTESTn(w0
−k+1)(X

n
0 ) = NTESTn(w0

−k+1)(T
nXn

0 ) where T is the left

shift operator.

Theorem 6.3 (Morvai and Weiss [25]) Eventually almost surely, PTESTn(w0
−k+1) =

Y ES if and only if w0
−k+1 is a memory word.

Define a list of words {w(0), w(1), w(2), . . . , w(n), . . .} such that all words of

all lengths are listed and a word can not precede its suffix. Note that w(0)

is the empty word.

Now define sets of indices Ai
n as follows. Let A0

n = {0, 1, . . . , n} and for i > 0

define

Ai
n = {|w(i)| − 1 ≤ j ≤ n : Xj

j−|w(i)|+1 = w(i)}. (1)

Let ǫ > 0 be fixed. Define θn(ǫ) < n to be the minimal j such that
∣

∣

∣

⋃

i≤j:PTESTn(w(i))=Y ES Ai
n

∣

∣

∣

n + 1
≥ 1 − ǫ/2 (2)

and n otherwise. We estimate for the length of the memory of Xn
−∞ looking

backwards if n ∈
⋃

i≤θn(ǫ),PTESTn(w(i))=Y ES Ai
n. The set of n’s for which this

holds will be the set for which we estimate the memory and we denote this

set by N . Note that the event n ∈ N depends only on Xn
0 , and thus N can

be thought of as a sequence of stopping times.

We define for n ∈ N ,

κn = min{i ≥ 0 : Xn
n−|w(i)|+1 = w(i), PTESTn(w(i)) = Y ES}.

For n ∈ N define

ρn(Xn
0 ) = |w(κn)|.

Note that ρn, θn, κn and N depend on ǫ, however, we will not denote this

dependence on epsilon explicitly.
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Theorem 6.4 (Morvai and Weiss [25]) Let ǫ > 0 be fixed. Then for n ∈ N ,

ρn = K(Xn
−∞) eventually almost surely, (3)

and

lim inf
n→∞

|N
⋂

{0, 1, . . . , n − 1}|

n
≥ 1 − ǫ. (4)

For n ∈ N , Xn
n−ρn+1 appears at least n−γ times eventually almost surely.

6.3 Forward Estimation of the Conditional Probability

for Finitarily Markovian Processes

Let {Xn} be stationary and ergodic finitarily Markovian with finite or count-

ably infinite alphabet. Now our goal is to estimate the conditional probability

P (Xn+1 = x|Xn
0 ) on stopping times in a pointwise sense.

Let N be a sequence of stopping times such that eventually almost surely

Xn
n−K(Xn

−∞
)+1 appears at least n1−γ times in Xn

0 .

Let ρn be any estimate of the length of the memory from samples Xn
0 such

that ρn − K(Xn
−∞) → 0 on N .

Define our estimate q̂n(x) of the conditional probability P (Xn+1 = x|Xn
0 ) on

N as

q̂n(x) =
#{ρn − 1 ≤ i < n : X i

i−ρn+1 = Xn
n−ρn+1, Xn+1 = x}

#{ρn − 1 ≤ i < n : X i
i−ρn+1 = Xn

n−ρn+1}
.

Theorem 6.5 (Morvai and Weiss [25]) On n ∈ N ,

|q̂n(x) − P (Xn+1 = x|Xn
0 )| → 0 almost surely.

Corollary 6.1 For the stopping times N and estimator ρn in Theorem 6.4,

Theorem 6.5 holds and the density of N is at least 1 − ǫ.
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6.4 Forward Estimation of the Conditional Probability

for Markov Processes

Let {Xn} be a stationary and ergodic finite or countably infinite alphabet

Markov chain with order K. Let ORDESTn be an estimator of the order

from samples Xn
0 such that ORDESTn → K almost surely. Such an estima-

tor can be found e.g. in Morvai and Weiss [21]. Let n ∈ N if Xn
n−ORDESTn+1

appears at least n1−γ times in Xn
0 . N is a sequence of stopping times. Let

q̂n(x) =
#{ORDESTn − 1 ≤ i < n : X i

i−ORDESTn+1 = Xn
n−ORDESTn+1, Xn+1 = x}

#{ORDESTn − 1 ≤ i < n : X i
i−ORDESTn+1 = Xn

n−ORDESTn+1}
.

Theorem 6.6 (Morvai and Weiss [25]) Assume ORDESTn equals the order

eventually almost surely.Then on n ∈ N ,

|q̂n(x) − P (Xn+1 = x|Xn
n−K)| → 0 almost surely.

and

lim inf
n→∞

|N
⋂

{0, 1, . . . , n − 1}|

n
= 1.

If the Markov chain turns out to take values from a finite set, then N takes

as values all but finitely many positive integers.

7 Examples Illustrating Limitations

For the class of all stationary and ergodic binary Markov-chains of some finite

order the forward estimation problem can be solved. Indeed, if the time series

is a Markov-chain of some finite order, we can estimate the order and count

frequencies of blocks with length equal to the order. Bailey showed that one

can’t test for being in the class, cf. Morvai and Weiss [20] also.

It is conceivable that one can improve the result of Morvai [16] or Morvai

and Weiss [17] so that if the process happens to be Markovian then one

eventually estimates at all times. It has been shown in Morvai and Weiss
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[22] that this is not possible. This puts some new restrictions on what can

be achieved in estimating along stopping times.

Theorem 7.1 (Morvai and Weiss [22]) For any strictly increasing sequence

of stopping times {λn} such that for all stationary and ergodic binary Markov-

chains with arbitrary finite order, eventually λn+1 = λn + 1, and for any

sequence of estimators {hn(X0, . . . , Xλn
)} there is a stationary and ergodic

binary time series {Xn} with almost surely continuous conditional probability

P (X1 = 1| . . . , X−1, X0), such that

P
(

lim sup
n→∞

|hn(X0, . . . , Xλn
) − P (Xλn+1 = 1|X0, . . . , Xλn

)| > 0
)

> 0.

Remark: Bailey [5] among other things proved that there is no sequence

of functions {en(Xn−1
0 )} which for all stationary and ergodic time series, if

it turns out to be a Markov-chain, would be eventually 1 and 0 otherwise.

(That is, there is no test for the Markov property.) This result does not imply

ours. On the other hand, our result implies Bailey’s. (Indeed, if there were

a test for Markov-chains in the above sense, we could apply the estimator in

Morvai [16] or Morvai and Weiss [17] if the time series is not a Markov-chain

of some finite order, and if the time series is a Markov-chain of some finite

order we can estimate the order of the Markov chain and count frequencies

of blocks with length equal to the order.

Bailey [5] and Ryabko [33] proved less than our theorem. They proved

the nonexistence of the desired estimator when the estimator should work

for all stationary and ergodic binary time series and when all λn = n, that

is, when we always require good prediction.

8 Memory Estimation for Markov Processes

In this section we shall examine how well can one estimate the local memory

length for finite order Markov chains. In the case of finite alphabets this can
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be done with stopping times that eventually cover all time epochs. (Indeed,

assume {Xn} is a Markov chain taking values from a finite set. Assume

ORDESTn estimates the order in a pointwise sense from data Xn
0 . Then let

ρn = min{0 ≤ t ≤ ORDESTn : PTESTn(Xn
n−t+1) = Y ES}

if there is such t and 0 otherwise. Since ORDESTn eventually gives the right

order and there are finitelly many possible strings with length not greater

than the order thus ρn = K(Xn
−∞) eventually almost surely by Theorem 6.3.)

However, as soon as one goes to a countable alphabet, even if the order

is known to be two and we are just trying to decide whether the Xn alone is

a memory word or not, there is no sequence of stopping times which is guar-

anteed to succeed eventually and whose density is one, cf. Morvai and Weiss

[25]. This shows that the ǫ in the preceding sections cannot be eliminated.

Theorem 8.1 ( Morvai and Weiss [25] ) There are no strictly increasing

sequence of stopping times {λn} and estimators {hn(X0, . . . , Xλn
)} taking

the values one and two, such that for all countable alphabet Markov chains

of order two:

lim
n→∞

λn

n
= 1

and

lim
n→∞

|hn(X0, . . . , Xλn
) − K(Xλn

0 )| = 0 with probability one.

9 Limitations for Binary Finitarily Marko-

vian Processes

In the preceding section we showed that we cannot achieve density one in

the forward memory length estimation problem even in the class of Markov

chains on a countable alphabet. In this section we shall show something
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similar in the class of binary (i.e. 0, 1) valued finitarily Markov processes.

We will assume that there is given a sequence of estimators and stopping

times, (hn, λn) that do succeed to estimate successfully the memory length

for binary Markov chains of finite order and construct a finitarily Markovian

binary process on which the scheme fails infinitely often. Here is a precise

statement:

Theorem 9.1 ( Morvai and Weiss [25] ) For any strictly increasing se-

quence of stopping times {λn} and sequence of estimators {hn(X0, . . . , Xλn
)},

such that for all stationary and ergodic binary Markov chains with arbitrary

finite order, limn→∞
λn

n
= 1, and

lim
n→∞

|hn(X0, . . . , Xλn
) − K(Xλn

0 )| = 0 almost surely

there is a stationary, ergodic finitarily Markovian binary time series such

that on a set of positive measure of process realizations

hn(X0, . . . , Xλn
) 6= K(Xλn

−∞)

infinitely often.

In the final process Xn that we constructed in Morvai and Weiss [25] we

have P (K(X0
−∞) = k decays to zero exponentially fast and in particular is

summable. It follows that with probability one eventually K(Xn
0 ) ≤ n so

that the reason for our failure to estimate the order correctly is not coming

about because we don’t even see the memory word.

It is also worth pointing out the density of moments on which the esti-

mator is failing is of density zero. It follows fairly easily from the ergodic

theorem that if one is willing to tolerate such failures then a straightforward

application of any backward estimation scheme will converge outside a set of

density zero.
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vian processes” Ann. I.H.Poincaré Probabilités et Statistiqoes, vol. 43,

pp. 15-30, 2007.

[26] G. Morvai, S. Yakowitz, and P. Algoet, ”Weakly convergent nonpara-

metric forecasting of stationary time series,” IEEE Transactions on In-

formation Theory, vol. 43, pp. 483-498, 1997.

[27] G. Morvai, S. Yakowitz, and L. Györfi, ”Nonparametric inferences for

ergodic, stationary time series,” Annals of Statistics., vol. 24, pp. 370–

379, 1996.

[28] A. Nobel, ” On optimal sequential prediction for general processes,”

IEEE Trans. Inform. Theory, vol. 49, no. 1, pp. 83–98, 2003.

[29] A. Nobel, ”Limits to classification and regression estimation from er-

godic processes,” Annals of Statistics, vol. 27 pp. 262-273, 1999.

[30] D. S. Ornstein, ”Guessing the next output of a stationary process,”

Israel Journal of Mathematics, vol. 30, pp. 292–296, 1978.

[31] D. S. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems.

Yale University Press, 1974.

30



[32] D.S. Ornstein and B. Weiss, ”How sampling reveals a process,” The

Annals of Probability, vol. 18, pp. 905-930, 1990.

[33] B. Ya. Ryabko, ”Prediction of random sequences and universal coding,”

Problems of Inform. Trans., vol. 24, pp. 87-96, Apr.-June 1988.

[34] P.C. Shields, ”Cutting and stacking: a method for constructing station-

ary processes,” IEEE Transactions on Information Theory, vol. 37, pp.

1605–1614, 1991.

[35] P.C. Shields, The Ergodic Theory of Discrete Sample Paths, volume 13

of Graduate Studies in Mathematics. American Mathematical Society,

Providence, 1996.

[36] B. Weiss, Single Orbit Dynamics, American Mathematical Society, 2000.

31


