
INFERRING THE CONDITIONAL MEAN
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Abstract. Consider a stationary real-valued time series {Xn}∞
n=0

with a priori unknown
distribution. The goal is to estimate the conditional expectation E(Xn+1|X0, . . . , Xn)

based on the observations (X0, . . . , Xn) in a pointwise consistent way. It is well known that
this is not possible at all values of n. We will estimate it along stopping times.
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Introduction and Statement of Results

Suppose the distribution of the real-valued stationary time series {Xn}
∞
n=0 is not

known a priori. The goal is to estimate the conditional expectation E(Xn+1|X0, . . . ,Xn)
from the data segment X0, . . . ,Xn such that the difference between the estimate and the
conditional expectation should tend to zero almost surely as the number of observations
n tends to infinity. This problem (for binary time series) was introduced in Cover (1975).
When one is obliged to estimate for all n, Bailey (1976) and Ryabko (1988) proved the
nonexistence of such a universal algorithm even over the class of all stationary and ergodic
binary time series.

In a special case, for certain Gaussian processes, Schäfer (2002) constructed an algo-
rithm which can estimate the conditional expectation for every time instance n.

For further reading on related topics cf. Ornstein (1978), Algoet (1992), (1999),
Morvai Yakowitz and Algoet (1997), Morvai, Yakowitz and Györfi (1996), Györfi, Lugosi
and Morvai (1999), Györfi and Lugosi (2002), Weiss (2000) and Györfi et al. (2002).

In this paper we do not require to estimate for every time instance n, but rather, merely
along a sequence of stopping times. That is, looking at the data segment X0, . . . ,Xn our
rule will decide if we estimate for this n or not, but anyhow we will definitely estimate
for infinitely many n. Algorithms of this kind were proposed for binary time series in
Morvai (2003) and Morvai and Weiss (2003).

We will consider two-sided real-valued processes {Xn}
∞
n=−∞. A one-sided stationary

time series {Xn}∞n=0 can always be considered to be a two-sided stationary time series
{Xn}

∞
n=−∞.

Let ℜ be the set of all real numbers and put ℜ∗− the set of all one-sided sequences of
real numbers, that is,

ℜ∗− = {(. . . , x−1, x0) : xi ∈ ℜ for all −∞ < i ≤ 0}.
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Define the metric d∗(·, ·) on ℜ∗− as

d∗((. . . , x−1, x0), (. . . , y−1, y0)) =

∞
∑

i=0

2−i−1 |x−i − y−i|

1 + |x−i − y−i|
.

Definition:. The conditional expectation E(X1| . . . ,X−1,X0) is almost surely contin-
uous if for some set B ⊆ ℜ∗− which has probability one the conditional expectation
E(X1| . . . ,X−1,X0) restricted to this set B is continuous with respect to metric d∗(·, ·).

Now we introduce our algorithm. For notational convenience, let Xn
m = (Xm, . . . ,Xn),

where m ≤ n. Define the nested sequence of partitions {Pk}
∞
k=0 of the real line as follows.

Let
Pk = {[i2−k, (i + 1)2−k) : for i = 0, 1,−1, 2,−2, . . . }.

Let x → [x]k denote a quantizer that assigns to any point x ∈ ℜ the unique interval in
Pk that contains x. Let [Xn

m]k = ([Xm]k, . . . , [Xn]k).

We define the stopping times {λn} along which we will estimate. Set λ0 = 0. For
n = 1, 2, . . . , define λn recursively. Let

λn = λn−1 + min{t > 0 : [X
λn−1+t
t ]n = [X

λn−1

0 ]n. (1)

Note that λn ≥ n and it is a stopping time on [X∞
0 ]n. Let fk : Pk → ℜ denote a function

that assigns to any cell A ∈ Pk a point in A. The nth estimate mn is defined as

mn =
1

n

n−1
∑

j=0

fj([Xλj+1]
j). (2)

Observe that mn depends solely on [Xλn

0 ]n. This estimator can be viewed as a sam-
pled version of the predictor in Morvai, Yakowitz and Györfi (1996), Weiss (2000), Al-
goet (1999) and Györfi et al. (2002).

Define the time series {X̃n}0
n=−∞ as

X̃−n = lim
j→∞

Xλj−n for n ≥ 0, (3)

where the limit exists since the intervals {[Xλj−n]j}∞j=n are nested and their lengths tend
to zero.

Define the function e : ℜ∗− → (−∞,∞) as

e(x0
−∞) = E(X1|X

0
−∞ = x0

−∞).

We will prove the following theorem.
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Theorem. Let {Xn} be a real-valued stationary time series with E(|X0|
2) < ∞. Then

almost surely

lim
n→∞

mn = lim
n→∞

E(Xλn+1|[X
λn

0 ]n) = e(X̃0
−∞)

and

lim
n→∞

∣

∣

∣
mn − E(Xλn+1|[X

λn

0 ]n)
∣

∣

∣
= 0.

Moreover, if in addition the conditional expectation E(X1|X
0
−∞) is almost surely contin-

uous then almost surely

lim
n→∞

∣

∣

∣
mn − E(Xλn+1|X

λn

0 )
∣

∣

∣
= 0.

Unfortunately, there is a stationary and ergodic Markov chain {Xn} taking values from

a countable subset of the unit interval such that

P

(

lim sup
n→∞

∣

∣

∣
mn − E(Xλn+1|X

λn

0 )
∣

∣

∣
> 0

)

> 0.

Remarks.

Let {Xn} be a real-valued stationary time series with E(|X0|
2) < ∞. If the distribu-

tion of X0 happens to concetrate on finitely many atoms then

E(Xλn+1|[X
λn

0 ]n) = E(Xλn+1|X
λn

0 ) eventually

and so |mn − E(Xλn+1|X
λn

0 )| → 0 almost surely, without any continuity condition.

Let {Xn} be a real-valued stationary time series with E(|X0|
2) < ∞. If one knows

in advance that the distribution of X0 concentrates on finite or countably infinite atoms
then one may omit the partition Pk, the quantizer [·]k and the function fk(·) entirely.
That is, one may define λ′

0 = 0 and for n = 1, 2, . . . set

λ′
n = λ′

n−1 + min{t > 0 : X
λ′

n−1+t

t = X
λ′

n−1

0 }

and

m′
n =

1

n

n−1
∑

j=0

Xλ′

j
+1.

Then
lim

n→∞

∣

∣

∣
m′

n − E(Xλ′

n+1|X
λ′

n

0 )
∣

∣

∣
= 0 almost surely

without any continuity condition. Particularly, m′
n works for the counterexample process

in the third part of the Theorem.

The counterexample Markov chain in the third part of the Theorem of course will not
possess almost surely continuous conditional expectation E(X1|X0

−∞).

From the proof of Bailey (1976), Ryabko (1988), Györfi, Morvai, Yakowitz (1998) it is
clear that even for the class of all stationary and ergodic binary time series with almost
surely continuous conditional expectation E(X1|X0

−∞) one can not estimate E(Xn+1|Xn
0 )

for all n in a pointwise consistent way.
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Proofs

It will be useful to define other processes {X̂
(k)
n }∞n=−∞ for k ≥ 0 as follows. Let

X̂
(k)
−n = Xλk−n for −∞ < n < ∞. (4)

For an arbitrary real-valued stationary time series {Yn}, let λ̂0(Y
0
−∞) = 0 and for n ≥ 1

define
λ̂n(Y 0

−∞) = λ̂n−1(Y
0
−∞) − min{t > 0 : [Y −t

λ̂n−1−t
]n = [Y 0

λ̂n−1
]n}.

Let T denote the left shift operator, that is, (Tx∞
−∞)i = xi+1. It is easy to see that if

λn(x∞
−∞) = l then λ̂n(T lx∞

−∞) = −l.

Proof of the Theorem.

Step 1. We show that for arbitrary k ≥ 0, the time series {X̂
(k)
n }∞n=−∞ and {Xn}

∞
n=−∞

have identical distribution.

It is enough to show that for all k ≥ 0, m ≥ n ≥ 0, and Borel set F ⊆ ℜn+1,

P ((X̂
(k)
m−n, . . . , X̂(k)

m ) ∈ F ) = P (Xm
m−n ∈ F ).

This is immediate by stationarity of {Xn} and by the fact that for all k ≥ 0, m ≥ n ≥ 0,
l ≥ 0, F ⊆ ℜn+1,

T l{Xλk+m
λk+m−n ∈ F, λk = l} = {Xm

m−n ∈ F, λ̂k(X0
−∞) = −l}.

Step 2. We show that for k ≥ 0, almost surely,

λ̂k(. . . , X̂
(k)
−1 , X̂

(k)
0 ) = λ̂k(X̃0

−∞)

and

[X̃0
λ̂k(X̃0

−∞
)
]k+1 = [X̂

(k)

λ̂k(...,X̂
(k)
−1 ,X̂

(k)
0 )

, . . . , X̂
(k)
0 ]k+1.

Since we are dealing with a nested sequence of partitions and λ̂k depends solely on the
kth quantized sequence, it is enough to prove that for any i ≥ 0 and for all j ≥ i, almost

surely, [X̃−i]
j+1 = [X̂

(j)
−i ]j+1. (Note that λj(X

∞
0 ) − j ≥ 0.) If X̃−i 6∈ [X̂

(j)
−i ]j+1 for some

j ≥ i then this must happen at a right end-point of some interval in
⋃∞

k=0 Pk. By (3)
and Step 1, we have

1 − P (X̃−i ∈ [X̂
(j)
−i ]j+1 for all j ≥ i)

≤
∞
∑

k=i

∞
∑

s=−∞

P (X̃−i = s2−k, X̂
(j)
−i < X̃−i for all j ≥ k)

≤
∞
∑

k=i

∞
∑

s=−∞

lim
j→∞

P (s2−k − 2−j ≤ X̂
(j)
−i < s2−k)

=

∞
∑

k=i

∞
∑

s=−∞

lim
j→∞

P (s2−k − 2−j ≤ X−i < s2−k)

= 0.
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Step 3. We show that the distributions of {X̃n}
0
n=−∞ and {Xn}

0
n=−∞ are the same.

This is immediate from Step 1 and Step 2.

The time series {X̃n}
0
n=−∞ is stationary, since {Xn}

0
n=−∞ is stationary, and it can be

extended to be a two-sided time series {X̃n}
∞
n=−∞. We will use this fact only for the

purpose of defining the conditional expectation E(X̃1|X̃0
−∞).

Step 4. We prove the first part of the Theorem.

Consider

mn =
1

n

n−1
∑

j=0

(

fj([Xλj+1]
j) − E(fj([Xλj+1]

j)|[X
λj

0 ]j)
)

+
1

n

n−1
∑

j=0

(

E(fj([Xλj+1]
j)|[X

λj

0 ]j) − E(Xλj+1|[X
λj

0 ]j)
)

+
1

n

n−1
∑

j=0

E(Xλj+1|[X
λj

0 ]j). (5)

Observe that {Γj = fj([Xλj+1]
j) − E(fj([Xλj+1]

j)|[X
λj

0 ]j)} is a sequence of orthogonal

random variables with EΓj = 0 and E
(

Γ2
j

)

≤ E
(

|X1|
2
)

+ 2E|X1| + 1 since E
(

Γ2
j

)

≤

E
(

|Xλj+1|
2
)

+ 2E|Xλj+1| + 1 and, by Step 1, Xλj+1 has the same distribution as X1.
Now by Theorem 3.2.2 in Révész (1968),

1

n

n−1
∑

j=0

Γj → 0 almost surely.

The second term tends to zero since |fj([Xλj+1]
j) − Xλj+1| ≤ 2−j . Now we deal with

the third term. By Step 2, Step 1 and Step 3,

E(Xλj+1|[X
λj

0 ]j) = E(X̃1|[X̃
0
λ̂j(X̃0

−∞
)
]j).

The latter forms a martingale and by Theorem 7.6.2 in Ash (1972), almost surely,

E(Xλj+1|[X
λj

0 ]j) = E(X̃1|[X̃
0
λ̂j(X̃0

−∞
)
]j) → E(X̃1|X̃

0
−∞). (6)

By (5) and (6), almost surely,

lim
n→∞

mn = E(X̃1|X̃
0
−∞). (7)

Thus the first part of the Theorem is proved.

Step 5. We prove the second part of the Theorem.
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By (7) it is enough to prove that almost surely E(Xλj+1|X
λj

0 ) → E(X̃1|X̃
0
−∞) provided

that E(X1|X
0
−∞) is almost surely continuous. By assumption, the function e(·) is con-

tinuous on a set B ⊆ ℜ∗− with P (X0
−∞ ∈ B) = 1. By Step 1 and Step 3,

P (X̃0
−∞ ∈ B, (. . . , X̂

(j)
−1 , X̂

(j)
0 ) ∈ B for all j ≥ 0) = 1. (8)

Let
Nj(X

λj

0 ) = {z0
−∞ ∈ ℜ∗− : z−λj

∈ [X0]
j , . . . , z0 ∈ [Xλj

]j}.

By (4), (8) and Step 2, almost surely, for all j,

(. . . , X̂
(j)
−1 , X̂

(j)
0 ) ∈ Nj(X

λj

0 )
⋂

B and X̃0
−∞ ∈ Nj(X

λj

0 )
⋂

B. (9)

Put
Θj(X

λj

0 ) = sup
y0
−∞

,z0
−∞

∈Nj(X
λj
0 )

T

B

|e(y0
−∞) − e(z0

−∞)|.

Since e(·) is continuous on set B and by (9), almost surely,

lim
j→∞

Θj(X
λj

0 ) = 0. (10)

By (9) and (10), almost surely,

lim sup
j→∞

∣

∣

∣
E

(

e(X̃0
−∞)|[X

λj

0 ]j
)

− E
(

e(. . . , X̂
(j)
−1 , X̂

(j)
0 )|X

λj

0

)
∣

∣

∣

≤ lim sup
j→∞

E
(
∣

∣

∣
E

(

e(X̃0
−∞)|[X

λj

0 ]j
)

− e(. . . , X̂
(j)
−1 , X̂

(j)
0 )

∣

∣

∣
|X

λj

0

)

≤ lim sup
j→∞

E
(

Θj(X
λj

0 )|X
λj

0

)

= lim sup
j→∞

Θj(X
λj

0 )

= 0. (11)

By Step 2,

E
(

Xλj+1|X
λj

0

)

= E
(

e(X̃0
−∞)|[X̃0

λ̂j
]j

)

−
{

E
(

e(X̃0
−∞)|[X

λj

0 ]j
)

− E
(

e(. . . , X̂
(j)
−1 , X̂

(j)
0 )|X

λj

0

)}

.

The first term tends to e(X̃0
−∞) by the almost sure martingale convergence theorem

(cf.Theorem 7.6.2 in Ash (1972)) since by Step 3, E
∣

∣

∣
e(X̃0

−∞)
∣

∣

∣
≤ E

∣

∣

∣
X̃1

∣

∣

∣
= E |X1| < ∞.

The second term tends to zero by (11). The proof of the second part of the Theorem is
complete.

Step 6. We prove the third part of the Theorem.

First we define a Markov chain {Mn} on the nonnegative integers which will serve as
a technical tool for our counterexample process. Let the transition probabilities be as
follows.

P (M1 = 0|M0 = 0) = P (M1 = 1|M0 = 0) = P (M1 = 0|M0 = 1) = 2−1



INFERRING THE CONDITIONAL MEAN 7

and for i = 2, 3, . . . , let

P (M1 = i|M0 = 1) = 2−i and P (M1 = 0|M0 = i) = 1.

All other transitions happen with probability zero. Note that one can reach state 1 only
from state 0. It is easy to see that the Markov chain just defined yields a stationary
and ergodic time series with initial probabilities P (M0 = 0) = 4

7 , P (M0 = 1) = 2
7 , and

for i = 2, 3, . . . P (M0 = i) = 1
7

1
2i−1 . Our counterexample process {Xn} will be a one

to one function of the Markov chain {Mn}. Define the function h : {0, 1, 2, . . . } → ℜ as

h(0) = 0, h(1) = 1 and for i ≥ 2 put h(i) = 2−2i

2 . Let Xn = h(Mn). Since h(·) is one to

one, {Xn} is also a Markov chain. Since {X̃n} has the same distribution as {Xn}, {X̃n}
is also a Markov chain. Let

An = {h(i) : h(i) < 2−(n+1) for i = 0, 1, 2, . . . }.

Note that h(i) ∈ An if and only if [h(i)]n+1 = [0]n+1. Define the event

H = {X̃0 = 0,X1
0 = (0, 1)}.

Observe: If X1 = 1 then X0 = 0. (State 1 can be reached only from state 0.) The event

{X̃0 = 0} happens if and only if Xλn
∈ An for all n = 1, 2, . . . . Since [h(0)]1 = [h(i)]1

for i ≥ 2 and for all k ≥ 0, [h(1)]k 6= [h(i)]k provided i 6= 1 the event {X̃−1 = 1} occurs
if and only if X1 = 1. It follows that

H = {X0 = 0,X1 = 1,Xλn
∈ An for n = 1, 2, . . . } = {X̃0

−2 = (0, 1, 0)}.

Since the time series {X̃n} has the same distribution as {Xn},

P (H) = P (X0
−2 = (0, 1, 0)) =

4

7

1

2

1

2
=

1

7
> 0.

It will be enough to show that Xλn
∈ An−{0} happens infinitely often given the condition

H since if Xλn
∈ An − {0} happens then Xλn+1 = 0 and by (7), on H

mn → E(X̃1|X̃0 = 0) = 0.5

and so

P

(

lim sup
n→∞

|mn − E(Xλn+1|X
λn

0 )| = 0.5|H

)

= 1

and P (H) > 0. To prove that {Xλn
∈ An − {0}} occurs infinitely often we need the

following observation for repeated use: By the Markov property and the construction
in (1) if xi ∈ Ai for i = 1, 2, . . . , j then for j ≥ 1,

P (Xλj
= xj |X

1
0 = (0, 1),Xλm

= xm for 1 ≤ m < j) = P (X1 = xj |X0 = 1,X1 ∈ Aj−1).
(12)

Indeed, for j = 1 this is trivial, since X1 = 1 implies that X0 = 0, λ1 = 2 while X0 = 1
implies that X1 ∈ A0. For j ≥ 2 set ψ

j
0 = λj−1 − 1 and for i ≥ 1 the ψ

j
i will be the

successive occurrences of the block [X
λj−1−1
0 ]j in the j-th quantization, defined by

ψ
j
i = min{t > ψ

j
i−1 : [Xt

t−λj−1+1]
j = [X

ψ
j

i−1

ψ
j

i−1−λj−1+1
]j}.
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These ψ
j
i are stopping times for i = 1, 2, . . . . Temporarily let Dj denote the event

{X1
0 = (0, 1),Xλm

= xm for 1 ≤ m < j}.

The way that λj is defined means that on Dj if λj occurs at the i-th repetition of

[X
λj−1−1
0 ]j it is because ψ

j
i < λj and X

ψ
j

i
+1 ∈ Aj−1. It follows that

P (Xλj
= xj |Dj) =

∞
∑

i=1

P (X
ψ

j

i
+1 = xj |Xψ

j

i
+1 ∈ Aj−1, ψ

j
i < λj ,Dj)P (ψj

i + 1 = λj |Dj).

Since xj ∈ Aj ⊆ Aj−1, each expression P (X
ψ

j

i
+1 = xj |Xψ

j

i
+1 ∈ Aj−1, ψ

j
i < λj ,Dj) can

be written as

P (X
ψ

j

i
+1 = xj |Xψ

j

i
+1 ∈ Aj−1, ψ

j
i < λj ,Dj) =

P (X
ψ

j

i
+1 = xj |ψ

j
i < λj ,Dj)

P (X
ψ

j

i
+1 ∈ Aj−1|ψ

j
i < λj ,Dj)

and then by decomposition according to the value l of ψ
j
i we get

P (X
ψ

j

i
+1 = xj |ψ

j
i < λj ,Dj)

=

∞
∑

l=1

(

P (Xl+1 = xj |ψ
j
i = l < λj ,Dj)

P (Xl+1 ∈ Aj−1|ψ
j
i = l < λj ,Dj)

P (ψj
i = l,X

ψ
j

i
+1 ∈ Aj−1|ψ

j
i < λj ,Dj)

)

.

Observe that X
ψ

j

i
= 1 provided X1 = 1 and the event {ψj

i < λj} is measurable with

respect to σ([X
ψ

j

i

0 ]j). Now by the Markov property we get

P (X
ψ

j

i
+1 = xj |Xψ

j

i
+1 ∈ Aj−1, ψ

j
i < λj ,Dj)

=

∞
∑

l=1

(

P (Xl+1 = xj |Xl = 1)

P (Xl+1 ∈ Aj−1|Xl = 1)
·
P (ψj

i = l,X
ψ

j

i
+1 ∈ Aj−1|ψ

j
i < λj ,Dj)

P (X
ψ

j

i
+1 ∈ Aj−1|ψ

j
i < λj ,Dj)

)

.

By stationarity and since xj ∈ Aj ⊆ Aj−1,

P (Xl+1 = xj |Xl = 1)

P (Xl+1 ∈ Aj−1|Xl = 1)
= P (X1 = xj |X1 ∈ Aj−1,X0 = 1).

Combining all this we get

P (Xλj
= xj |Dj)

= P (X1 = xj |X1 ∈ Aj−1,X0 = 1)

·

(

∞
∑

i=1

P (ψj
i + 1 = λj |Dj)

∞
∑

l=1

P (ψj
i = l,X

ψ
j

i
+1 ∈ Aj−1|ψ

j
i < λj ,Dj)

P (X
ψ

j

i
+1 ∈ Aj−1|ψ

j
i < λj ,Dj)

)

= P (X1 = xj |X1 ∈ Aj−1,X0 = 1)

∞
∑

i=1

P (ψj
i + 1 = λj |Dj)

= P (X1 = xj |X1 ∈ Aj−1,X0 = 1)
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and we have proved (12).

In order to show that the events

{Xλn
∈ An − {0}}

occur infinitely often we prove that they have sufficiently large conditional probabili-
ties and they are conditionally independent given the condition H. First we calculate
P (Xλn

∈ An − {0}|H). For n ≥ 2, by (12),

P (Xλn
∈ An − {0}|H)

=
P ({Xλn

∈ An − {0}}
⋂

H)

P (H)

=
P (Xλn

∈ An − {0}|X1
0 = (0, 1),Xλj

∈ Aj for 1 ≤ j < n)

P (Xλn
∈ An|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < n)

·
∞
∏

m=n+1

P (Xλm
∈ Am|X1

0 = (0, 1),Xλn
∈ An − {0},Xλj

∈ Aj for 1 ≤ j < m)

P (Xλm
∈ Am, |X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < m)

=
P (Xλn

∈ An − {0}|X1
0 = (0, 1),Xλj

∈ Aj for 1 ≤ j < n)

P (Xλn
∈ An|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < n)

≥ P (Xλn
∈ An − {0}|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < n)

= P (X1 ∈ An,X1 6= 0|X0 = 1,X1 ∈ An−1)

≥ P (X1 ∈ An,X1 6= 0|X0 = 1)

=
∑

i∈An−{0}

1

2i

=
∑

i>log2(n)

1

2i

≥
1

n
.

We have just proved that

∑

n

P (Xλn
∈ An − {0}|H) ≥

∑

n

1

n
= ∞. (13)

Now we will prove that for n = 1, 2, . . . , the events {Xλn
∈ An − {0}} are conditionally

independent given H. Since

P (Xλi
∈ Ai − {0} for i = 1, 2, . . . , k|H)

=
∑

x1∈Ai−{0}

· · ·
∑

xk∈Ak−{0}

P (Xλi
= xi for i = 1, 2, . . . , k|H)

it is enough to show that the events {Xλi
= xi} are conditionally independent given the
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condition H, provided that xi ∈ Ai. Let xi ∈ Ai. Then by repeated use of (12)

P (Xλi
= xi for i = 1, 2, . . . , k|H)

=
P (Xλi

= xi for i = 1, 2, . . . , k,H)

P (H)

=

(

k
∏

m=1

P (Xλm
= xm|X1

0 = (0, 1),Xλj
= xj for 1 ≤ j < m)

P (Xλm
∈ Am|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < m)

)

·
∞
∏

l=k+1

P (Xλl
∈ Al|X

1
0 = (0, 1),Xλi

= xi for 1 ≤ i ≤ k and Xλj
∈ Aj for 1 ≤ j < l)

P (Xλl
∈ Al|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < l)

=

k
∏

m=1

P (Xλm
= xm|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < m)

P (Xλm
∈ Am|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < m)

=

k
∏

m=1

(

P (Xλm
= xm|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < m)

P (Xλm
∈ Am|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < m)

·
∞
∏

l=m+1

P (Xλl
∈ Al|X

1
0 = (0, 1),Xλj

∈ Aj for 1 ≤ j < l)

P (Xλl
∈ Al|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < l)

)

=

k
∏

m=1

(

P (Xλm
= xm|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < m)

P (Xλm
∈ Am|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < m)

·
∞
∏

l=m+1

P (Xλl
∈ Al|X

1
0 = (0, 1),Xλm

= xm,Xλj
∈ Aj for 1 ≤ j < l)

P (Xλl
∈ Al|X1

0 = (0, 1),Xλj
∈ Aj for 1 ≤ j < l)

)

=

k
∏

i=1

P (Xλi
= xi,H)

P (H)

=

k
∏

i=1

P (Xλi
= xi|H).

Now by (13) and the Borel-Cantelli lemma (cf. Lemma B in Rényi (1970) on page 390)
the events {Xλn

∈ An −{0}} occur infinitely often and the third part of the Theorem is
proved. The proof of the Theorem is complete.
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16. P. Révész, The Law of Large Numbers, “Academic Press”, 1968.
17. B. Ya. Ryabko, Prediction of random sequences and universal coding, Problems of Inform. Trans.

(Problemy Peredachi Informatsii) 24 (1988), no. 2, 3–14.
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