


Special Classes of Semigroups



Advances in Mathematics

VOLUME I

Series Editor:

J. Szep, Budape st University 0/ Economics, Hungary

Advisory Board:

G. Erjaee, Shira: University, Iran

W. Fouche, University 0/ South Africa, South Africa

P. Grillet, Tulane University, U.S.A.

HJ. Hoehnke, Germany

F. Szidarovszky, University 0/Arizona, U.S.A.

P. Zecca, Universit ädi Firenze, Italy



Special Classes
of Semigroups

by

ATTILANAGY
Department ofAlgebra,
Institute ofMathematics,
Budapest University ofTechnology and
Economics, Hungary

Springer-Science+Business Media, B.V.



A C.I.P. Catalogue record for this book is available from the Library of Congress.

Printed on acid-free paper

All Rights Reserved

ISBN 978-1-4419-4853-3 ISBN 978-1-4757-3316-7 (eBook)
DOI 10.1007/978-1-4757-3316-7

© 2001 Springer Science+Business Media Dordrecht

Originally published by Kluwer Academic Publishers in 2001.

Softcover reprint ofthe hardcover 1st edition 2001

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner



Contents

Preface

1 Preliminaries

2 Putcha semigroups

3 Commutative semigroups

4 Weakly commutative semigroups

5 ~,I:--, 1l-commutative semigroups

6 Conditionally commutative semigroups

7 'R.C-commutative semigroups

8 Quasi commutative semigroups

9 Medial semigroups

10 Right commutative semigroups

11 Externally commutative semigroups

12 E-m semigroups, exponential semigroups

13 WE-m semigroups

14 Weakly exponential semigroups

15 (m, n)-commutative semigroups

16 n(2)-permutable semigroups

Bibliography

Index

v

vii

1

35

43

59

69

77

93

109

119

137

175

183

199

215

223

247

259

267



Preface

Semigroups are generalizations of groups and rings. A group is a semigroup in
which the operation is invertible; a ring is a multiplieative semigroup in wich
the operation together with an additive operation satisfies eertain eonditions.
In the beginning of the development of semigroup theory investigations were
strongly motivated by this fact. Semigroups in which every element has an in
verse were in foeus, and the results of ring theory were adapted for semigroups.
In algebra, eongruenees play a eentral role. In this respect, there is a differ
enee between semigroups and groups or rings . The eongruenees of a group are
uniquely determined by its normal subgroups, and there is a bijeetion between
the eongruenees and the ideals of a ring. In semigroup theory the situation is
more eomplieated. Although an ideal of a semigroup defines a special congru
enee, there are no subsemigroups which uniquely determine the eongruenees of
semigroups. This problem envolves many diffieulties. Thus semigroup theory
has developed special methods and new semigroup classes have eome into the
center of interest.

In semigroup theory there are eertain kinds of band deeompositions which
are very useful in the study of the strueture of semigroups . There is a number of
special semigroup classes in which these deeompositions ean be used very suc
eessfully, beeause the semigroups belonging to them are deeomposable into spe
cial bands of left arehimedean or right arehimedean, archimedean semigroups.
The strueture of these different types of archimedean semigroups is thorougWy
studied in these semigroup classes. In this book, we foeus our attention on such
classes of semigroups. Some of them are partially diseussed in earlier books,
but in the last thirthy years new semigroup classes have appeared and a fairly
large body of material has been published on them. In this book we provide a
systematie review on this subject.

In the first ehapter of the book we present notions and results of semigroup
theory needed in the sequel. This chapter also contains theorems and lern
mas (with proof) whieh are used throughout the book. The other ehapters are
devoted to special semigroup classes. These are Putcha semigroups, commuta
tive semigroups, weakly eommutative semigroups , 'R.-eommutative semigroups,
.L:-eommutativesemigroups, 1l-eommutative semigroups, eonditionally commu
tative semigroups, R.C-eommutative semigroups , quasicommutative semigroups,
medial semigroups, right eommutative semigroups, externally eommutative semi
groups, Ern semigroups, exponential semigroups, WE-m semigroups, weakly
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exponential semigroups, (m,n)-commutative semigroups and n(2)-permutable
semigroups. In any of these semigroup classes we deal with different kinds of
band decompositions, describe the structure of simple semigroups and that of
archimedean semigroups, characterize regular semigroups, inverse semigroups,
study the embedding of semigroups into groups and into semigroups which
are unions of groups, construct least left (right) separative and weakly sep
arative congruences, determine subdirect irreducible semigroups and describe
semigroups whose lattice of congruences is a chain with respect to inc1usion.

In this book we also present theorems stated and proved in other books.
Other theorems, lemmas and corollaries are fuHy proved. In general, we present
the original proofs, but in a number of cases we give a new and shorter one.

Finally, I would like to express my hearty thanks to Professor Jeno Szep for
his assistance in every phase of writing this book. I would also like to thank Mrs.
Eva Nemetn for helping me in preparing the carnera-redy version of the LaTeX
file. I further acknowledge the encouragement and support of the publisher in
producing the book.

This work was supported by the Hungarian NFSR grant No T029525.

Budapest, 2000.

Attila Nagy



Chapter 1

Preliminaries

In this chapter we present those basic no tions and results of semigroup theory
whi ch are used in this book. This chapter contains furt her theorems and lem
mas, There are several as ser t ions corresponding to different semigroup classes
examined in this book whose proofs are similar to each other and based on
common ideas. The common parts of these proofs are formulated as theorems
and lemmas, and they are presented and proved in this chapter .

Semigroups

Definition 1.1 Let S be a nonempty set. Ey a binary operation on S we m ean
a funetion * /rom S x S into S . Th e im age in S of the eleme nis (a , b) E S x S
is denot ed by a * b. Frequently, we write ab for a * b,

Definition 1.2 A binary operatio n on a set S is said to be associat ive if a(bc) =
(ab)c is sat isfied for all a, b, c E S . If ab = ba holds for every a, b E S then we
say that tlie operation is commutati ve.

Definition 1.3 A set together with an associative binary operation is called
a semigroup. A semigroup having only on e elem ent is said to be trivial. A
semigroup is said to be a commutative semigroup if the operation is commutative.

Subsemigroups

Definition 1.4 A nonempty subsei A of a semigroup S is called a subsemigroup
of S if A is closed under the operation , that is, ab E A for every a, b E A .

Definition 1.5 A subset X of a semigroup S is called a set of generators of
S (or S is gen erated by X) if, for every elem ent sES, there are eleme nts
X l, •• • ,Xn E X such that s = X l " 'Xn ' In such a case, we writ e S = (X). A
semigroup is said to be fin it ely generated if it has a finit e set of generators. We
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2 CHAPTER 1. PRELIMINARIES

say that a semigroup is a cyclic semigroup if it is gen erat ed by a singl e eleme ni,
An elem ent a of a semigroup S is call ed periodic if ih e cyclic subsemigroup (a)
of S gen erat ed by a is finit e. A semigroup is called a periodic semigroup if its
every element is periodic.

Definition 1.6 W e say that a sem igroup S has th e permutation prop erty Pn

if, for every sequence (Xl, ••• , Xn) of elements of S , there is a non-identity
permutation (J' of th e sei {I, 2, ... ,n} such that Xl X2 •• • X n = X u ( l ) X u(2) •• • X u(n) '

W e say that a semigroup has the permutation property if it has th e permutation
prop erty Pn for some positiv e integer n :2: 2.

Theorem 1.1 ([84J) A finitely generated semigroup is finit e if and only if it is
periodic and has the permutation property.

Free semigroups

Definition 1.7 Let X be a non- empty set and let F X denote th e sei of all finit e
sequences of elem ents of X. If (Xl ,,'" Xn) and (Yl,'" ,Ym) are elem enis of :FX

th en we defin e th eir produ ci by simple juxtaposition:

this produ ct is associativ e. Th e sem igroup :FX is called the free sem igroup over
th e sei X. Th e eleme nis of :FX is called words. A s (Xl , ... , Xn ) = (xt} ... (Xn ) I

th e sei X is a sei of gen erators of:Fx .

Identities

Definition 1.8 An eleme ni e of a semigroup S is called a left (right) identi t y
elemeni of S if ea = a (ae = a) holds for every a ES. W e say that e E S is an
identity element of a scmigroup S if e is both a left and a right identity eleme ni
of S.

It is easy to see that every semigroup has at most one identity element.
Moreover, if a semigroup has a right identity element and a left identity element
then it contains an identity element.

Definition 1.9 A sem igroup containing an identity eleme nt is called a monoid.

If S is a semigroup then let SI denote the semigroup S U {I} arising from
S by the adjunetion of an identity element 1 unless S already has an identity
element, in which case SI = S.
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For example, it is often convenient to work with the free monoid .Tl rather
than the free semigroup .Tx- The adjoined identity element 1 may be regarded
as the "em pty word".

Bicyclic semigroup

Definition 1.10 A monoid 8 (with th e identity eleme nt e) is ealled a bieycl ie
sem igroup i/ it is isomorphie to a semigroup C generat ed by two elemenis a, b
with th e singl e gen erat ing relation ab = e.

Theorem 1.2 ([19]) Let e, a, b be elements 0/ a semigroup 8 sueh that ae =
ea = a, be = eb = band ab = e, ba =I- e. Th en every eleme nt 0/ the subsemigroup
(a, b) 0/8 generated by a and b is uniquely ezpressibl e in th e form bman (m and
n are non-negative integers) , and henee (a,b) is a bieyclie semigroup.

Zeros

Definition 1.11 An elem ent / 0/ a semigroup 8 is ealled a left (right) zero
elem ent 0/8 i/ [a = t [a] = f) [or every a E 8. An element 0/ a semigroup 8
is ealled a zero element 0/ 8 i/ it is both a left and a right zero element 0/ 8.

For an arbitrary non-empty set 8 , we can define an operation by ab = a for
every a, s« 8. It is easy to see that 8 is a semigroup in which every element is a
left zero element. A semigroup with this property is called a left zero sem igroup.
A semigroup in which every element is a right zero element is called a right zero
settuqroup,

It is easy to see that every semigroup has at most one zero element. More
over, if a semigroup has a left zero element and a right zero element then it has
a zero element.

If 8 is a semigroup then let 8° denote the semigroup 8 U {O} arising from
8 by the adjunction of a zero element 0 unless 8 already has a zero element, in
which case 8° = 8.

For any non-empty set 8 and an arbitrary element a E 8 , we can define an
operation * on 8 by z * y = a for all x, y E A. It is easy to see that (8, *) is
a semigroup with a zero element a. In this semigroup the product of any two
elements is the zero element of 8. A semigroup with this property is called a
null semigroup.

An element S of a semigroup 8 with zero is called a left (right) divisor 0/
zero if there is an element x =I- 0 in 8 such that sx = 0 (xs = 0). An element 'is
called a divisor 0/ zero if it is a left divisor or a right divisor of zero.

Definition 1.12 A semigroup 8 with a zero elem ent 0 is ealled a nil sem igroup
i/, [or every a E 8 , th ere is a positive integer n sueh that an = O.
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Idempotents

CHAPTER 1. PRELIMINARIES

Definition 1.13 An element e of a semigroup is called an idempotent element
if e2 = e.

The set Es of all idempotent elements of a semigroup S is partially ordered
by e :S f if and only if ef = fe = e. If e :S f and e #- f then we write e < t. It
is easy to see that if a semigroup S has a zero element 0 then 0 :S e for every
e E Es. A non-zero idempotent element f of a semigroup S is called a primitive
idempotent if e :S f implies e = 0 or e = f for every e E Es.

Definition 1.14 A semigroup in which every element is an idempotent element
is called a band.

The classification of bands can be faund in [75]. In this book we need only
some of them listed in Definition 1.15.

Definition 1.15 A commutative band is called a semilattice. A band satisfying
the identity aba = a is called a rectangular band. We say that a band is a left
(right) normal band if it satisfies the identity axy = ayx (xya = yxa). A dand
satisfying the identity axya = ayxa is called a normal band. A band is called a
left (right) regular band if it satisfies the identity axa = ax (axa = »a].

We note that a left (right) zero semigroup is a left (right) regular band.

Theorem 1.3 ([19]) A semigroup is a rectangular band if and only if it is a
direct produci of a left zero semigroup and a right zero semigroup.

Cancellation and separativity of semigroups

Definition 1.16 A semigroup S is called a left (right) cancellative semigroup
ifax = ay (xa = ya) implies z = y for every a,x,y E S . We say that S is
a cancellative semigroup if it is both left and right cancellative. S said to be a
weakly cancellative semigroup ifax = ay and xa = ya together imply x = y for
every a,x,y E S.

Lemma 1.1 A semigroup S is weakly cancellative if and only if it satisfies the
condition that, for every a, b, z , Y ES, ax = ay and xb = yb together imply
x =y.



5

Proof. Let S be a weakly cancellative semigroup and a, b,z , y E S be arbitrary
elements with ax = ay and xb = yb. Then bax = bay and xba = yba which
imply x = y.

Conversely, assume that a semigroup S satisfies the condition that, for every
a,b,x,y E S, ax = ay and xb = yb imply x = y. Let a,x ,y E S be arbitrary
elements with ax = ay and xa = ya. Then, for b = a, we get ax = ay and
xb = yb anti so x = y. 0

Definition 1.17 A semigroup S is said to be a left (right) separative semigroup
if ab = a2 and ba = b2 (ab = b2 and ba = a2) imply a = b for every a,b E S.
A semigroup is said to be a separative semigroup if it is both left and right
separative. S is called a weakly separative semigroup if a2 = ab = b2 implies
a = b for every a,b ES.

It is easy to see that every left (right, weakly) cancellative semigroup is left
(right, weakly) separative.

Lemma 1.2 ([13]) If S is a weakly separative semigroup thcn abn+1 = bn+1a
and ab" = bna together imply ab = ba for every a, bE Sand every integer n > l.

Proof. Let S be a weakly separative semigroup and a, b E S be arbitrary
elements satisfying abn+1 = bn+1a, ob" = bna for an integer n > 1. Then

(babn-1)2 = babnabn-1 = bn+la2bn-l = a2b2n = (abn)2

and
(abn)(babn - 1) = a2b2n = (ab n)2.

Thus, by weakly separativity, it follows that

babn - 1 = abn.

In the same way we obtain

Hence

From these we get

(abn-1)2 = abn-1abn-1 = ab2n-2a,

(bn-1a)2 = bn-1abn-1 = ab2n-2a,

(abn-1)(bn-1a) = ab2n-2a

and, by weakly separativity,

At this point we may conelude that ab = ba. o
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Homomorphisms

CHAPTER 1. PRELIMINARIES

Definition 1.18 A mapping 4J 0/ a semigroup (5, *) into a semigroup (T, 0)
is called a homomorphism i/ 4J(a * b) = 4J(a) 0 4J(b) [or every a, b E 5. 11 4J is
one-to-one then it is called an isomorphism or an embedding 015 into T. 114J
is also maps 5 onto T then we say that 4J is an isomorphism 01 5 onto T and
5 is isomorphie to T.

Congruences

Definition 1.19 By a left (right) congruence on a semigroup 5 we mean an
equivalence relation a 015 il (a,b) E a implies (sa,sb) E a ((as,bs) E a] [or
every a, b, s E 5 . An equivalence relation 015 is called a congruence if it is both
a left and a right congruence 0/ 5 .

It is easy to see that an equivalence relation a is a congruence on a scmigroup
5 if and only if (a,b) E a and (c,d) E a imply (ac,bd) E a for every a,b,c, d E 5.

Definition 1.20 A non-empty subset H 0/ a semigroup 5 is called anormal
complex 0/5 i/ xHy n H =10 implies xHy ~ H [or every z , y E 51.

Lemma 1.3 ([40]) I/ His anormal complex 0/a semigroup 5 then the relation
au defined by a an b i/ and only i/ there is a positive integer n and there are
elements Xi, Yi E 51 and pi, qi E H (i = 1,2, ... ,n) such that

is the least congruence on 5 such that H is a congruence dass.

The set .c(5) of all congruences of a semigroup 5 is partially ordered (by the
inclusion of relations) such that any two elements have a greatest lower bound
and aleast upper bound. With other word, .c(5) is a lattice which is called the
congruence lattice of the semigroup 5.

Let a be a congruence on a semigroup 5 and denote raJa the o-class of 5
containing a E 5. Then 5/a = {[a]a: a E 5} form a semigroup under the
operation [a]a[b]a = [ab]a. This scmigroup is called the [actor semigroup of 5
modulo a . The mapping a I-t raja (a E 5) is called the canonical homomorphism
of 5 onto 5/a. Conversely, if 4J is a homomorphism of semigroup 5 onto a
semigroup T then thc equivalence relation (T on 5 induced by 4J, defined by
(a, b) E (T if and only if 4J(a) = 4J(b), is a congruence on 5 and 5/ (T is isomorphie
to T.

C-decompositions

Let C be a dass of semigroups. A congruence a of 5 is called a C-congruence
of 5 if 5/a belongs to C. The meet of all C-congruences of a semigroup, if it is a
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C-congrucnce, is called the least C- congruence of 8. If 0:is the least C-congruence
of a semigroup 8 then the factor semigroup 8/0: is the greatest C-homomorphic
image of 8.

If 8 is a semigroup and 0: is a band congruence on 8 , that is, B = 8/0: is
a band then the o:-classes S; (i E B) of 8 are subsemigroups of 8. In this case
we say that 8 is a band B of semigroups 8 i (i E B). With other words, 8 is
decomposable into the band B of semigroups S, (i E B). A semigroup is called
band indecomposable if the universal relation of 8 is the only band congruence
of 8.

Theorem 1.4 ([75J) Every semigroup is decomposable into a semilattice of
semilattice indecomposable semigroups. With oth er words , every semigroup has
aleast semilattice congruence ." and the n-cloeses of 8 are semilattice indecom
posable.

Theorem 1.5 ([75J) Every band is decomposable in to a semilattice of reetan
gular bands.

Archimedean semigroups

Let 8 be a semigroup and a, b E 8. Cosider the following notations.

(1) a lbiffbE81a81 •

(2) a llb (a lrb) iff s« 8 1a (b E a81
) .

(3) a1tb iff a llb and alrb.

(4) a - b iff albi and blai for some positive integers i and j.

(5) a -I b iff alibi and bllai for some positive integers i and j.

(6) a r:r b iff alrb i and blrai for some positive integers i and j.

(7) a -t b iff altbi and bltai for some positive integers i and j .

Definition 1.21 A semigroup 8 is called archimedean (left archimedean, right
archimedean, t-archimedean) if, for every a, b E 8 , we hav e a - b (a -I b, a -r b,
a -t b},

With other words, a semigroup 8 is called a left (r ight) archimedean semi
group if, for every a, b E 8 , there are positive integers m and n such that
am E 8 1b and b" E 8 1a (am E b81 and b" E a81

) . A semigroup is called a
t-archimedean semigroup if it is both left and right archimedean. We say that
a semigroup 8 is an archimedean sem igroup if, for every a, b E 8 , there are
positi ve integers m and n such that am E 8 1b81 and b" E 8 1a8 1

•
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Theorem 1.6 ([81}) A semigroup 8 is a band of left (right) archimedean semi
groups if and only if, for all a E 8 and e , y E 8 1

, xay -/ xa2y (xay - r xa 2y) .

Theorem 1.7 ([81}) A semigroup 8 is a band of t-archimedean semigroups if
and only ij, for all a E 8 and z , y E 8 1 , xay -t xa2y. In such a case the
corresponding band congruence is equal to the relation -t and is the fin est band
congruence on S.

Theorem 1.8 ([50}) If a semigroup satisfies the identity (ab)3 = a2b2(ab) =
(ab)a2b2 then it is a band of t-archimedean semigroups.

Proof. Let S be a a semigroup satisfying the identity (ab)3 = a2b2(ab) =
(ab)a2b2. By Theorem 1.7, it is sufficient to show that xay -t xa2y for every
a,x,y ES. Since

then

We can prove, in a similar way, that

Hence

Since
(xa2y)7 = x(a2(yxa2))y(xa2y)5

= x( a2(yxa2))yxa(ayxa)3 (ayxa )ay

= x( a2(yxa2))yxa(a2(yxa)2)(ayxa)2 ay

= xa2(yxa2)2ayxayxa(ayxa)2ay

= x(a2(yxa2)2)ayx(ayxa)3 ay

= x( a2(yxa2)2)ayxa2(yxa)2 (ayxa )ay

= x(a2(yxa2)2ayxa2)(yxa)2ayxa2y

= x(ayxa2)3(yxa)2ayxa2y

= (xay)xa2(ayxa2)2(yxa)2ayxa2y

then

We can prove, in a similar way, that
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Hence

and so

o

Theorem 1.9 ([Sl}) I/ a semigroup is a band 0/ archimedean semigroups then
it is a semilattice 0/ archimedean semigroups.

Theorem 1.10 ([SO}) A semigroup S is a semilattice 0/left (right) archimedean
semigroups iJ, [or every a, b E S , the assumption b E aS (b E Sa) implies
b" E Sa (bn E aS) [or some positive integer n.

Theorem 1.11 ([80]) A semigroup S is a semilattice 0/ archim eden semigroups
i/ and only iJ, [or every a, b ES, the assumption a E SI bS 1 implies an E SI a2 SI
[or some positive integer n.

We remark that a little bit more complete version of Theorem 1.11. will be
proved later (see Theorem 2.1.).

Strong semilattice of semigroups

Definition 1.22 Let a semigroup S be a semilattice 0/ semigroups Si, i E I.
Assume that , [or every i ,j E I with i 2 j , there is a homomorphism ( )/i, j 0/
Si into Sj such that the /ollowing are satisfied.

(1) I/ i > j > k th en /i,j/i,k = /i,k'

(2) For each i E I, /i,i is the identity mapping 0/ Si.

(3) I/ a E Si and b E Sj then ab = (a)/i,ij(b)/i,ij.

In such a case S is called a strong semilattice 0/ semigroups Si (i EI). The
/amily {fi,j h:~j is said to be a transitive system 0/ homomorphisms which de
term in es the multiplication in S.

Direct produet, subdireet produet

Definition 1.23 Let {S;} , i EIbe a /amily 0/ semigroups. The Cart esian
produci niEI Si is a semigroup under the "componentwise" multiplication; this
semigroup is called the direet produet 0/ semigroups {Si}, (i EI). Th e ho
momorphisms 1I"i: a f-7 ai E Si (a E njEI Sj, i E I) are called projeetion
homomorphisms.
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Definition 1.24 We say that a semigroup S is a subdirect product 0/ semi
groups Si (i EI) i/ S is isomorphie to a subsemigroup T 0/ the direct product
IIiEI Si 0/ semigroups Si (i E I) such that the restriction 0/ the projection
homomorphisms to T are surjective.

Theorem 1.12 ([75]) // ai (i EI) are congruences on a semigroup Sand
niEIai = ids, the equality relation on S, then S is a subdirect product 0/ the
[acior semigroups S/ai . Conversely, i/ a semigroup is a subdireci product 0/
semigroups Si (i EI) and ai is the congruence on S induced by the projection
homomorphism 'Tri (i EI) then niEIai = ids.

Theorem 1.13 ([75]) I/ a semigroup S is a strong semilattice 0/ semigroups
Si (i EI) then S is a subdirect product 0/ semigroups Si with a zero possibly
adjoined.

Definition 1.25 Let SI and S2 be semigroups having Y as their common great
est semilattice homomorphic image. Let ~1: SI I--t Y and ~2: S2 I--t Y be the
canonical homomorphisms. Let

S is a subdirect product 0/ SI and S2 which is called the spined product 0/ SI
and S2.

Ideals, Green's relations

Definition 1.26 A nonempty subsei A 0/ a semigroup S is called a left (right)
ideal 0/ S i/ sa E A (as E A) [or every a E A and sES. A subsei which is
both left and right ideal 0/ a semigroup S is called a two-sided ideal (briefty, an
ideal) 0/ S. The left (right, two-sided) ideals 0/ a semigroup S diilerent [rom
S are called proper left (right, two-sided) ideals. An ideal 0/ a semigroup S is
called a minimal ideal i/ it does not properly contain any ideal 0/ S . An ideal
M 0/ a semigroup S containing a zero 0 is called a O-minimal ideal i/ Mi- {O}
and {O} is the only ideal 0/ S properly contained in M.

Let S be a semigroup and A be an ideal of S. It is easy to see that PA =
{(x,y) E S x S: a = bor a,b E A} is a congruence on S. This congruence is
called the Rees congruence of S modulo A. S is called an ideal eztensioti of A
by S/PA.

Theorem 1.14 ([19}) // A is an ideal 0/ a semigroup Sand B is an ideal 0/ A
such that B 2 = B then B is an ideal 0/ S.

Definition 1.27 A semigroup is called a left (right) simple semigroup i/ it has
no proper left (right) ideal. I/ a semigroup has no proper two-sided ideal then it
is said io be a simple semigroup.
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Definition 1.28 A semigroup with zero 0 is called a O-simple semigroup if
S2 i {O} and only Sand {O} are the ideals of S .

The interseetion of all left (right , two-sided) ideals of a semigroup containing
a non-empty subset X of S is called the ideal of S generated by X . In case
X = {al, this left (right, two-sided) ideal is said to be the principalleft (right,
two-sided) ideal of S generated by the element a of S and is denoted by L(a)
(R(a), J(a)).

It is easy to see that L(a) = Sla = aU Sa, R(a) = aSl = aU aS, J(a) =
SlaSl = aU Sa U aS U SaS . We note that sometimes we write a instead of the
one-element subset {al of a semigroup. Moreover, aX = {ax: x EX}.

Definition 1.29 In an arbitrary semigroup S , we define the following Green's
equivalences. aLb (a R b, a :J b) if and only if a and b generate the same
principalleft (right , two-sided) ideal of S . We define 1l = LnR and V = LVR,
the smallest equivalence of S containing both Land R.

It is easy to see that L is a right congruence and R is a left congruence of
an arbitrary semigroup.

Definition 1.30 A semigroup S is called a :J-trivial semigroup if the Green's
equivalence :J is the equality relation on S, that is, J (a) = J (b) if and only if
a = b for every a.b ES.

Definition 1.31 Let S be a semigroup and a, s e S be arbitrary elements. We
say that a divisible by b if bla, that is, a E sus».

Theorem 1.15 On a semigroup S the following are equivalent.

(i) S is :J-trivial.

(ii) The divisibility on S is an ordering.

Proof. (i) implies (ii). Let S be a :J-trivial semigroup. It is clear that the
divisibility is reflexive and transitive. To show that it is also antisymmetrie,
assume alb and bla for some a,b E S. Then a E J(b) and b E J(a) from which
it follows that J(a) = J(b). As S is :J-trivial, we have a = b.

(ii) implies (i). Let S be an arbitrary semigroup in which the divisibility is
an ordering. Assurne J (a) = J (b) for arbitrary a, b ES. Then a E J (b) and
s« J(a), that is, bla and alb and so a = b. Hence S is :J-trivial. 0

Theorem 1.16 On a semigroup S the following are equivalent.

(i) S is :J-trivial and the principal ideals form a chain with respeet to inclu
szon.
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(ii) Th e divisibility relation is an ordering on Sand S is a chain with respeci
to the divisibility ordering.

Proof. By Theorem 1.15, it is obvious.

Theorem 1.17 Ev ery nil semigroup is .J-trivial.

o

Proof. If a and b are elements of a nil semigroup S such tha t J(a) = J (b) then
a = xby and b = uav for some x , y ,U,v E S I and so a = (xu )na(vy) n for every
positive integer n. As S is a nil semigroup, we can cond ude that a = b. 0

We note that Theorem 1.17 implies that th ere is no O-simple nil semigroup,
because J(a) = J (b) holds for every non-zero eleme nts a and b of a O-simple nil
semigroup S.

Theorem 1.18 Let S be a nil semigroup which is a chain with respeci io the
divisibility ordering. Th en every congruence of S is a Rees congruence.

Proof. Let S be a nil semigroup which is a chain with resp ect to the divi sibili ty
ordering. Let p be an arbitrary congruence on S. If p = i ds t hen it is regarded
as the Rees congruence modulo {O}. Assume p =J ids. Then there are elements
a, b E S such that a =J b and (a, b) E p, As S is a chain with respect to the
divi sibility ordering, we have either alb or bla. Assume bla. Then there are
elem ents x, y E SI such that a = x by and so (b, xby) E p. From this we get
(b, xn1ryn) E p for every positive integer n; As S is a uil seruigroup, we have
(b, 0) E p, and also (a, 0) E p. Consequently, for every a, b ES, a = b or a =J b
and (a,O) E p, (b,O) E p. Let 1= {a ES: (a ,O) E p}. Then I is an ideal and
p is a Rees congruence modulo I . 0

Regular semigroups, inverse semigroups

Definition 1.32 A n eleme nt a of a semigroup S is called a lejt regular (right
regular, regular, intra-regular) eleme nt of S if x a2 = a (a2 x = a, axa = a,
xa2 y = a) for some x, y ES. A semigroup is said to be a lelt regular (right
regular, regular, intra-regular) semigroup if its ever y eleme nt is lelt regular (right
regular, regular, intra-regular). We say that a semigroup S is a completely
regular semigroup i/, for every eleme nt a E S , there is an eleme nt x E S such
that a = axa and ax = xa.

If a = axa for some elements a and x of a semig roup S then ax and xa are
idempotent elements of S .

Definition 1.33 W e say that the elements a and y of a semigroup are inv erses
of each other if aya = a and yay = y.

It is dear that if a is a regular element of a semigroup S , say a = axa for
some x E S , then aya = a and yay = y , where y = xax. Thus every regular
element of a semigroup has at least one inverse.
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Definition 1.34 A regular semigroup in which every eleme nt has exactly one
inverse is called an inverse semigroup.

Theorem 1.19 ([19}) On an arbitrary semigroup S the /ollowing are eqm va
leni.

(i) S is an inverse semigroup.

(ii) S is a regular setniqroup , and any two idempotent eleme nis 0/ S are com
mutable with each other.

(iii) Ev ery principal right ideal and every principalleft ideal 0/S has an utuque
idempot ent generator.

We note that if a regular semigroup S is a semilattice Y of semigroups
Sa (0: E Y) then each Sa is regular. Indeed, if a E Sa and a = axa then
y = xax E Sa. It is clear that if S is an inverse semigroup then each Sa is an
inverse semigroup.

Definition 1.35 A semigroup is called a Clifford semigroup i/ it is regular and
the idempotent eleme nts 0/ S are central, that is, ez = xe [or every z E Sand
every idempotent elem ent e 0/S.

Subgroups

A subsemigroup G of a semigroup (S, *) is called a subgroup of S if G is a
group under the restrietion of the operation * to G.

Let S be a monoid with identity e, If a and b ar e elements of S such that
ab = e then a is called a left inverse of b, and b is called a right inv erse of a.
A left (right) un it in S is defined to be an element of S having a left (right)
inverse in S. By a un it in S we mean an element of S having both a left and a
right inverse in S.

Let S be a monoid with identity element e. The set U of all units of S is
a subgroup of S. Each unit has a uuique two-sided inverse in U, and has no
other left 01' right inverse in S. Moreover, every subgroup of S containing e is
contained in U.

We note that if f is an idempotent element of a semigroup S then f S f is
the maximal submonoid in S in which f is the identity element .

Theorem 1.20 ([19}) Let f be an idempotent element 0/ a semigroup S , and
let H / be the group 0/ un its 0/ f S f. Th en H / contains every subgroup G 0/ S
that m eets Hs-

We note that, by Theorem 1.20, a semigroup is a union of subgroups if and
only if it is a union of disjoint subgroups. The next theorem characterizes a
semigroup which is a semilattice of subgroups.
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Theorem 1.21 ([Sl}) On an arbitrary semigroup S the / ollowing are equiva
leni.

(i) S is a semilattice 0/ groups.

(ii) S is a strong semilattice 0/ groups.

(iii) S is a Clifford semigroup.

Completely simple (D-simple] semigroups, Rees matrix semigroups

Definition 1.36 A simple (O-simple) semigroup is called a completely simple
(O- simple) semigroup i/ it contains a primitive idempotent.

Theorem 1.22 ([19}) I/ e is a non-zero idempotent 0/ a O-simple semigroup S
which is not completely O-simple then S contains a bicyclic subsemigroup having
e as ident ity eleme nt.

Theorem 1.23 A semigroup is completely simple i/ and only i/ it is a rectan
gular band 0/ groups.

Proof. If S is a completely simple semigroup then, by Corollary 2.52b of [19],
S is a reetangular band of its subgroups Hi,i = H; n L j, where {Ri j i E I}
and {Li: jE J } are the minimal right ideals and the minimalieft ideals of S ,
respeetively.

Conversely, assume that a semigroup is a reetangular band B = I x J of
groups Gi,i (I is a left zero semigroup, J is a right zero semigroup, i E I ,
j E J ). Let K be an ideal of S. Assume K n Gio,io =I 0 for some i o E l and
j o E J. Then Gio,io ~ K. Thus, for every i E I and jE J , Gi,ioGio,ioGio,i ~ K
and so c., n K =I 0, because Gi,ioGio,ioGio,i ~ c.; Then c., ~ K and
so K = S. Hence S is simple. We prove that the identity element en,m of
Gn,m is a primitive idempot ent (n E I , m E J ). Assume ei,j ~ en,m, tha t
is, ei,i en,m = en,mei,i = ei,j, where ei,i is the identi ty element of Gi,i ' Then
Gi,m n Gn,i =I 0 and so i = n , j = m; Hen ce ei,i = en,m which implies that
en,m is a primitive idempotent. Consequently, S is completely simple D

Definition 1.37 Let G (GO) be a group (a group with a zero adjoin ed), land
J be non- empty sets and P be a /u nction [rom J x I into G (GO ) with value Pi ,i
at (j , i). On S = I x G x J (S ' = I X GO X J ) define a multiplication by

(i ,g,j)(k,h,l) = (i ,9Pi ,kh ,I).

It is easy to see that S and S' are semigroups, and A = {(i , 0, j ), i EI, j E J}
is an ideal 0/ S ' . Th e semigroup S (the Rees [acior semigroup S'/ A) is called
the Rees matrix semigroup over the group G (the group with a zero adjoined GO)
with the sandwich m atrix P , and denoted by M(I ,G,M;P) (MO( I , G, J; P)) .
Th e sandwich ma trix P is called regular i/ no row or column 0/ P consis ts wholly
0/ zeros, I/ this is ihe case then the Rees matrix semigroup is regular.
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Theorem 1.24 ([19J) Two R ees matrix semigroups M =(l,G,J;P) and M' =
(I , G, J ;P I) over th e same group G are isom orphie if th ere ezi sis a mapping
i f-t Ui of I into G and a mapping j f-t vi of J in to G such that Pj ,i = viPi,iUi
for all i E land j E J .

We note if M = M(l , G, J; P) is a Rees matrix semigroup then the previous
theorem enables us to replace P by P' = V PU with diagonal matrices U and V
over G. For example, we may " normalize" P so that all the elements in a given
row and a given column are the identity element of G. In our investigation, we
allways will suppose that P is normalized.

Theorem 1.25 [R ees, [19J) A setniqroup is eompletely simple (O-simple) if and
only if it is isomorphie to a (regular) Re es matrix semigroup over a group (a
group with zero).

Left (right) groups, reetangular groups

Definition 1.38 A direct produet of a rectangular band and a group is eall ed a
reci angular group. A direct product of a left (right) zero semigroup and a group
is ealled a left (right) group.

Theorem 1.26 ([32J) A semigroup is a rectangular group if and only if it is a
eompletely simple semigroup in whieh th e idempote n ts form a subsemigroup.

Orthodox union of groups, orthodox band of groups

Definition 1.39 W e say that a semigroup is an orthodox union of groups (or
an orthogroup) if it is a union of groups and th e id empotents of S form a sub
semtgroup.

Theorem 1.27 ([20]) A semigroup S IS an orthogroup if and only if it is a
semilattiee of rectangular group s.

Proof. Let S be an orthogroup. Then it is a union of disjoint subgroups and
so, by Theorem 4.5 of [19], it is a semilattice Y of completely simple semigroups
Sa, 0: E Y. By Theorem 1.26, every Sa is a reetangular group.

Conversely, assume that a semigroup S is a semilattice Y of rectangular
groups Sa = L a X Ga X Ra (La is a left zero semigroup, Ga is a group, Ra
is a right zero semigroup, 0: E Y). Clearly, S is a union of groups, and all
that reruaius is to show that the product of two iderupoteut elernents of S
is idempotent. Let e E Sa and f E Sß be arbitrary idempotent elements.
Then a = cf and b = f c both bclong to Saß. Let a = (i aß,9aß,maß)' b =
(juß,huß,nuß)' Then
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= (jaß ' haß' n aß)(iaß ,gaß , maß)(jaß , haß ' naß) = (jaß ' haßgaßhaß , n aß)

from which we get that gaß is the identity element of Gaß and so a is an
idempotent element. 0

Let S be a semigroup and X be a set. By a left (r ight) representation of S
by transformations of X we mean a homomorphism of Sinto the semigroup Tx
of all transformations of X regarded as left (right) mappings,

Theorem 1.28 (Preston's Th eorem; [20}) Let E be a band and E = UaEyEa be
th e decomposition of E in to a semilattice Y of rectangular bands E a = L a X R o.
(a E Y). For each a in Y , lei Ga be a group , 10. be th e iden tit y elemeni ofGa ,
So. = La X Ga X Ra , and S = UaEySa' Identify 10. X E a with E a.

For each pair of elemenis a,ß E Y with a > ß, let 'l/Ja ,ß be a homomorphism
of Ga into Gß' and let ta ,ß (Ta,ß) be a left (right) represeniaiioti of S o. by
transformations of L ß (Rß) such that if ea = (ia , />;0.) E E a and fß = (jß , Aß) E
Eß then

ea f ß = ((ta,ß ea )jß , Aß),

Ie e« = Uß ,Aß(eaTa,ß))·

D efin e 'l/Ja ,a , ta ,a and Ta,a (a E Y) as folIows. Let 'l/Ja,a be th e id entity auio
morphism of G«. For A = (io. , ao., />;0.) E S o. , lei t o.aA map every element of L o.
onto i a , and let ATa ,a map every element of Ra onto />;0.'

D efine the product AB of any two elements A, B E S as [ollouis. Suppose
A = (ia ,aa ,/>;a) E So. and B = (jß ,bß ,Aß) E Sß. Let, = aß (product in Y) ,
and let

(k.."p..,) = (ia ,/>;a)(jß,Aß)

be ihe .given produet of (ia , />;0.) and Uß' Aß) in the band E. Th en define

AB = ((t a ,..,A)k.." (aa'l/Ja ,..,)(bß'l/Jß,..,),p..,(BTß,"'))'

Th is defin it ion is consisie nt with the given producis in E and th e vari ous S o.
(a E Y). When a 2: ß, ih e produet AB simplifies to

AB = ((ta,ßA)jß,(aa'l/Ja ,ß)bß,Aß),

BA = Uß, bß(aa'l/Ja,ß), Aß(ATa,ß))·

Assume furthermore that th e following conditions hold for all a,ß" E Y such
that a > ß > T. and for all A E So., BE Sß:

'l/Ja ,ß'l/Jß ,'" = 'l/Ja ,.., ;

tß ,..,(AB) = (ta ,..,A)(tß,..,B) ,

tß ,..,(BA) = (tß ,..,B)(ta ,..,A),

(AB)Tß ,'" = (ATa,..,)(Btß ,..,) ,

(BA)Tß ,.., = (BTß ,..,)(ATa,..,).

Th en S becomes an orthogroup, and, conversely, every orthogroup can be con
siruct ed in th is way.
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Definition 1.40 We say that a semigroup is an orthodox band of groups if S
is a band of groups and th e idempote nts of S form a subse m igroup . If a semi
group S is an orthodox band B of groups su ch that B is anormal (left regular,
right regular) band th en we say that S is an orthodox normal (left regular, right
regular) band of groups.

Theorem 1.29 ([20]) An orthogroup S is an orthodox band of groups if and
only if th e Green 's equivalence 1l is a congrue nce on S.

Proof. By Theorem 4.3 of [19], a semigroup S is a union of groups if and only
if every H-dass of S is a group (a maximal subgroup of S). Thus the assertion
of the theorem is obvious. D

Let S be an orthogroup. Then, by Theorem 1.27 , it is a semilattice Ys of
reetangular groups Sa = L a X Ga X Ra, 0: E Ys. By Preston's theorem, there
are objects "pa ,ß ' ta ,ß ' Ta,ß (0: ~ ß in Ys) which determines the product in S.
Let Qs = UaEYsGa, and define a product * in Qs by

90. E Ga and hß E Gß, o:,ß E Ys. Using the condition for the dass ofhomomor
phisms "pa,ß of Preston's theorem, we can see that Qs is a semigroup under the
operation *, and in fact an inverse semigroup which is a semilattice of groups.

Let Y be a semilattice, E a band and Q a semilattice of groups such that Y
is the greatest semilattice homomorphic image of both E and Q. Let C(Y, E ,Q)
denote the dass of all orthogroups S such that the greatest semilattice ho
momorphic image Ys of S is isomorphie to Y , Es ~ E and Qs ~ Q. Let
E = UaEyEa and Q = UaEyGa be the decomposition of E and Q into the
semila t tice Y of reetangular groups E a and of groups Ga (0: E Y) , respeetively.
Let Q Xy E denote the spined product of Q and E. It is clear that Q Xy Eis
a union of reetangular groups Ga X E a , hence of groups, and the product of the
two idempotents (l a , ea ) and (lß,Jß) is the idempotent (l aß,eafß)' where 1ö

denotes the identity element of G ö for all 6 E Y. Hence Q X y E E C(Y, E, Q).
The 1-l-dasses (maximal subgroups) of Q Xy E are the sets Ga X ea (0: E Y,
ea E E a ) , and

Hence 1-l is a congruence and so, by Theorem 1.29, Q Xy E is an orthodox
band of groups.

Theorem 1.30 (Yamada 's Th eorem; [20]) Every orthodox band of groups is a
sp ined product of a band and a semilattice of groups.

More pre cis ely , each dass C(Y, E , Q) of orthogroups contains (to within is o
morphism) precisely on e m ember which is an orthodox band of groups, n amely
th e spined product Q X Y E.



18 CHAPTER 1. PRELIMINARIES

Proof. Let S be an orthodox band of groups, and let S = UaEySa be its
decomposition into a semilattice Y of reetangular groups Sa = Ga X Ea (Ga is
a group, E a is a rectangular band, a E Y). Let Es = UaEYE a be the band of
idempotents of S, identifying 1a x E a with E a , where 1a denotes the identity
element of Ga.

Let us apply the converse half of Preston's Theorem to S , but for simplicity
let us represent the elements of S by pairs (aa, Ca ) instead of triples (i a,aa,ma).
HA = (aa, ca) and B = (bß,Iß) then the product AB of A and B has the form

where gaß is some element of Eaß. Let Qs = UaEyG a, with multiplication *
defined above. Qs is a semilattice of groups, and S E C(Y,Es, Qs). The above
product AB becomes

AB = (aa *bß,gaß).

Now A and Bare 1-l-equivalent respectively to the idempotents (la, Ca) and
(lß,Iß)' Since S is a band of groups, 1-l is a congruence, and so AB is 1-l
equivalent to their product, namely (l aß, eafß)' But this requires gaß = eaf ß'
hence

AB = (aa * bß,eafß)'

Thus the Preston representation of S reduces to the spined product Qs Xy Es
when 1-l is a congruence. H SE C(Y,E, Q) then we can identify Ys with Y, and
since Es 3::E and Qs 3:: Q, we have

S = Qs Xy Es 3:: Q Xy E.

n

Normal band of groups

Theorem 1.31 (Th. IV.2.3; [75]) A semigroup is a normal band 01 groups il
and only il it is a strong semilattice 01 completely simple semigroups.

Theorem 1.32 (Th. IV.2.6; [75]) The lollowing conditions on a semigroup S
are equivalent.

1. S is an orthodox normal band 01 groups.

2. S is a strong semilattice 01 rectangular groups.

3. S is a spined produet 01 a normal band and a semilattice 01 groups.

We note that if a semigroup S is a disjoint union of ahelian groups then
all subgroups of S are commutative. Thus Theorem 1.32 is true if we change
expression "groups" for expression "abelian groups".
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Translations, translational hull

Definition 1.41 A transformation (single-valued mapping) A( ) (( )/1,) of a
semigroup 8 into itself is called a left (right) translation of 8 if A(XY) = (AX)Y
((xY)lL = x (Y)lL) [or every X, Y E 8. A left translation A and a right translation
1L are said to be linked if x(AY) = (XlL)Y for every x, Y E 8. Th e set of all pairs
(A, 1L) of linked left and right translat ions A and 1L of 8 forms a sem igroup under
th e operation (AI( ),( )lLl)(A2( ),( )1L2) = (AIOA2( ),( )/-Ll0/-L2). Th is semigroup
O(8) is called th e translational hull of 8.

lt is easy to see that , for every element a of a semigroup 8 , the mappings
Aa : x 1-7 ax and lLa: z 1-7 xa (x E S) are left and right translations of
S, respeetively, such that they are linked. The pairs (Aa, /-L a), a E 8 form a
subsemigroup in 0(8). This subsemigroup is called the inner part of 0(8).

lt is easy to check that a 1-7 (Aa, /-La) (a E 8) is a homomorphism of 8 into
th e inner part of 0(8).

Theorem 1.33 ([21]) Let 8 = M(I ,G,JjP) be a R ees matrix semigroup over
a group G with norm alized sandwich matrix P = (Pj,i) , and let TI and 7J denote
th e semigroup of all transformation s of I (acting on th e left) and J (acting on
th e right) , respectively. Then

0(8) = {(k,a,h) E TIxGxTJ: (Vi E I,j E J) Pj,k(i)aPUo)h,i = pj ,k(io)ap(j)h,i}'

Th e product of two elements (k ,a,h) and (f,b,g) ofO(8) is given by:

(k ,a,h)(f,b,g) = (k ° f ,ap(jo)h,f(io)b,h ° g) .

Abitra nslation (k , a, h) E 0(8) is inne r if and only if k and h are constant
tran sformations. Id entifying 8 with the inne r part of 0(8) , for every (k , a, h) E
0(8) and (i ,g,j) E 8 ,

(k ,a,h)(i,g,j) = (k(i) ,apkUo ),ig ,j),

(i,g,j)(k,a,h) = (i,gpj ,(io)ha,(j)h).

Theorem 1.34 Let G be a group , and let Land R be a left zero and a right
zero semigroup, respect ively. Th en O(L x G x R) = TL x G X TR. Esp ecially,
O(L x R) = TL X TR I O(L) = TL , O(R) = TR'

Proof. By Theorem 1.33, it is obvious.

Weakly reductive semigroups

Definition 1.42 A semigroup 8 is call ed a weakly reductive semigroup if, [or
every a, b E 8 , ih e assumption that xa = xb and ax = be hold for all x in 8
implies a = b,
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It is clear that if S is a weakly reductive semigroup then a H ('xa,JLa)
(a E 8) is an isomorphism of 8 onto the inner part of 0(8).

Theorem 1.35 (Lemma 1.2 of [19]) Let 8 be a weakly reduetive semigroup,
and let us identify 8 with th e inne r part of th e translational hull 0(8) of 8.
Th en 8 is an ideal of O(8) su ch that (,x, JL)a = ,x(a) and a('x , JL) = (a)JL for
every a ES and every ('x,JL) E O(S).

Theorem 1.36 (Theorem ..{.20 of [19]) Let S be a weakly reduetive semigroup
and T be an arbitrary semigroup with zero O. Let T* = T - {O}, F = T* USand
F' = T* U O(S) . Let (F' , 0) be an ideal ezi ension of O(S) by T. Then (F, 0) is
an ideal eziensioti of S by T if and only if (F,0) is a subs emigroup of (F' , 0),
and this is the case if and only if a 0 b E S for every a, b E T satisfying ab = 0
in T.

Conversely, let (F, 0) be an ideal eziensioti of S by T. Th en there is an ideal
eziension (F', 0) of O(S) by T such that (F, 0) is a subsemigroup of (F', 0).

Dense ideals

Definition 1.43 An ideal K of a semigroup S is called a dens e ideal of S if
alK = i d« implies a = ids for every congruen ce a of S , where alK denotes
th e restrietion of a to K.

Theorem 1.37 If K is a dens e ideal of a semigroup S such that K is weakly
reduetive then S is isomorphie to a subsemigroup of O(K).

Proof. Let K be a dense ideal of a semigroup S such that K is weakly reductive.
For an arbitrary SES, let ,x. and P. be transformations of K defined by
'x.(k) = sk and (k)p. = ks, It is easy to see that ,x. and P. are left and right
translations of K , respective1y, such that they are linked. Let ljJ be a mapping
of Sinto O(K) defined by ljJ(s) = (,x. ,P.) , s E S . Since

('x.t>p.t)k = 'x.tk = (st)k = s(tk) = (,x. 0 'xt)k

and
k(A.t,P.t) = kp.t = k(st) = (ks)t = k(p. 0 Pt)

for every s,t E Sand k E K , we have

ljJ(st) = ('x.t ,P.t) = (,x. 0 At,P. 0 Pt) = ('x. ,P.)(At , Pt) = ljJ(s)ljJ(t)

and so ljJ is a homomorphism. Assume ljJ(s) = ljJ(t) for some s ,t E S. Then
sk = tk and ks = kt for every k E K. It is easy to see that

a = {(a,b) E S X S: (Vk E K) ak = bk , ka = kb}

is a congruence on Sand (s,t) E a. Since K is weakly reductive, alK = idK.
Since K is a dense ideal of S, we get a = ids and so s = t. Hence ljJ is an
isomorphism. 0
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Retraet ideals

Definition 1.44 An ideal K 0/ a semigroup 5 is called a retraet ideal i/ there
is a homomorphism 0/ 5 onto K which leaves the elements 0/ K fixed. 5u ch a
homomorphism is called a retract homomorphism 0/5 onto K. In this case we
say that 5 is a retraet (ideal) extension 0/ K.

Definition 1.45 Let W = ((1Oi , 1OD)iEl be a /amily 0/ pairs 0/ words 0/ a free
semigroup generated by two lett ers. We suppose that W satisfies the /ollowing
conditions.

(i) I is an erd ered sei,

(ii) 1/5 is a semigroup with zero 0 and x,y E 5 such that i/1Oi(X,y) = 0
(1Oax ,y) = 0) then 1Oj(x,y) = 0 (1Oj( x ,y) = 0) [or all j ~ i .

We say that a semigroup 5 is a W-s emigroup i/, [or every x , y E 5 and every
i E I , there is a j ~ i such that 1Oj(x ,y) = 1Oj(x ,y) .

Theorem 1.38 ([41}). Let W = ((1Oi, 1OD)iEI be a /amily which satisfies condi
tions (i) and (ii). Then a retract extension 0/ a W-s emigroup by a W-semigroup
with zero is a W-s emigroup.

Proof. Let 5 = TU N* be a retraet extension of a semigroup T by a semigroup
N with zero 0 (here N * = N - {O}) and f : 5 f--+ T be a retraetion. Let
x, y E 5 and i EIbe arbitrary. Since T is a W-semigroup, 1Oj(f(x),f(y)) =
1Oj(f(x),f(y)) for somej ~ i. Suppose that x E Tor y E T. Then

Wj(x ,y) = f(1Oj(x ,y)) = 1Oj(f(x),f(y)) = 1Oj(f(x), /(y)) =

f(1Oj(x ,y)) = 1Oj(x,y).

Now suppose that x, y E N*. We define a subset of I:

J = {j EI: 1Oj(x,y) = 1Oj(x ,y) in N}.

Since N is a W-semigroup, J is non-empty. If 1Oj(x, y) 1= 0 in N for some j E J
such that j ~ i then 1Oj(x ,y) = 1Oj(x,y) in 5. Suppose that 1Oj(x,y) = 0 in N
for any i E J. Consider two elements j E J and k E I such that i ::; j ::; k and
1Ok(f(X),f(y)) = 1O~(f(x) ,/(y)). By condition (ü) of Definition 1.45, we have
1Ok(X,y) = 1O~(x ,y) = 0 in N. Then, in 5 ,

1Ok(X,y) = /(1Ok(X,y)) = 1Ok(f(x),f(y)) = 1O~(f(x),f(y)) =

/(1O~(x,y)) = 1O~(x ,y) .

Consequently, 5 is a W-semigroup. o
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Variety of semigroups

CHAPTER 1. PRELIMINARlES

Definition 1.46 Let F be a non empty /amily 0/ identities. Th e class V 0/ all
semigroups satis/ying each ident ity in F is called th e variety determ in ed by the
identities 0/ F , or simply a vari ety. In such a case F is called the /amily 0/
defining identities [or V.

Theorem 1.39 ([75)) A class 0/ semigroups is a vari ety i/ and only i/ it is
closed under direet produci, subemiqroup and homomorphic im age.

Theorem 1.40 ([P)) A vari ety 0/ semigroups is closed with respect to retraet
ext ension.

Proof. It is enough to consider the case when I has only one element and so
the assertion is obvious by Theorem 1.38 . 0

Group or group with zero congruences of a semigroup

Definition 1.47 We say that a subsei H 0/ a semigroup S is a reflexive subsei
in S i/ ab E H implies ba E H [or every a,b ES.

Definition 1.48 A subsei H 0/ a semigroup S is called a left (right) unitary
subset i/ h,hs E H (h ,sh E H) implies s E H [or ever hE Hand sES. A
subsei H is called a unitary subset i/ it is both left and right unitary.

Definition 1.49 Let S be a semigroup and H be a subset 0/ S. Th e right
congruence RH = {(a ,b) E S x S: (Vx E S) ax E H iff be E H} and the
congruence 'PH = {(a, b) E S x S: (Vz , Y E S) xay E H iff xby E H} is called
the principal right congru ence and the principal congruence on S , respectively,
defined by H.

It is easy to see that if H is a reflexive unitary subsemigroup of S then
RH = 'PH. Next theorem gives further informations about this case.

Theorem 1.41 ([19}) I/ H is a reflexive unitary subsemigroup 0/ a semigroup
S then RH is a group or a group with zero congruence on S such that H is an
identity elem ent 0/ SIRH.

Conv ersely , is a is a group or a group with zero congruence on a sem igroup
Sand H denotes th e a-class 0/ S which is the ident ity 0/ SIathen H is a
reflexive unitary subsemigroup 0/ Sand a = RH. The right residue WH =
{x ES: (Va E S) xa rt. H} 0/ H is not empty i/ and only i/ Sla has a zero
eleme nt. In this case the zero 0/ SIa equals WH.
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Theorem 1.42 Let S be a semlgroup satislying the identity (ab)2 a2b2.

Then, [or arbitrary a E S ,

Sa = { z ES: aixai = ak [or some positive integers i.i .k }

is the least reflexive unitary subsemigroup 01 S that contains a, 11 S is also
archimedean then th e principal right congru ence RSa defin ed by Sa is a group
congruence 01 S.

Proof. It is clear that a E S a. To show that Sa is a subsemigroup of S , let
x, y E Sa be arbitrary elements. Then aixai = ah and amyan = ak for some
positive integers i,j,h,m,n,k. Let p = h + k. Then

and so xy E Sa' We show that Sa is unitary. Assurne x, xy E Sa for some z , y E
S. Then aixai = ah and amxyan = ak. Choose integer r 2: max{j - k, i -m, O}.
Then

a2(r+k) = (ar+mxyan)2 = (ar+mx)2(yan)2

= ar+mx(ar+mxyan)yan = ar+mxar+kyan = a2r+m-i+h+k-iyan.

Hence y E S a. We can prove, in a similar way, that y , xy E Sa implies z E Sa'
Hence Sa is unitary. Sa is reflexive, because it is unitary and (xy)3 = x(yx )2y =
x y2x 2 y = xy(yx )xy holds in S. If B is a reflexive unitary subsemigroup of S
such that a E B then, for an arbitrary element x E Sa , there are positive
integers i,j,k such that aixai = ak E B. Then xE B and so s, ~ B. Since s:
is reflexive and unitary then, by Theorem 1.41, the principal right congruence
RSa of S determined by Sa is a group or a group with zero congruence of S.
As S is archimedean, the right residue WSa is empty and so RSa is a group
congruence on S. Thus the theorem is proved. 0

Subdirectly irreducible semigroups

Definition 1.50 We say that a semigroup S is a subdireetly irreducible semi
group il whenever S is written as a subdirect produet 01 a lamily 01 semigroups
{SihEl then, [or at least one j E I, the projeetion homomorphism Tri maps
S onto Si isomorphically. A semigroup which is not subdirectly irreducible is
called subdirectly reducible.

Theorem 1.43 ([75]) A semigroup S is subdireci irreducible il and only ij, [or
any lamily {aihEl 01 congruences 01 S , niE tat = ids il and only il ai = ids
[or som e jE I .

Corollary 1.1 A non-trivial semigroup is subdirectly irreducible il and only il
it has aleast non-identity congru ence.
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Theorem 1.44 ([40}) Every semigroup is a subdirect produci 01 subdirectly ir
reducible sem igroups.

Theorem 1.45 ([85]) Semigroups Sand SO (S and S1) are simultaneously
subdirectly irreduc ible or reducible.

The least non-empty ideal of a semigroup S (if it exist s) is called the kernel
of S . The kernel of a semigroup with zero is trivial. We call an ideal a non
trivial ideal if it contains at least two elem ents. The least non-trivial ideal of a
semigroup S (if it exists) is called the core of S. If K is the core of a semigroup
S , then K is eit her a minimal ideal or a O-minimal ideal of S. Then eit her
K 2 = K or K 2 = {O} , where 0 denotes the zero of S. In the first case K is
either simple or O-simple (see Corollary 2.30 and Theorem 2.29 of [19]). In this
case K is called a globally idempotent core. In the second case K is callcd a
nilpot ent core. A core is called a pr imit ive core if it has two elements.

Theorem 1.46 ([85]) Every non-trivial subdirectly irreducible semigroup has a
core.

Proof. Let Adenote the set of all non-trivial ideals of a subdirectly irreducible
semigroup S. If nAEAA is empty or a trivial ideal of S then nAEAPA is the iden
tity congruence on S which is impossible (here PA denotes the Rees congruence
of S induced by A) . 0

Definition 1.51 A sem&group &S called a hom ogroup il it contains a kern el
which is a group.

Theorem 1.47 ([85}) A su bdirectly irreducible homogroup without zero &s a
group.

Proof. Let S be a subdireet ly irreducible homogroup without zero. Let G
denote the kernel of S and let e be the identity of the group G. It is easy to see
that a defined by a a b (a , b E S) if and only if ea = eb is a congruence on S
and a n pa = ids , where pa denotes the Rees congruence of S induced by the
ideal G. As S is subdireet irreducible without zero , we can cunclude a = ids
and so S = G. 0

In Theorem 4.7 of [85], Schein proved that a band with zero 0 is subdirec tly
irreducible if and only if S - {O} is a subsemigroup which is subdireetly irre
ducible and (if ISI > 2) contains no zero, Thus we can consider the sub direc t1y
irreducible bands without zero. In the next theorem , 8(z , y) deno tes the small
est congruence which identifies a and b. Moreover , S· denotes the dual of a
semigroup S. The dual (S· , *) of a semigroup (S, 0) is defined by S· = S and
a *b = b o a for any a, b ES.



25

Theorem 1.48 ([25J) A band 8 without zero is subdireetly irredueible il and
only il8 or 8* is isomorphie io a semigroup T whieh satisfies the loltowing two
eonditions.

(i) C(X) ~ T ~ x>, where XX is the semigroup 01 alt mappings 01 X into
itsel], C(X) is the set 01 alt eonstant mappings 01 X.

(ii) There exist k,k' E C(X) sueh that O(k,k') ~ O(e,d) [or alt c,d E C(X)
with c i= d.

Especialty, a left (right) zero semigroup is subdirectly irredueible il and only il
it has at most two elemenis.

Proof. Let 8 be a subdirectly irreducible band without zero, Then, by Theorem
4.7 of [85], 8 satisfies one of the following conditions.

(1) K = {k E 8: ks = k for all s E 8} is a two-sided ideal of 8 and, for any
x,y E 8, xk = yk for all k E K implies z = y.

(2) K = {k E 8: sk = k for all s E 8} is a two-sided ideal of 8 and, for any
x,y E 8, kx = ky for all k E K implies x = y.

It is clear that 8 satisfies (1) if and only if the dual 8* of 8 satisfies (2). Assume
that 8 satisfies condition (1). Define ip : 8 ---+ KK by ep(s)(k) = sk, for all sE 8
(k E K). It is easy to check that ep is a homomorphism and that ep is one-one.
The monomorphism establishes (i) and (ü) for ep(8), since ep(K) = C(K). If 8
satisfies condition (2) then the above argument shows that 8* is isomorphie to
a semigroup T satisfying (i) and (ii).

To establish the converse, it is enough to show that if T satisfies (i) and (ii)
then T is subdirectly irreducible. By (ii) it is enough to show that if s, t E T,
s i= t then there exist c, d E C(X), c i= d such that O(c, d) ~ O( s, t). Since
s i= t, there exists k E C(X) such that sk i= tk. Since sk, tk E C(X) and
O(sk,tk) ~ O(s,t), the proofis complete.

Since every equivalence of a left (right) zero semigroup is a congruence, the
assertion of the theorem for the special case is obvious. 0

Definition 1.52 118 is a semigroup with zero 0 then the ideal

A~ = {a E 8: (Vs E 8) as = O}, (As= {a E 8: (Vs E 8) sa = O})

018 is called the left (right) annihilator 018. The meet 01A~ and As is called
the annihilator 018. The annihilator 018 is denoted by As.

Definition 1.53 An element s 01 a semigroup 8 is called a disjunctive element
il ihe eongruenee

C{s} = {(a,b) E 8 X 8: (Vx,y E 8 1
) xay = s {=:::} xby = s}

equals ids.
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It is known that , for an arbitrary element s of a semigroup 8 ,

r(s) = {a E 8: (Vx ,y E 8 1
) xay =/: s}

is eit he r empty or a C{s}-c1ass and an ideal of 8.

Lemma 1.4 ([85)} E very non-trivial subdirectly irreducible settuqroup has at
least two different disjunctive eleme nis.

Proof. Consider the eongruenee nsESc{s} on a subdireetly irreducible semi
group 8. Eaeh of {s} is a C { s} -class so our eongruen ee equals ids. Sinee 8
is subdirectly irredueible, C{sd = ids for some SI E 8. It is easy to see that
nsdsESC{s} = ids and so C{S2} = ids for some s2 =/: SI. Henee SI and s2 are
two different disjunctive elements of 8. 0

Lemma 1.5 {[85}} 11 a sem igroup 8 with a zero has a non-zero disjunctive
elemen t th en 8 has a core and every disjunctive element of 8 is in th e core.

Proof. Assume that a semigroup 8 with a zero has a non-zero disjunctive
element k . Sinee r(k) = {s E 8: (Vx ,y E 8 1 ) xsy =/: k} is a C{k}-c1ass and an
ideal of 8 , it follows that r(k) = {O} (beeause k is disjunctive). Let I be an
arbitrary non-trivial ideal of 8. Then, for every non-zero elem ent a of I , the re
are elements x, y E 8 1 such that x ay = k (beeause r( k ) {O} ). So k EI.
Consequently, 8 has a eore K and k E K. 0

Lemma 1.6 ([85)} A semigroup (with zero) which has a primit ive core is sub
directly irredu cible if and only if its zero is disjunctive.

Proof. If 8 is a subdire etly irredueible semigroup with a primitive eore then ,
by Lemma 1.4 , the zero of 8 is disjunetive.

Conversely, assume that a semigroup 8 has a primitive eor e, and the zero of
8 is disjunctive. Then, by Theorem 3.7 of [85],8 is subdire etly irredueible. 0

Theorem 1.49 ([85)} A semiqroup S with a zero and a non-trivial annihilator
is subdirectly irreducible if and only if it has a non-zero disjunctive element.

Proof. Let 8 be a subdireetly irredueible semigroup with a zero and a non
trivial annihilator. By Lemma 1.4, 8 has a non-zero disjunctive element.

Conversely, assume that 8 is a semigroup with a zero and a non-trivial an
nihilator As such that 8 contains a non-zero disjunctive element k. By Lemma
1.5 , 8 has a core K , and every disjunctive element of 8 is in K. Let 9 be an
arbitrary element of As. Then, for all u E 8, ug = gu = O. So 9 E r(k) U {klo
As r(k) = {O}, it follows that 9 E K. Consequently As ~ K and so As = K.
Let a be an arbitrary non-zero element of As. Sin ee {a, O} is an ideal of 8 ,
it follows that As = K ~ {a , O} ~ As whieh implies that K has exae tly two
elem ent s, that is , K is primitive. We prove that the zero of 8 is disjunctive. Let
e and 1 be arbitrary elements of 8 with e =/: I . As k is a disjunctive elernent
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of S , we have (e,f) ~ C{k}' So there are elements x ,y E S1 such that , for
example, x ey = k and xfy :f. k. If xfy = 0 then (e,f) ~ C{o}. If xfy :f. 0
then there are elements u ,v E S1 such that u xfyv = k (using r(k) = {O}). As
xfy :f. k , we have u :f. 1 or v :f. 1. So ukv = 0 (because k E As) from which
we get uxeyv = ukv = O. This and uxfyv = k (see above) together imply that
(e,f) ~ C{O}' Consequently (e,f) ~ C{O} for any elements e,j E 5 with e :f. f.
So the zero of 5 is disjunctive. Since the core of 5 is primitive then, by Lemma
1.6, 5 is subdirectly irreducible. 0

Example Let 5 be a semigroup defined by the following Cayley-table:

abc d
a a a a a
b a a a a
c a a b a
d a a b a

It can be easily verified that 5 is subdirect1y irreducible in which a is the
zero element and As = {a,b}. Moreover b is a non-zero disjunctive element.

Ä-semigroups

Definition 1.54 A semigroup 5 is call ed a Ä-sem igroup if the lattice .c(5) of
all congruences of 5 is a chain (with respeci to in clusion} .

Remark 1.1 If 51 or 50 is a Ä-semigroup then 5 is also a Ä-semigroup. The
converse statement is not true, in general. For example, 5 = {a, e, 0: a2 =
ae = 0, e2 = e, ea = a} is a Ä-semigroup, but 51 is not a Ä-semigroup.

Theorem 1.50 A left (right) zero semigroup is a Ä-sem igroup if and only if it
has at most two eleme nis.

Proof. As every equivalence relation of a left (right) zero semigroup is a con
gruence, the assertion is obvious. 0

Theorem 1.51 ([JOO}) Every homomorphic image of a Ä-semigroup is also a
Ä-semigroup.

Proof. Let T be a homomorphic image of a semigroup 5. Denote 1> the corre
sponding homomorphism of 5 onto T. Let 01 and 02 be arbitrary congruences
on T. Then oi = {(a,b) E 5 x 5: (1)(a),1>(b)) E od (i = 1,2) is a congruence
on 5. If 5 is a Ä-semigroup then oi C 0; or oi = 0; or 0; C oi and so
01 C 02 or 01 = 02 or 02 C 01 which implies that T is a Ä-semigroup. 0

Remark 1.2 In Chapter 3, it will be proved that a semilattice is a Ä-semigroup
if and only if it has at most two elements. Theorem 1.4 and Theorem 1.51
together imply that if a semigroup 5 is a Ä-semigroup then it is eit her semilattice
indecomposable or a semila t tice of two semilattice indecomposable semigroups
50 and 51 (5051 ~ 50)'
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Theorem 1.52 ([lOOj) If a ß-semigroup S contains a proper ideal I then n ei
ther S nor I has a non-trivial group homomorphic image.

Proof. Suppose there is a homomorphism f of S onto a non-trivial group G.
Since G contains no ideal except G, f(I) = G. Hence 111> 1. Denote a the
congruence on S induced by f. For each a E S - I , there is an element bEI
such that (a, b) E a. Hence a 1:: PI , where PI denotes the Rees congruence on S
defined by I. Since IGI > 1, there are elements x,y E I such that (x ,y) ~ a. As
(x ,y) E PI, we have a j) PI which contradiets our assumption. Next , suppose
that I has a non-trivial group homomorphic image G. Then, by Lemma 8 of
[100], there is a homomorphism of S onto G which is impossible. D

Theorem 1.53 If S is a ß-semigroup then all the ideals of S form a chain
with respect to inclusion.

Proof. As the Rees congruences of a ß-semigroup form achain with respeet
to indusion, the assertion is obvious. D

Theorem 1.54 ([89j) The ideals of a semigroup S form a chain with respect
to inclusion if and only if th e principal ideals 0/ S do it.

Proof. Assurne that the principal ideals of a semigroup S form achain with
respect to indusion. Let A and B be two arbitrary ideals of S with A -:j:.
A n B -:j:. B. Then there are elements x E A and y E B such that x ~ Band
y ~ A. Clearly, J(x) ~ A and J(y) E B. By the assumption, J(x) ~ J(y) or
J(y) ~ J(x). Then x E B or y E A which is a contradiction, Consequently,
A ~ B or B ~ A. Hence the ideals of S form achain with respeet to indusion.
As the converse is obvious, the theorem is proved. D

Theorem 1.55 ([107j) Let S be a ß-semigroup and o be a non-identity con
gruence 0/ S which is not a Rees conqruence. Then, [or some a ES,

[b]u = t., i/ J(b) C J(a),

[b]u ~ Ja, i/ J(b) = J(a),

[b]u = {b}, if J(b) :J J(a),

where Ja denotes the .J-class 0/ S containing a and I a = J(a) - Ja'

Proof. For some a E Sassume I[a]ul > 1 and that [alu is not an ideal of
S. If c,d E [alu and J(c) C J(d) then, since a is comparable with the Rees
congruence PJ(c), o ;2 PJ(c). But then J(c) ~ [alu and [alu is an ideal. Hence
[alu ~ Ja' Since [alu 1:: Ia, if t, -:j:. 0 then o contains the Rees congruence
modulo t; Hence if J(b) C J(a) then s« t; and so [b]u ;2 t; But then [b]u is
an ideal of S. Ideals of S are chain ordered and [alu 1:: [b]u so [b]u ~ r; Thus
[b]u = i; If J(b) ;2 J(a) and [b]u -:j:. {b} then [b]u is not an ideal; otherwise
[b]u ;2 J(b) ;2 [alu and [alu is an ideal. Hence as above, [b]u ~ J6 and either
16 = 0 or h is au-dass and an ideal of S. In either case 16 p. [alu so h = Ia
and then Ja = J6. D
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Theorem 1.56 On a nil semigroup S , th e following are equivalent.

(i) S is a il-semigroup.

(ii) The principal ideale of S form a chain with respeci to inclusion

(iii) S is a chain with respect to the divisibility ordering.

Proof. (i) implies (ii). It is obvious for arbitrary semigroups.
(ü) implies (üi). Let S be a nil semigroup in which the principal ideals form

achain with respect to inclusion. By Theorem 1.17, S is .J-trivial. Then, by
Theorem 1.16, S is achain with respect to the divisibility ordering.

(üi) implies (i) . Let S be a nil semigroup which is achain with respect to
the divisibility ordering. Then, by Theorem 1.18, every congruence on S is a
Rees congruence. To prove (i), we may prove that the ideals form achain. Let
land J be ideals of S . Suppose I ~ J. There is an element a E I but a rf. J .
Let z be an arbitrary element of J. Clearly, a =1= z , By (üi), either a E Sl xS1
or x E Sl aS1. In the first case a E J(x) ~ J which is a contradiction. So
xE Sl aS1 from which we get z E J(a) ~ I. Hence J ~ I. 0

Theorem 1.57 1f a il-semigroup S is a semilattice of a nil semigroup Sl and
an ideal So of S then IS11 = 1.

Proof. H Sl is a nil semigroup (with zero 0) then I = So U {O} is an ideal of
S. As So ~ I, we have 11 ~ PI, where PI is the Rees congruence on S modulo I ,
and '" is the semilattice congruence on S (the ",-classes are Sl and So). Hence
Sl has only one element. 0

Definition 1.55 Let S be a il-semigroup which is a semilattice of a semigroup
P and a non-trivial nil semigroup N such that NP ~ N. Then S is called

• a Tl semigroup if P has only one element,

• a T2L semigroup if P is a two-element left zero semigroup,

• a T2R semigroup if P is a two-element right zero semigroup.

Theorem 1.58 ([63]) Let S be a semigroup which is a disjoint union S = PUN
of a one-element subsemigroup P = {e} of Sand an ideal N of S such that N
is a nil semigroup. Then S is a il-semigroup if and only if N is a il-semigroup
and Sl eS1 = S.

Proof. Assurne that S is a il-semigroup. Then Sl eS1 = Sand, by lemma 2.7
of [63], J(a) = N1 aN1 for every a E N. As the principal ideals of S are chain
ordered, the principal ideals of N are chain ordered. Then, by Theorem 1.56,
N is a il-semigroup.

Conversely, assurne that N is a il-semigroup and Sl eS1 = S . Let 0: be
a non-identity congruence on S. Assurne (e,a) E 0: for some a E N. Then
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(e,ae) E a which implies that (e,ame) E a for every positive integer m. As N
is a nil semigroup, we get (e,O) E a, where °is the zero element of N. Then
(:z:ey ,O) E a for every x,y E SI. As Sl eSl = S , we get (S,O) E a for every
sES. Gonsequently, a is the universal relation of S. This means that {e} is a
ß-class for every non-universal congruence ß of S. Thus the congruences of S
form achain, because N is a Ä-semigroup. 0

Corollary 1.2 A nil semigroup with an identity adjoined NI is a Ä-semigroup
i/ and only i/ N is a Ä-semigroup.

Theorem 1.59 ([10lJ) I/ a Ä-semigroup S is a semilattice 0/ a subgroup P
0/ a quasicyclic p-group (p is a prime) and a nil semigroup N, NP ~ N then
either INI = 1 or IPI = l.

Proof. It is sufficient to show that IPI > 1 implies INI = l.
Part 1: In this part we show that Jb = PbP, bP, Pb or {b} for b E PSP,

SP-PSP, PS-PSP or S-(SPUPS), respectively (here Jb denotes the .J-class
of S containing b). If J b = Ja then rbs = a, paq = b for some r,s ,p,q E SI.
Hence prbsq = b and rpaqs = a. Assurne b # a. As S is a nil semigroup,
r ,s,p,q E P. Then a E PbP or bP or Pb. It is easy to see that elements of
these sets are .J-related,

Part 2: Let H be the subgronp of P of order p with generator g. In this
part we prove that if b E PSP then Hb ~ bP or {b} = bH. Let e denote the
identity of P and define P' = P - {e}.

Gase 1: If b E P'bP then b = hbk for some h E P' and k E P. Thus
b = hmbkm for every positive integer m. It is clear that H is contained by the
snbgronp of P generated by h. Thus, for each integer i . there is an m such that
g-i = h m • Hence Hb ~ bP .

Gase 2: If b E bP' then b = bk for some k E P'. Thus b = bk": for every
positive integer m. Hence {b} = bH.

Gase 3: Suppose b rf:. P'bP U PbP'. As b E PSP, we have Jb = PbP (as it
was proved in Part 1). It is easy to see that xJby n J b # 0 (x,y E SI) if and
only if x,y E PU {I}. We show that Hb is anormal complex of S. Assnme
xHby n Hb # 0 for some x,y E SI. As Hb ~ PbP = Jb, we get x,y E Pu {O}.
Let u,v E H such that xuby = vb. Then b = v-1xuby. As b rf:. P'bP, we have
xE H U {I} and y E {I, e} . Hence xHby ~ Hb. Gonseqnently, Hb is anormal
complex. Let a be the least congrnence on S with Hb for an a-class. It can
be easily shown that in Jb, a has classes r Hbs (r,s E P). Likewise, there is a
congruence ß on S with classes rbHs (r, s E P) in Ji: Since a ~ ß or ß ~ a
then rHbS ~ bH or bH ~ rHbs for some r,s E P. Bnt then b E P'bP U PbP'
which is a contradiction.

Part 3: Now we complete the proof. Since H is normal in P, there is aleast
congruence p on S with H as a p-class. By Theorem 1.55 , [alp = N for any
a E N. Thns, by Lemma 1.3, there are Xi ,Yi E SI, Pi ,qi EH (i = 1,2, ... ,n)
such that
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Let Zi = eYie. Then

As Zi E PSP, by Part 2, {Zi} #- ziH or HZi ~ ZiP. If {Zi} #- ziH then
H Zi ~ ziP. But then XiPiZi = XiZiU, XiqiZi = XiZiV for some u, v E P. Then,
by Part 1, XiPi Zi .J XiqiZi. Let i be the least integer so that {Zj} = Zj H ; if
there is no sueh i then 0 E Jae and a e = O. Sinee a e = 0 or XjPj Zj E Jae then,
by Part 1, {ae} = aeH. So {xe} = z H for all x E N. Then Xi E Pu {I} or
XiPi = Xiqi. In either ease XiPiYi .J XiqiYi , 1 :::; i :::; n. Thus a = 0, that is,
INI = 1. 0

Theorem 1.60 Let S be a semigroup in which a nß = ids implies a = ids or
ß = ids [or every congruences a and ß on S. 11S is an ideal extension 01 a
rectangular group K by a semigroup with zero th en K is either a subgroup or a
left zero subsemigroup or a right zero subsemigroup 01 S.

Proof. Let S be a semigroup satisfying the eondition of the theorem. Assume
that it is an ideal extension of a reetangular group K by a semigroup with
zero. We ean suppose that IKI > 1. Then K is a dense ideal of S. As K is
weakly reduetive, by Theorem 1.37, S ean be embedded into the translational
hull n(K) of K. We suppose that S is a subsemigroup of n(K). Sinee K is
a reetangular group, it is a direet produet L X G x R of a left zero semigroup
L, a group G and a right zero semigroup R. Let 'TL denote thc semigroup of
all transformations of L aeting on the left. By Theorem 1.34, n(L) = 'TL and
so L is isomorphie to a subscmigroup of 'TL , beeause L is weakly rcduetive.
Henee we ean suppose that L is a subsemigroup of 'TL. Let IR be the semigroup
of all transformations of R aeting on the right. We can suppose that R is a
subsemigroup of 'R. By Theorem 1.34 , n(K) ~ 'TL x G X IR. Let ou , aa and
an denote the eongruenee on n(K) indueed by the projeetion homomorphism
ofn(K) onto 'TL , G and IR, respeetively. Thcn aLnaanaR = ido(K)' Let a~ ,

aa and a~ denote the restrietion of aL, aa and aR to S, respeetively. Then
a~ n aa n a~ = ids. By the eondition for S , we have a~ = ids or aa = ids
or a~ = ids . As io x G x R ~ a~, L X 90 X R ~ aa and Lx G X io ~ a~ for
fixed i o E L, 90 E G and io E R, we get that K is isomorphie to either L or G
or R. Thus the theorem is proved. 0

Corollary 1.3 11a ß.-s emigroup S is an ideal extension 01 a reetangular group
K by a semigroup with zero then K is either a subqroup or a left zero subsemi
group or a right zero subsemiqroup 01 S.

Corollary 1.4 11a subdirectly irreducible semigroup S is an ideal ext ension 01
a rectangular group K by a semigroup with zero then K is either a subgroup or
a left zero subsemigroup or a right zero subsemigroup 01 S.
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Theorem 1.61 ([107}) A non-trivial band is a l:i.-semigroup ij and only ij it
is isomorphie to either R or R l or RfJ, where R is a two-element right zero
semigroup, or L or LI or L O, where L is a two-element left zero semigroup, or
F , where F is a two-element semilattiee.

Proof. Let S be a non-trivial za-band. Then, by Theorem 1.5 and Remark 1.1,
S is either a reetangular band or a disjoint union S = SI USo of two reetangular
bands So and SI sueh that So is an ideal of S. If S is a reetangular band then
it is a direet produet of a left zero semigroup Land a right zero semigroup R.
As S is a l:i.-semigroup, S is isomorphie to either L or R. Henee, by Theorem
1.52, S is either a two-element left zero semigroup or a two-element right zero
semigroup.

Assume that S is a disjoint union S = SI U So of two rectangular bands
SI and So, where So is an ideal of S. By Theorem 1.51, Sr and so SI is a l:i.
semigroup. Then SI is either a one-element semigroup or a two-element left zero
semigroup L or a two-element right zero semigroup R . If ISol = 1 then either S
is a two-element semilattice or S = LO or S = RO. Assume that ISo\ > 1. First,
consider the case when SI = {e}. We show that the Green's left congruence n
is a congruence on S. Let a, b E S be arbitrary elements with (a, b) E n and
a i= b, Then a,b E So and a = bx, b = ay for some x,y E So. Let sES be
arbitrary, Then

asxys = bxsxys = bx(sx)xys = bxys = ays = bs,

because z , sz E So and So is a reetangular band. Thus bs E asS l . We can prove,
in a similar way, that as E bsS l • Henee (as, bs) E n which implies that n is a
congruence. We can prove, in a similar way, that ! is a congruence on S . It is
clear that aSo and Soa are n-classes and ! -classes, respectively, for every a E So.
Assurne n ~ c. Then aSo ~ Soa and so aSo ~ aSoa = {al. Hence So is a left
zero semigroup. It is easy to see that 0: = {(a, b) E S x S: a = bor a, b E eUeSo}
is a congruence on S such that e U eSo is an o:-class. Since {e} ~ e U eSo and
since S is a l:i.-semigroup, we get PSo ~ 0: , where pSo is the Rees congruence of
S modulo So. Hence So = eSo. Then, for a E So, ea = a and ae = a(ae) = a.
Hence S = SJ . Since SJ is a ß-semigroup then So is a l:i.-semigroup . Then,
by Theorem 1.50, So is a two-element left zero semigroup. We can prove, in a
similar way, that S = SJ and So is a two-element right zero semigroup if ! ~ n.

Next, consider the case when SI is a two-element right zero semigroup. We
prove that each element of So is a right zero of Sand that ISol ~ 2. Note that,
for a,b E So, c E SI and u E SI, we have acb = a(acb)b = ab and so if ac = uac
then a = aca = uaca = ua. Hence there is a congruence P on S with classes SI ,
S1S0 and So - SIS0. Since p must be comparable with the Rees congruence on
S modulo So then So = SIS0' Hence SIX = {x} for all x E S. Then there is a
congruenee

a = {(p, q) E S x S : p = qx for each x E S}

with [u]" = SI. Comparison of o with the Rees congruence of S modulo So, we
get [a]" = So for all a E So. Hence ax = xx = z for x E So and so Sox = {x}.
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Since SI X = {X} then S X = {X} for all X E So. Hence every element of So is
a right zero of S. For a =I- b (a,b E So) we have [alu = [b]u. Since o is the
least congruence on S with SI as a rr-class then there exist elements Xi,Yi E SI
and Pi,qi E S1 (i = 1,2, . .. n) such that a = X1PWl, XlqlYl = X2P2Y2, ...
, xnqnYn = b. We may assume Yi = 1 since PiYi = qiYi if Yi =I- 1. Then
a = apl = bP1 , b = bqn = aq.; and so ISol ~ 2. We get the same result if SI is a
two-element left zero semigroup. Consequently, So is either a two-element left
zero semigroup or a two-element right zero semigroup.

Assume that SI = {u , v} is a right zero semigroup and So = {a, b} is a left
zero semigroup. Then au = a(au) = a = a(av) = av and, similarly, bu = bv. If
ua = athen ua = vua = va. Similarly, va = a implies va = ua. If ua =I- a and
va =I- athen ua = b = va. Hence au = av and ua = va. Similarly, bu = bv and
ub = vb. Thus the equivalence with classes SI, [u}, {b} is a congruence on S
which is not comparable with the Rees congruence on S modulo So.

Assume that SI = {u, v} and So = {a, b} are right zero semigroups. Then
ua = a = va and ub = b = vb. If au = av and bu = bv then the equivalence on
S with classes SI , {al, {b} is a congruence on S which is not comparable with
the Rees congruence on S modulo So. Assume that au =I- av. If au = a and
av = b then bu = a and bv = b, Hence the equivalence on S with classes {u, a},
{v,b} is a congruence on S wich is not comparable with the Rees congruence
on S modulo So. If au = band av = athen bu = band bv = a, Hence the
equivalence on S with classes {v ,a}, {u ,b} is a congruence on S which is not
comparable with the Rees congruence on S modulo So. We also get that S is
not a tl semigroup if we suppose bu =I- bv.

We can prove, in a similar way, that S is not a tl-semigroup if SI is a two
element left zero semigroup and So is a two-element right zero semigroup or S1
and So are two-element left zero semigroups. Thus the first part of the theorem
is proved. As the semigroups listed in the theorem are tl-bands, the theorem is
proved. 0



Chapter 2

Putcha semigroups

In [80], M.S. Putcha characterized semigroups which are decomposable into
semilat t ice of archimedean semigroups. He showed that a semigroup S is a
semilattice of arehirneden semigroups if and only if, for every a, b E S, the
assumption a E S1bS1 implies an E S1 a2 SI for some positive integer n . Semi
groups with this condition are called Putcha semigroups. In this chapter we also
consider the left Putca semigroups and the right Putcha semigroups (Definition
2.1). It is proved that a semigroup is a simple left and right Putcha semigroup if
and only if it is comple tely simple. By the help of this result , the retraet exten
sion of completely simple semigroups by nil semigroups are charaet erized . It is
shown that a semigroup is a retraet extension of a completely simple semigroup
by a nil semigroup if and only if it is an archimedean left and right Putcha
semigroup containing at least one idempotent elem ent.

Definition 2.1 A sem igroup S is called a left (right) Putcha semigroup if, for
every x, y E S , th e assumption y E x S 1 (y E Sl x) implies ym E X

2 S 1 (ym E
SI x2) for some positive integer m.

A semigroup S is called a Putcha semigroup i/, for every x , y E S , the
assumption y E SI xS1 implies ym E SI x2SI for som e positive integer m.

Lemma 2.1 (U1J) S is a left (right) Putcha semigroup if and only if, for any
x,y E Sand positive integer n , there is a positive integer m such that (xy)m E
x nS 1 ((xy)m E Sl yn) .

Proof. Let S be a left Putcha semigroup. As xy E x S 1, there is a po sitive
integer t such that

From this it follows that , for every pos itive integer k , there is a positive integer
p such that

35



36 CHAPTER 2. PUTCHA SEMIGROUPS

Let n be an arbitrary positive integer. Assume 2k ~ n . Then , for some positive
integer 1ön,

Conversely, assume that a semigroup S satisfies the condition that, for every
z , y E S and positive integer n , there is a positive integer m such that

Assume that

for some x,y ES. Then
y2 = xu

for some u E Sand so, for n = 2, there is a positive integer m such that

which implies that S is a left Putcha semigroup. The proof of the assertion for
right Putcha semigroups is similar. 0

Lemma 2.2 (Ul]) A left (r ight) Puicha semigroup is a Puicha semiqroup,

Proof. Let S be a left Putcha semigroup and a, b E S be arbitrary elements
with

that is ,
b = xay

for some z , y E s'. We can suppose that one of x and y is in S. Then, by
Lemma 2.1, there is a positive integer m such that

and so
bm +1 = (xay)m+l = x(ayx)may E Sla2Sl.

Hence S is a Putcha semigroup. We can prove, in a similar way, that a right
Putcha semigroup is a Putcha semigroup. 0

Theorem 2.1 ([80]) A semigroup S is a semilattice of archimedean semiqroups
if and only if it is a Putcha semigroup. In such a case the corresponding semi
lattice congru ence equals

11 = {(a,b) E S x S: am E SbS, bn E SaS for som e positive integ ers m,n}

and is the least semilattice congruence on S.
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Proof. Let S be a Puteha semigroup. Define a relation 'Tl on S as follows.

'Tl = {(a,b) ES x S: am E SbS, b" E SaS for some positive integers m,n} .

It is easy to see that 1/ is reflexive and symmetrie on an arbitrary semigroup.
We show that 'Tl is transitive on S . Let a,b,e ES be arbitrary elements with

(a, b) E 'Tl

and
(b,e) E 1/,

that is,
am E SbS, b" E SaS,

and
bt E SeS, ek E SbS

for some positive integers m, n , t, k. As S is a Puteha semigroup, for every
positive integer T, there is a positive integer u sueh that

Assurne that 2r ~ n. Then

Similarly,
a" E SeS

for some positive integer v. Hence 'Tl is transitive. We show that 'Tl is a congruenee
on S . Let a, b,sES be arbitrary elements with

(a,b) E 1/.

Then there are positive integers m, n and elements z , y, u, v E S such that

and
b" = xay.

Let k be a positive integer such that 2k ~ m.
and since sa E SlaSl then

Since S is a Putcha semigroup

for some positive integer t. Thus, for some e. ] ES,

(sa)t = ea
2k f = eam a

2k
-

m f = eubva
2k

-
m f

and so
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As S is a Putcha semigroup, we have

for some positive integer p. We can prove, in a similar way, that

(sb)q E SsaS

for some positive integer q. Thus

(sa, sb) E TJ.

Hence TJ is left compatible on S. Similarly, TJ is right compatible on S. Thus TJ
is a congruence on S. As (a, a2 ) E TJ and (be, eb) E TJ for every a, b, e ES, the
factor semigroup Y = S/TJ is a semilattice. Hence S is a semilattice Y of the
TJ-classes So. Let Sc< be an TJ-class of S. Then, for every a, b E So, there are
positive integers m, n and elements x, y, u, v E S such that

and
ubv = an.

Assume x E S-y and y E S6. Then

in Y, that is,

As
(xayx)a(yxay) = b3m

and
xayx, yxay E So-y6 = So,

we get

Similarly,

Hence So is an archimedean semigroup.
We show that TJ is the least semilattice congruence on S. Let o be an

arbitrary semilattice congruence on S. Assume (a, b) E TJ for some a, b ES, that
is, xay = bi and ubv = ai for some x ,y,U,v E Sand some positive integers i,j.
Then

a a ai = ubv a ubHlv = uxaybv a xaubvy =

xai+ly o xay = bi a b.

Hence TJ ~ a . Thus the first part of the theorem is proved.
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Conversely, assume that a semigroup S is a semilattice Y of archimedean
semigroups Sa (0 E Y). Assume

for some a, b ES. Then
xay = b3

for some x,y E S. It is clear that xay = b3 and xa2y are in the same semilattice
component S«. As Sa is archimedean,

b3 k E Sxa2yS ~ Sa 2 S

for some positive integer k. Consequently, S is a Putcha semigroup. o

Corollary 2.1 Let G be a subgroup 0/ a semigroup S. I/ S is a semilattice Y
0/ archimedean semigroups Sa (0 E Y) and G n Sa f:. 0 then G ~ s.;
Proof. It is obvious, because the elements of G are in the same 1J-class of S. 0

Corollary 2.2 Every left (right) Putcha semigroup is decomposable into a semi
lattice 0/ archimedean semigroups.

Proof. By Lemma 2.2 and Theorem 2.1, it is obvious. o

Theorem 2.2 ([16]) A semigroup S is archimedean and contains at least one
idempotent element i/ and only i/ it is an ideal extension 0/ a simple semigroup
containing an idempotent by a nil semigroup.

Proof. Let S be an archimedean semigroup containing an idempotent e. Let
K = S eS. It is obvious that K is an ideal of S. As S is archimedean, K contains
all idempotent elements of S. Let A be an arbitrary ideal of S and a E A be
arbitrary. Then

and so
K~A.

Hence K is the kernel of Sand so, by Corollary 2.30 of [19], it is simple. As S
is archimedean, the Rees faetor semigroup S / K is nil.

Conversely, let S he a semigroup which is an ideal extension of a simple
semigroup K containing an idempotent by a nil semigroup. Let a, b E S be
arbitrary elements. Then

an , bm E K

for some positive integers m and n. As K is simple,

an E xs:« ~ SlbS1 .

Similarly,

Hence S is an archimedean semigroup. n
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Theorem 2.3 (Ul)} A semigroup is a simple left and right Putcha semigroup
if and only if it is completely simple .

Proof. Let S be a simple left and right Putcha semigroup. First we prove that
if x E S and n is an integer with n 2: 3 then x n is regular. So let x E S and
n 2: 3. Because of S is simple, x n-2 belongs to SxnS and so

for some u, v E S . Then, for any positive integer m , we have

xn = (xu)mxn(vx)m.

By Lemma 2.1, there is a positive integer m such that

(xu)mExns

and

Hence
x n E xnSxn,

that is, z" is regular. Consequently, S has an idempotent element , We show
that S is completely simple. Assume, in an indirect way, that S is not completely
simple. Then, by Theorem 1.22 , S contains a bicyclic semigroup

C = (p ,q;pq = e)

having e as identity element, We have

qp E Slp.

Since S is a right Putcha semigroup,

qp = (qp)m = xp2

for some x E SI and a positive integer m. Then we obtain

x e = xp2q2 = qpl = l E C.

But

and so we get
qp = xp2 = x ep2 = lp2.

This is a contradietion. Consequently, S is completely simple.
Conversely, let S be a completely simple semigroup. Then it is isomorphie to

a Rees matrix semigroup M = M(I ,G,J;P) over a group G with a sandwich
matrix P. We can identify Sand M. Let (i ,a,j), (k,b ,n) E S be arbitrary
elements. Then

(i,a ,j)(k,b ,n) = (i,a,j)2(i, (Pj,iapj,d-Ipj,kb,n) E (i ,a,j)2S

which implies that S is a left Putcha semigroup. We can prove, in a similar way,
that S is a right Putcha semigroup. 0



41

Theorem 2.4 ([.li}) A semigroup is an archimedean left and right Putcha
semigroup containing at least one idempotent elem ent il and only il it is a retract
ext ension 01 a completely simple sem igroup by a nil semigroup.

Proof. Let S be an archimedean left and right Putcha semigroup with idem
potent elements. Then , by Theorem 2.2, S is an ideal extension of a simple
semigroup K containing all idempotents of S by the nil semigroup N = S / K.
It is easy to see that an ideal of a left and right Putcha semigroup is also a left
and right Putcha semigroup. So, by Theorem 2.3, K is completely simple and
so it is isomorphie to a Rees matrix semigroup M(I,G,JjP) over a group G
with a normalized sandwich matrix P. Since K is also weakly reductive then,
by Theorem 1.35, it is an ideal of the translational hull O(K) of K, where, by
Theorem 1.33,

O(K)={(k,a,h)E7I X G X IJ:(Vi E I,j E J)Pj ,k(i)aPUo)h,i=Pj,k(io)ap(j)h,il.

The product of two elements (k,a, h) and (I, b,g) of O(K) is given by:

(k, a, h)(I, b,g) = (k 0 I,aPUo )h,f (io)b, ho g).

Moreover, if (i ,g,j) E K and (k ,a,h) E O(K) are arbitrary elements then

(k ,a,h)(i,g,j) = (k(i) ,aPUo)h,ig,j) E K

and
(i ,g,j)(k,a,h) = (i,gPj ,k(io)a,(j)h) E K.

Abitranslation (k,a,h) E O(K) is inner if and only if k and h are constant
transformations. By Theorem 1.36, there is an ideal extension (S' , +) of O(K)
by N such that S is a subsemigroup in S'. Let e denote the identity of O(K).
Then

~: Xf-+x+e

is a retract homomorphism of S' onto O(K). The operation on S' is determined
by~. If x ,y E N* = N - {O} and s,t E O(K) then x +t = ~(x)t, t+x = t~(x),

s +t = st, x +y = xy in N ifxy rt O(K) and x +y = ~(x)~(y) ifxy E O(K).
We prove that the restrietion of ~ to S is a retract homomorphism of S onto
K. It is sufficient to show that, for every s E N* , we have ~(s) E K, that is,
~(s) is an inner bitranslation of K. Let s be an arbitrary element of N*, and
let ~(s) = (k,a ,h) E O(K). As N is a nil semigroup,

for some positive integer n. Thus

(k ,a,ht = (ko ,b,ho).

Let (i ,g,j) E K be arbitrary. Because of S is a left Putcha semigroup, by
Lemma 2.1, there is a positive integer m and an element x E S such that

(s(i ,g,j))m = snx.
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=((k ,a,h)(i,g,j))m = (4)(s)(i,g ,j))m = (s(i,g,j))m = 4>((s(i ,g,j))m) =
4>(sn x) = (k,a,h)n4>(x) = (ko,b,ho)(kx ,bx ,hx) = (ko,bpho,kz(iojbx,(ho)hx).

From this we get
k(i) = ko

for every i E I, that is, k is a constant transformation. Using that S is also a
right Putcha semigroup, we obtain that h is a constant transformation. Hence

4>(s) E K.

Thus the first part of the theorem is proved.
Conversely, since a completely simple semigroup is an archimedean left and

right Putcha semigroup, it is easy to see that a retract extension of a completely
simple semigroup by a nil semigroup has the same property. 0



Chapter 3

Commutative semigroups

In 1984, A. Restivo and C. Reutenauer solved the Burnside problem for semi
groups. They proved that a finitely generated semigroup is finite if and only if
it is periodic and has the permutation property Pn for some integer n ~ 2. This
fact drown the attention to semigroups satisfying some permutation properties.
The semigroups satisfying the permutation property P2 are exactly the com
mutative semigroups. All of semigroups considered in this book are generalized
commutative semigroups and most of them have some permutation property. In
their examinations the commutative semigroups are appeared in subcases. That
is why we deal with them in aseparated chapter. The literature of commutative
semigroups is very rich , but we present only those results which will be used in
the other chapters of t his book.

In the first part of the chapter we deal with the semilattice decomposition
of commutative semigroups. It is proved that every commutative semigroup is
a semilattice of commutative archimedean semigroups. Moreover l a semigroup
is a commutative archimedean semigroup containing at least one idempotent
element if and only if it is an ideal extension of a commutative group by a
commutative nil semigroup. It is proved that every commutative archimedean
semigroup without idempotent element has a non-trivial group homomorphic
image. It is proved that a commutative semigroup is separative if and only if
its archimedean components are cancellative.

In the second part of the chapter we determine the subdirectly irreducible
commutative semigroups. The following results are proved. A semigroup is a
subdirectly irreducible commutative semigroup with a globally idempotent core
if and only if it is isomorphie to G or GO or F l where G is a non-trivial subgroup
of a quasicyclic p-group (p is a prime) and F is a two-element semilattice. A
commutative semigroup with zero and a non-trivial annihilator is subdirectly
irreducible if and only if it has a non-zero disjunctive element. A semigroup is a
commutat ive subdirect irreducible semigroup with a nilpotent core and a trivial
annihilator if and only if it contains an identity, a non-zero divisor of zero and
a non-zero disjunctive element, and the set of all non-divisors of zero forms a
subdirectly irreducible commutative group.
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In the last part of the chapter we determine the commutative A-semigroups.
It is shown that a semigroup S is a commutative A-semigroup if and only if it is
isomorphie to either G or ao, where G is a nontrivial subgroup of a quasicyclic
p-group (p is a prime) or N or NI, where N is a commutative nil semigroup
satisfying the divisibility chain condition.

First of all we give a condition for commutative semigroups to be finite.

Theorem 3.1 Every finitely generated periodic commutative semigroup is fi
nite .

Proof. By Theorem 1.1, it is obvious.

Semilattice decomposition of commutative semigroups

o

Theorem 3.2 Every commutative semigroup is a left and right Putcha semi
group.

Proof. It is obvious. o

Theorem 3.3 ([95)} Every commutative semigroup is a semilattice of commu
tative archimedean semigroups.

Proof. By Theorem 3.2 and Corollary 2.2, it is obvious. o

Definition 3.1 A semigroup S is called apower joined semigroup if, for every
a, b ES, there are positive integers m, n such that an = b'",

It is clear that apower joined semigroup is a special archimedean semigroup.

Theorem 3.4 ([66)} Let S be a commutative semigroup. S is a semilattice of
power joined semigroups if and only if every group and every group with zero
homomorphic image of S is a periodic group and a periodi c group with zero,
respeetively.

Theorem 3.5 ([64)} The following conditions on a commutative semigroup S
are equivalent.

(i) S is power joined.

(ii) Every subsemigroup of S is archimedean.

(ii i) Every finitely generated subsemigroup of S is archimedean.

Theorem 3.6 ([64)} Every proper subsemigroup of a commutative semigroup is
archimedean if and only if it is either power joined or a two-element semilattice.
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Theorem 3.7 ([19)} A commutative semigroup is simple if and only if it is an
abelian group.

Proof. It is obvious. o

Theorem 3.8 ([95J) A semigroup is a commutative archimedean semigroup
containing at least one idempotent element if and only if it is an ideal extension
of a commutative group by a commutative nil semigroup.

Proof. Let S be a commutative archimedean semigroup containing at least one
idempotent element. Since S is a left and right Putcha semigroup, by Theorem
2.4, it is an ideal extension of a completely simple commutative semigroup G by
the nil semigroup N = S/G. It is clear that Gis a group and N is commutative.

Conversely, assurne that a semigroup S is an ideal extension of a commuta
tive group G (with the identity element e) by a commutative nil semigroup N
(with the zero element 0). It is clear that

f: s t-+ es (s E S)

is a retract homomorphism of S onto G. Then, by Theorem 2.4, S is an
archimedean semigroup with an idempotent. Since the commutative semigroups
form a variety then, by Theorem 1.40, S is commutative. 0

Theorem 3.9 Every commutative archim edean semigroup without idempotent
element has a non-trivial group homomorphic image.

Proof. Let S be a commutative archimedean semigroup without idempotent
element. Then, by Theorem 1.42,

Sa = {z E Si ai = xa i for some positive integers i,j}

is the least reflexive unitary subsemigroup of S that contains a ES, and the
principal right congruence 'Rsa of S is a group congruence on S. Assurne that
Sa = S (otherwise the result is immediate). If s is an arbitrary element of S
then

for some positive integers i and j. If

also holds for some positive integers n and m then

and so
i+m=j+n,

that is,
j -i =m-n,



46 CHAPTER 3. COMMUTATIVE SEMIGROUPS

beeause S does not eontain idempot ent elem ents. Thus

, . .
S = J - Z

is defined for each sES. Define an equivalenee

a = {( x ,y) E S x S i x' = V'} .

As a' = 1 and (S:I: )' = S ' + x' for every s ,x E S , we get that ais a congruence on
S and Sla is isomorphie to the addi tive semigroup of the integers or the non
negative integer s or the positive integer s. These semigroups have non-trivial
group homomorphie images. Thus the theorem is proved . 0

Cancellation and separativity

Theorem 3.10 ([19j) A commuta tive semigroup can be em bedded in to a group
i/ and only i/ it is cance llative.

Proof. It is clear tha t the eaneella tivity is necessary for a semigroup to be
embeddable into a group.

Conversely, assume that S is an arbitrary eommuta tive cancella tive semi
group. On the direct product S x S , consider th e followin g relation a . For
arbitrary a, b, c, dES,

(a,b) a (c,d) if and only if ad = bc in S.

It ean be easily verified that ais a eongrue nce on S X S. Let G-I denot e th e
factor semigroup of S x S modulo a . For every a,b E S, let [a,b) denote the
a -class of S x S containing (a,b). Then

G- 1 = {[a,b]: a, b ES}.

It is easy to see that [a,a) is the identity element of G-I , and [b,a) is the inver se
of [a,b] (a,b ES), that is, G- 1 is a group. It can be easily verified that

is an embedding of Sinto G- 1 • o

Definition 3.2 Th e group G- 1 = {[a , b]: a , b E S} defined in th e proo] 0/ th e
preoious th eorem is called th e quot ieni group 0/ a com m utative semigroup S .

Theorem 3.11 Let S be a separative com m uta tive sem igroup and z , y be ar
bitrary elem ents 0/ S su ch that x n+l = xny [or some positive in teger n. Th en

x2 = xv·
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Proof. We can suppose that n ~ 2. Then

Thus

by the sparativity of S. Repeating this process n - 1 times, we get

o

Theorem 3.12 ((75]) On a semigroup S the /ollowing are equivalent.

(i) S is commutative and separative.

(ii) S is a semilattice 0/ commutative cancellative semigroups.

(iii) S is embeddable into a semilattice 0/ abelian groups.

(iv) S is a subdirect product 0/ commutative cancellative semigroups with a zero
possibly adjoined.

Proof. (i) implies (ii). Let S be a commutative separative semigroup. Then,
by Theorem 3.3 , S is a semilattice Y of commutative archimedean semigroups
Sa, a E Y. Let a, z , y be arbitrary elements in Sa, a E Y with ax = ay. As Sa
is archimedean, x n = as for some sES and a positive integer n. Then

and so, by Theorem 3.11, x 2 = xy. Similarly, y2 = xy. Thus

As S is separative, we get x = y. Hence Sa is cancellative.
(ü) implies (üi). Assume that a semigroup S is a semilattice Y of com

mutative cancellative semigroups Sa, a E Y. By Theorem 3.10, every Sa is
embeddable into its quotient group (Ga, *a)' The groups (Ga, *a) are commu
tative, Sa ~ Ga and

(We note that the restrietion *a to Sa is the operation of the semigroup S.)
We can suppose that Ga n Gß = 0 if a i:- ß. Let G = UaEyGa. We define an
operation * on G as follows:
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(0: ,ß E Y). It is easy to see that (G, *) is a semigroup which is a semilattice Y
of commutative groups Ga (0: E Y) and S is a subsemigroup of G.

(üi) implies (iv). Let t/J be an isomorphism of Sinto a semigroup G which is
a semilattice Y of abelian groups Ga. Let 0: ~ ß ; o: ,ß E Y . Define fa,ß : Ga -+
Gß by

f a,ßa t-+ aeß,

where eß is the identity element of Gß. It is easy to see that the family {fa,ß} a?ß
is a transitive system of homomorphisms which determines the operation in G.
Thus Gis a strong semilattice Y of abelian groups Ga, 0: E Y. By Theorem
1.13, Gis a subdirect product of commutative groups Ga with a zero possible
adjoined, that is, there is an embedding {} of G into the direct product ILey Ta,
where Ta = Ga or Ta = G?,. Then S is a subdirect product of the projections
of St/J{} in various Ta, each of which is a commutative cancel1ative semigroup
with a zero possibly adjoined.

(iv) implies (i). It is obvious. 0

Corollary 3.1 If S is a com m utative cancellat ive archimedean semigroup with
an idempotent elem ent then it is a commutative group.

Proof. Let S be a commutative cancel1ative archimedean semigroup with an
idempotent. Then, by Theorem 3.8 , it is an ideal extension of a commutative
group G by a commutative nil semigroup N. Assume G =I S. Let a be an
arbitrary element in S - G. Then an E G for some positive integer n ~ 2. Hence
an = an e, where e denotes the identity element of G. As S is cancel1ative, we
get a = ae E G which is a contradiction. Consequently, G = S. 0

Definition 3.3 A com m utati ve cancellati ve archimedean semigroup without
idempotent is called an N -semigroup.

Theorem 3.13 ([75j) Let N be the additive semigroup of non-negative integers,
G be an abelian group, I : G -+ N be a function satisfying:

(i) I(o:,ß) + I(o:ß,-y) = I(o:,ß-y) + I(ß,-y) (o:,ß,-y E G) ,

(ii) I(o: ,ß) = I(ß,o:) (o: ,ß E G) ,

(iii) I( e,e) = 1, where e is th e identity ofG,

(iv) for each 0: E G, there ezists a positive int eger m su ch that I(o:m ,o:) > O.

On the sei S = N x G define a multiplication by

(m ,o:)(n,ß) = (m + n + I(o: ,ß) ,o:ß).

Th en S with this multiplication is an N -semigroup, to be denoted by (G,I).
Conv ersely, every N-semigroup is isom orphie to some sem igroup (G ,I).
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Subdirectly irreducible commutative semigroups

For a prime p, let Zpoo denote the multiplieative group of all eomplex pn_
roots of unity for n = 1,2, . . .. A group is ealled a quas icyclic p-group if it is
isomorphie to Zpoo.

Theorem 3.14 ([85)} A semigroup is a subdireetly irreduc ible eommutative
semigroup with a globally idempot ent eore i/ and only i/ it is isom orphie to
G or ao or F , where G is a non-triv ial subgroup 0/ a quas ieyclie p-group (p is
a pr ime) and F is a two-element semilattiee.

Proof. Let S be a subdidirectly irreducible eommutative semigroup with a
globally idempotent eore K. First, assume that S does not eontain zero element.
Then K is a eommutative simple semigroup and so, by Theorem 3.7 , it is a
eommutative group. Then S is a homogroup without zero, By Theorem 1.47 , S
is a eommutative group. Let Adenote the least nonunit (normal) subgroup of
S. Sinee A does not eontain any proper nonunit subgroup, it is a eyelie group
of a prime order p, Let s be an arbitrary element of S with s :I e, where e is
the identity element of S . Then A is eontained by the eyelie subgroup [s] of S
gen erated by s and so the order of s is mp for some positive integer m. Then [s]
has a subgroup B with order m. If m :11 then A ~ B and so the order of B is
np for some positive integer n < m. Continuing this proeedure, we ean eonclude
that the order of s is pk for some positive integer k. Then S is a subgroup of a
quasieyelie p-group.

Next , assume that S has a zero element 0 and ab = 0 for some element
a, b ES. It is easy to see that

A = {b ES: ab = O}

is a non-trivial ideal of S and so the eore K of S is eontained by A. Then

aK = {O}.

Let
B = {a ES : aK = {On.

Then B is a non-trivial ideal of Sand so

whieh implies that K is nilpotent. But this is a eontradict ion . Henee

S = Gu {O}

where G is a subdirectly irredueible eommutative semigroup. If G has a zero
element O· then {O, O'} is an ideal of Sand so G has only one elem ent . In this
ease S is a two-element semilattiee. Assume that G does not eontain a zero
element . Then G has a globally idempotent eore . Thus G is a subgoup of a
quasieyelie p-group (p is a prime) and S = ao. As the eonverse statement is
trivial, the theorem is proved. 0
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Theorem 3.15 ([85}) A commutative semigroup with zero and a non-trivial
annihilator is subdireetly irreducible i/ and only i/ it has a non-zero disjunctive
element.

Proof. By Theorem 1.49, it is obvious. o

Theorem 3.16 ([85}) A semigroup is a commutative subdirect irreducible semi
group with a nilpotent core and a trivial annihilator i/ and only i/ it conteins an
identity, a non-zero divisor 0/ zero and a non-zero disjunetive element, and the
sei 0/ all non-divisors 0/ zero [orms a subdirectly irreducible commutative group.

Proof. Let S be a commutative subdirectly irreducible semigroup with a nilpo
tent core K and a trivial annihilator. By Lemma 1.4, S has a non-zero disjunc
tive element. Let

F = {f ES; K/ = {On.

Since K 2 = {O},
K~F.

Clearly, F is an ideal. As the annihilator of S is trivial, K is not the annihilator
of S and so F =I S. Let G = S - F, K o = K - {O}, Fo = F - K. So
{{O},Ko, Fo, G} is a partition of S (Fo may be empty). If gE G then

gK =I {O},

that is,
gK=K,

because gK is an ideal of S. 1= {s E S; gs = O} is an ideal of S. K is not
inc1uded in I , therefore

1= {O},

that is, 9 is not a divisor of zero. Since elements of F are divisors of zero, G
is the set of all non-divisors of zero. S has a non-trivial annihilator and so, for
every k E K o,

K = Sk = Gk U{O},

that is, there is an element e E S such that

ek = k.

Let
J = {s E S; es = s}.

It is easy to see that J is a non-trivial ideal of Sand so

K~J.

Hence
ek = k
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for every k E K. Then, for every positive integer n and every k E K, we get

Let

a = ({a,b) ES x Sj ena = emb for some positive integers n, m}.

Clearly, a is a congruence on S and alK = idK . Then

an PK = ids,

where PK denotes the Rees congruence on S modulo K. As S is subdirectly
irreducible and PK -I ids, we get

a = ids.

As (es,s) E a for every sES, we get

es = s

for every sES, that is, e is the identity element of S. Let 9 E G and k E Ko
be arbitrary. Then

G9 k = Ko

and so there exists 91 E G such that

It can be proved, as above, that 919 is the identity element of Sand so 91 is an
inverse of 9. Then Gis a subgroup of S. Let 91k = 92k for some 91,92 E G and
k E K o• Then

k = 91192k

and so 91192 is the identity element of S, that is, 91 = 92. Gk = Ko, therefore
the set G and K o have the same cardinality. Let "I be a congruence on the group
generated by a subgroup H of G. Let

"1* = ({a,b) E S x S; a E bH}.

It is easy to verify that "1* is a congruence on Sand its restrietion to G equals
"I. Let tu , i EIbe a family of congruences on G with niEI1Ji = ida and "I: be
the family of corresponding congruences on S. If k1 , k2 E K o then

for some 9 E G. Therefore (k 1, k2) E "I: means that k1 E k2Hi or that there
exists 9i E H, such that k 1 = k29i, or that k29 = k29i , or 9 = 9i, or 9 E Hi,
So (k1 , k2 ) E n iEI1J: if and only if 9 E nHi if and only if 9 = e if and only if
k1 = k2 • Therefore
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and, since S is subdirectly irreducible, there exists i E I such that

.,,; = ids

and

"'i = idG·

Hence G is subdirect1y irreducible.
Conversely, let S be a commutative setnigroup satisfying the conditions of

the theorem. S has a trivial annihilator and contains a non-zero divisor of zero.
We show that S is subdirectly irreducible. Let G be the set of all non-divisors of
zero, ko be a non-zero disjunctive element and K be the core of S (By Lemma
1.5, K exists). If I is a non-trivial divisor of zero then

1ft = 0

for some ft =f. O. For every k E K, there exist z , y E S such that

xfty = k

and so
Ik = xlfty = 0

which means that k is an annihilating element for the set P = S - G, that is,

PK = {O}.

If G has only one element then S = pI and P is a setnigroup with non-trivial
annihilator and P contains a non-zero disjunctive element. Then, by Theorem
1.49, P and so, by Theorem 1.45, S = pI is subdirect1y irreducible. Let G
have more than one element. Since G is subdirectly irreducible, it has a least
nonunit subgroup H. Let." be a non-identity congruence on S. The considered
disjunctive element ko does not form an .,,-class, so there exists sES such that
s =f. ko and

(s,ko)E.".

If s rt K then, for some x,y E S (x and y are not both void),

xsy = ko,

whence
(xkoY, ko) E .".

If »u E G then

So
xy rt G

and
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Therefore,

and
(hko , O) E "I

for every h EH, that is,

{(u ,v) E S x S; U = vor u,v E Hko} ~ "I.

If sE K o then
s = goko

for some go E G, because K = Sko = Gko U {O}. In this case the set of all
9 E G with (gk o,ko) E "I forms a nonunit subgroup of G (this subgroup contains
go f e). So H is included in this subgroup and

{(u,v) E S x S; u = vor u ,v E Hko} ~ "I.

Hence
{(u,v) E S x Sj u = v or u ,v E Hko} ~ "I

is always valid. Let "10 be the intersection of all non-identity congruences of S.
By

{(u ,v) E S x S; u = v or u ,v E Hko} ~ "I,

Hko is not divisible by "10 , so "10 f ids and, by Corollary 1.1, S is subdirect1y
irreducible. 0

Corollary 3.2 A semigroup S is commutative and cancellati ve if and only if it
is a subdirect product of subdirectly irreducible abelian groups.

Proof. See Corollary IV.7.4 of[75]. o

Corollary 3.3 A semigroup S is commutative and separative if and only if it is
a subdirect produci of subdirectly irreducible abelian groups with a zero possibly
adjoined.

Proof. See Corollary IV.7.5 of[75].

Commutative d-semigroups

o

Theorem 3.17 ([87},[100J) The follow ing statement on a group Gare equiua
lent .

(i) G is an abelian group which is a d-semigroup.

(ii) G is a group in which all subgroups form a chain.

(iii) For every two elem ents a and b of G, either a = b" or b = an for some
positive integer N.
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(iv) G is a subqroup of a quasicyclic p-group for some prime p ,

(v) G is a group in which all subsemigroups form a chain.

Proof. (i) implies (ii). It is obvious.
(ii) implies (iii). Let G be a group satisfying (ii). Then Gis periodic and all

cyclic subgroups form a chain, therefore we have (iii).
(iii) implies (iv). Immediately the periodicity of G follows from (iii). Also

it follows that all cyclic subgroups of G form a chain with respect to inclusion.
Accordingly the order of every element, hence of every cyclic subgroup is apower
of a same prime number p. Let C(z) denote the cyclic subgroup generated by
z. Let Fn be the set of all elements of order pn in G. We have a finite or infinite
sequence {Fn } and

00

Let z,y E Fn • By (iii), either

or
y =zm

for some positive integer m. Assuming z = yn,

C(z) ~ C(y).

Since IC(z)1 = IC(y)1= pn, we have

C(z) = C(y).

The same for y = z ". Since the converse is obvious, C(z) = C(y) if and only
if z and y are in the same Fn . Choose one element ao from each Fn • Then we
have a finite or infinite sequence

00

G = UC(an ) .

n=l

If the sequence {C(an )} is finite,

for some n, that is, Gis a cyclic subgroup of order pn . Thus we have (iv).
(iv) implies (v). Let G be a quasicyclic p-group for some prime p , that

is, G = U~=lC( an ), where C( an) is a cyclic group of order p": Let H be a
subsemigroup of G, and let

H~=FnnH,
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where Fn has been defined above, Clearly,

Let x E H~ . By the definition of Fn , we have

C(an ) = C(x) S H.

Ir the set {n i : H~i =1= 0} is infinite then

H=G;

if the set is finite, and if n m is its maximum,

Consequently G has no proper subsemigroup, hence no proper subgroup except
C(an ) . We have (v).

(v) implies (i). Assume that (v) is satified by a group G. Let S(x) denote the
cyclic subsemigroup of G generated by the element x of G. Then, for arbitrary
elements a,b E G, either S(a) S S(b) or S(b) S S(a). Then

ab= ba.

Hence G is an abelian group. As the subgroups of abelian groups are normal
subgroups, (v) implies that all normal subgroups form achain with respeet to
inclusion, Hence G is a ß-semigroup. 0

Theorem 3.18 ([87],[100J) A group CO with zero is a ß-semigroup ij and only
ij G is a ß-semigroup.

Praof. Let G be a group and CO be the group G with zero 0 adjoined. Let p
be any congruence on G. A congruence pO on CO is associated with p as follows:

pO = {(a, b) E G x G: a = b or (a, b) E p}.

The mapping p -+ pO is one-to-one; and p C (T if and only if pO C (T0. Let wa
and Wao denote the universal relations on G and GO, respeetively. We will prove
that every congruence on CO is either Wao or pO, a congruence associated with
p on G. Let (T be a congruence on CO such that (a, 0) E (T for some a E G. Let
x be an arbitrary element of CO. Then

x = aa-1x

and so
(x,O) E (T.

Therefore
(T = Wao.

o
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Theorem 3.19 ([87},[100}) An abelian group GO with a zero adjoined is a ß
semigroup if and only if G is a subgroup of a quasicyclic p-group for some prime
p.

Proof. By Theorem 3.17 and Theorem 3.18, it is obvious. o

Theorem 3.20 A semilattice is a ß-semigroup if and only if it has at most
two elements.

Proof. Let L be a semilattice of order ~ 2. As usual we define the odering
x:::; y (x,y E L) by x = xy. Let a and b be distinct elements of Land let

Ja = {x: x:::; a}, h = {x: x:::; b}.

Then Ja and Jb are ideals of L. Let Pa and Pb denote the Rees congruences of
L modulo the ideals Ja and h, respectively. Clearly,

Suppose L is a ß -semigroup. Then, by Theorem 1.53, either Ja Chor hc Ja'
For the first case, a E Jb, namely a < b; for the second b E Ja, namely b < a,
Therefore L is achain. Suppose that L contains at least three elements a, b, c
with a < b < c. Let

Pa,b = {(x,y) E L xL: a:::; x,y :::; b or x = y}.

It is clear that Pa ,b is an equivalence. We show that pa,b is a congruence. Let
x,y,z be arbitrary elements of L . Assume (x,y) E Pa,b. We can suppose that
x # y. Then a :::; x, y :::; b, that is, a = axay, x = xb and y = yb. If z :::; a
then zx = z = zy and so (zx, zy) E pa,b. If b :::; z then z = zx and y = zy and
so (zx,zy) E pa,b. If a < z < b then a = ax = azx , a = ay = azy, zx = zxb
and zy = zyb. Therefore, a:::; zx,zy:::; b, that is , (zx,zy) E Pa,b. Consequently,
pa,b is a congruence on L. Similarly, Pb,c is a congruence on L. As L is a ß
semigroup, we have either pa,b C Pb,c or Pa,b = Pb,c or Pb ,c C Pa,b' In the first
case b :::; a :::; c; in the second case a = b = c; in the third case a :::; c :::; b, These
contradist the assumption a < b < c. Thus L has at most two elements. The
converse is obvious. 0

Definition 3.4 A semigroup S is said to be naturally totally ordered if

(i) S is totally ordered (:::;);

(ii) For every a, b,cES, a :::; b implies ab :::; ac and ca :::; cb;

(iii) For every a, b ES, a :::; b implies bla.

Theorem 3.21 ([100}) Let R be the semigroup of all positive real numbers with
addition. A commutative nil ß-semigroup can be embedded into ihe Rees fa ctor
semigroup RjJ modulo J, where J is defined by either {x ER: x > 1} or
{x ER: x:::; 1}, :::; is the usual order.
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Proof. Let S be a eommutative nil .6.-semigroup. Then , by Theorem 1.56 , S
satisfies the divisibility chain eondition. A eommutative nil semigroup satisfying
the divi sibility ehain eondition is naturally totally ordered. Aeeording to [18],
S can be embedded into the Rees faetor semigroup R/I modulo I, where R
denotes the semigroup of all positive real numbers and I is defined by either
{x ER: z > I} or {x ER: z ~ I} , ~ is the usual order. 0

Theorem 3.22 ([87},[100}) A semigroup S is a eommutative .6.-semigroup if
and only if it is isomorphie io either G or ao, where G is a nontrivial subgroup
of a quasieyclie p-group (p is a prime) or N or NI , where N is a eommutative
nil semigroup sat isfying the divisibility ehain eonditions.

Proof. Let S be a eommutative .6.-semigroup. Then, by Remark 1.2 and
Theorem 3.3, S is either arehimedean or a disjoint union S = So U SI of two
arehimedean semigroup So and SI , where So is an ideal of S. First, assume that
S is an arehimedean semigroup. Consider the case whcn S has no idempotent
element. Then, by Theorem 3.9 , S has a non-trivial group homomorphie image.
From Theorem 1.52 it follows that S does not eontain proper ideals, that is,
S is simple. As a eommutative simple semigroup is a eommutative group, by
Theorem 3.17, S is a non-trivial subgroup of a quasieyelie p-group for some
prime p. Next , eonsider the ease when S has an idempotent element f. It is
easy to see that K = Si is the kernel of S . If IKI = 1, that is, i is the zero
of S then S is a (eommutative) nil semigroup and so it satisfies the divisibility
ehain eondition. Assume IKI > 1. Then K is simple and so it is a subgroup of
S. As K is also an ideal of S, by Theorem 1.52, K = S whieh implies that S is
a quasieyelie p-group for a prime p.

Next , eonsider the case when S is a disjoin union S = So U SI of two
arehimedean subsemigroups So and SI, where So is an ideal of S. Sinee S?
is isomorphie to the factor semigroup S/ So of S modulo So then, by Theorem
1.51, Sp and so SI is a .6.-semigroup. By the previous part of the proof, SI
is either non-trivial subgroup of a quasieyelie p-group (p is a prime) or a com
mutative nil semigroup whieh satisfies the divisibility ehain eondition. In the
seeond case ISl l = 1 by Theorem 1.57 . Thus SI is a subgroup G of a quasi
eyelie p-group (p is a prime). If ISol = 1 then S = GO. We note that S is
a two-element semilattice if IGI = 1. Assume ISol > 1. Recall that So is a
eommutative arehimedean semigroup. If So did not eontain idempotents then,
by Theorem 3.9 , it would have a non-trivial group homomorphie image, contra
dicting Theorem 1.52. Assume that So has an idempotent t. Then K o = iSo
is the kernel of So whieh is a group. By Theorem 1.52 , IKoI = 1 and so So is
a nil semigroup. By Theorem 1.59 , SI eontains only one element e. As S is
a .6.-semigroup, the ideals eS1 and So of S are eomparable only in that ease
when S = eS1• Let a be an arbitary element of S. Then a = ez for some
x E SI and so ea = eex = ez = a. Henee e is the identity element of S, that
is, S = SJ. By Corollary 1.2, So is a .6.-semigroup. Thus the first part of the
theorem is proved. As the semigroups listed in the theorem are eommutative
.6.-selnigroups, the theorem is proved. 0



Chapter 4

Weakly commutative
•sermgroups

A semigroup S is called left (right) weakly commutative if, for every a, b ES,
there meist z ES and a positive integer n such that (ab)n = bx ((ab)n = xa). A
semigroup which is both left and right weakly commutative is called a weakly
commutative semigroup. In this chapter we deal with left weakly commutative,
right weakly commutative and weakly commutative semigroups. It is shown
that a semigroup is a semilattice of left archimedean (right archimedean, t
archimedean) semigroups if and only if it is right weakly commutative (left
weakly commutative, weakly commutative). It is proved that a weakly commu
tative O-simple semigroup is a group with a zero adjoined. Moreover, a semi
group is weakly commutative archimedean and contains an idempotent element
if and only if it is an ideal extension of a group by a nil semigroup. We get, as
a consequence, that a semigroup is weakly commutative and regular if and only
if it is a Clifford semigroup. We show that a right (left) weakly commutative
semigroup is embeddable into a group if and only if it is cancellative. At the end
of the chapter we deal with the least weakly separative congruence on weakly
commutative semigroups. It is proved that if S is a left weakly commutative
semigroup then a defined by a o b if and only if ab" = bn +1 and ba" = an +1

for a positive integer n is a weakly separative congruence on S. Similarly, if S
is a right weakly commutative semigroup then T defined by a T b if and only if
bna = bn+1 and anb = an+! for some positive integer n is a weakly separative
congruence on S. Moreover, 'Ir = U nT is the least weakly separative congruence
on a weakly commutative semigroup.

Definition 4.1 A semigroup S is called a Zeft (right) weakZy commutative semi
group if, for every a, se S, there exist x E Sand a positive integer n such that
(ab)n = bx ((ab)n = xa). We say that S is a weakZy commutative semigroup if
it is both. Zeft and right weakly commutative, that is, for every a, b E S there are
x,y ES and a positive integer n such that (ab)n = xa = by.

59
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Semilattice decomposition of weakly commutative semigroups

Theorem 4.1 Every Zeft (right) weakZy commutative semigroup is a left (right)
Putcha semigroup.

Proof. Let S be a left weakly commutative semigroup and a, b E S be arbitrary
elements with a E bS l , that is, a = bs: for some z E SI. As S is left weakly
commutative, there exist u E S and a positive integer n such that

Thus S is a left Putcha semigroup. We can prove, in a similar way, that a right
weakly commutative semigroup is a right Putcha semigroup. 0

Theorem 4.2 A semigroup is a semilattice 0/ Zeft (right) archimedean semi
groups i/ and only i/ it is right (left) weakly commutative.

Proof. By Theorem 1.10, a semigroup S is decomposable into a semilattice
of left (right) archimedean semigroups if and only if, for every a, b ES, the
assumption b E aS (b E Sa) implies bi E Sa (bi E aS) for some positive integer
i . Let S be a semilattice of left archimedean semigroups. As ab E aS, we get

(ab)i E Sa,

that is,
(ab)i = xa

for some x E S and a positive integer i. Hence S is right weakly commutative.
Conversely, let S be a right weakly commutative semigroup and a, b E S be

arbitrary elements with b E aS. Then

b=ax

and, for some u E Sand a positive integer i, we have

bi = (ax)i = ua E Sa.

Hence S is a semilattice of left archimedean semigroups.
As the dual assertion can be proved in a similar way, the theorem is proved.

o

Corollary 4.1 A semigroup is a semilattice 0/t-archimedean semigroups i/ and
only i/ it is weakZy commutative.

Proof. Let S be a weakly commutative semigroup. Then S is right weakly
commutative and so, by Theorem 4.2, it is a semilattice Y of left archimedean
semigroups So. (0 E Y). We show that every So. is also right archimedean. Let
o E Y and a, b E So. be arbitrary elements. Since So. is left archimedean then
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am = xb and b" = ya for some z , y E Sa and some positive integers m , n. Since
S is left weakly commutative, there are positive integers t and r such that

and
(yar = aw

for some v E Sß' w E S-y (ß ,"f E Y) . It is clear that a = aß = a"f and so
vbv , waw E Sa. As

a2mt = (bv)2 = b(vbv) E is;
and

b2nr = (aw)2 = a(waw) E aS~ ,

we get that Sa is right archimedean. Thus every Sa (a E Y) is t-archimedean.
The convese statement is obvious by Theorem 4.2. 0

Theorem 4.3 ([78}) Every weakly commutative semigroup is a semilattice 0/
weakly commutative archimedean semigroups.

Proof. Let S be a weakly commutative semigroup. Then, by Theorem 4.2, S is
a semilattice Y ofleft archimedean and so archimedean semigroups Sa (o E Y).
Let a, bE Sa be arbitrary elements. There is a positive integer i such that

(ab)i = xa = by

for some x E Sß and y E S-y (ß ,"f E Y). It is clear that aß = a"f = a and so
abz; yab E Sa' As

(ab)i+ l = (abx)a = b(yab),

we get that Sa is weakly commutative. o

Theorem 4.4 A weakly commutative O-simple semigroup is a group with a zero
adjoined.

Proof. Let S be a weakly commutative O-simple semigroup. By Theorem
4.3, S is a semilattice of weakly commutative archimedean semigroups. By
Theorem 2.1, it is easy to see that S has two archimedean components SI and
So (SOSI ~ So), and So = {O}. Hence S = Sr, and SI is a simple semigroup.
It is clear that SI is weakly commutative. Then, by Theorem 4.1, SI is a left
and right Putcha semigroup and so, by Theorem 2.3, it is completely simple.
By Theorem 1.25, SI is a Rees matrix semigroup M(I ,G,JjP) over a group G
with a sandwich matrix P. We can suppose that P is normalized, that is, there
are io E I and jo E J such that

Pio,i = Pi,io = e,

the identity of G, for every i E land j E J. Let (i ,g ,jo) ,(io ,h,j) E SI be
arbitrary elements (i E I , g , hE G, j E J). Then, for every positive integer n ,

(i ,(gh)n ,jo) = (i,gh ,jot = ((i ,g,j)(io ,h,jo)t.
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As 8 is weakly commutative, there is a positive integer n such that

(i,(ght,jo) = (io,h,jo)(m,x,k) = (io,hx,k)

and
(i,(gh)n,jo) = (t,y ,r)(i,g,j) = (t,YPr,ig,j)

for some (m,x,k),(t,y,r) E 81 • Then we have

i = io, j = jo

for every i E land jE J. Hence 81 is isomorphie to G. Thus 8 is a group with
a zero adjoined.

As every group is weakly commutative, the converse statement is obvious. 0

Theorem 4.5 A semigroup is weakly commutative archimedean and contains
an idempotent i/ and only i/ it is an ideal extension 0/a group by a nil semigroup.

Proof. Let 8 be a weakly commutative archimedean semigroup containing
an idempotent t. Then, by Theorem 2.2, 8 is an ideal extension of a simple
semigroup K by a nil semigroup N. Let a, b E K be arbitrary elements. As 8
is weakly commutative, there are z , y E 8 such that

(ab)n = xa = by

for some positive integer n. As

(abt+l = (abx)a = b(yab)

and
abx,yab E K,

we get that K is weakly commutative. Then, by Theorem 4.4, K is a group.
Conversely, assume that a semigroup 8 is an ideal extension of a group G

by a nil semigroup N . Let a, b E 8 be arbitrary elements. As N = 81G is a nil
semigroup, there is a positive integer n such that

(ab)n E G.

Let e denote the identity element of G. Then

(ab)n = e(ab)n = (e(ab))(abt-l = (e(ab))e(ab)n-l = .. .

= (e(ab)t = ((eab)e)n = ((ea)(be))n.

As G is a group, there are elements u, v E G such that

((ea)(be))n = beu = vea.

As
(ab)n = ((ea)(be))n = b(eu) = (ve)a,

8 is weakly commutative. By Theorem 2.2, 8 is archimedean and conteins an
idempotent. Thus the theorem is proved. 0
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Corollary 4.2 A semigroup is weakly eommutative and regular if and only if
it is a Clifford semigroup.

Proof. Let S be a weakly eommutative regular semigroup. By Theorem 4.3,
S is a semilattiee Y of weak.ly commutative archimedean semigroups SOl' As S
is regular, every SOl is regular and so contains at least one idempotent element.
By Theorem 4.5, we ean conelude that every SOl is a group. Then, by Theorem
1.21, S is a Clifford semigroup.

Conversely, assurne that S is a Clifford semigroup. Then it is regular. By
Theorem 1.21, S is a semilattiee Y of groups Ga. If a E Ga, b E Gß are
arbitrary element of S then ab, ba E Gaß. Then ab = bax and ab = yba for some
x,y E Gaß. Hence S is weakly commutative. Thus the eorollary is proved. 0

Theorem 4.6 A right (left) weakly eommutative semigroup is embeddable inio
a group if and only if it is eaneellative.

Proof. The caneellation is neeessary for any semigroup to he emheddable into a
group. Conversely, let S be a right weakly eommutative caneellative semigroup.
Then, for every a, b ES, there is a positive integer n sueh that

(ab)n E Sa n Sb

Then, by Theorem 1.23 of [19], S can be embedded into a group. The proof
is similar if S is left weakly commutative. 0

The least weakly separative congruence on a weakly commutative
semigroup

Lemma 4.1 On an arbitrary semigroup S,

o = {(a, b) E S x S: abn = bn+1 , ban = an+! for a positive integer n}

and

r = {(a,b) ES x S: b":« = bn+1
, anb = an+! for a positive integer n}

are equivalenees on S.

Proof. Let S be an arbitrary semigroup. It is elear that a is reflexive and
symmetrie. To show that a is transitive, assurne (a, b) Eu, (b,c) E a for some
a,b ES. Then

and
bc" = en+1

, cb" = bn+1

for a positive integer n. Then
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and, similarly,

Thus
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and, similarly,

Hence o is transitive.
We can prove, in a similar way, that T is an equivalence on S. o

Lemma 4.2 ([47]) If p is a congruence on a semigroup Sand abn+1 p bn+2 ,

(abnt p (bn+1r for some positive integers n and T then (abn)m p (bn+1)m for
all positive inieqers m ~ T. Similarly, bn+1a p bn+2 and (bnar p (bn+1r, fOT
some positive integers n and T, implies (bna)m p (bn+1)m for all positive integers

m~T.

Proof. We prove only the first part of the lemma, because the second part can
be proved in a similar way. Assume abn+1 p bn+2 and (abnr p (bn+1r for some
a, b E Sand positive integers n, T. Let m be an arbitrary positive integer with
m ~ T. We can suppose that m> T. Then

(abn)m = (abn)m-r(abnr p (abn)m-r(bn+1r

= (abn)m-r-labnbn+l(bn+1r-l p (abn)m-r-l(nn+1r+1 p ... p(bn+1)m.

o

Lemma 4.3 ([78]) If S is a left (right) weakly commutative semigroup th en ,
for arbitrary a , b E Sand arbitrary positive integer n, th ere is a pos itive integer
m and an element xE S such that (ab)m = bnx ((ab)m = yan).

Proof. Let S be a left weakly commutative semigronp. Then, by Theorem 4.1 ,
S is a left Putcha semigroup. Let a, b E S be arbitrary elements and n be a
positive integer. Then

(ab)k = im

for some u E S and a positive integer k, By Lemma 2.1, there is a positive
integer t such that

Let m = kt. Then

for some x E S.
We can prove the result for right weakly commutative case in a similar way.

o

Remark 4.1 If ab" = bn+1 (bna = bn+1) holds for elements a and b of a
semigroup and a positive integer n then abk = bk+1 (bka = bk+1) holds for all
positive integers k ~ n. This fact will be used without comment.
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Theorem 4.7 ([78]) // S is a left (right) weakly commutative semigroup then

o = {(a,b) E S x S: ab" = bn+l, bo" = an+1 for a positive integer n}

(7 = {(a, b) ES x S: bna = bn+l, anb = an+1 [or a positive integer n})

is a weakly separative congruence on S .

Proof. Let S be a left weakly commutative semigroup. By Lemma 4.1, a is an
equivalence on S. We shall show that a is a congruence on S. Let a, b E S be
arbitrary elements with a a b. Then

and

for a positive integer n. Let s be an arbitrary element of S . It follows from
Lemma 4.3 that

for some x E S and positive integers m. Hence

and
(sa)(sb)m = (sa)bnx = s(abn)x = sbn+1x = sb(bnx) = (sb)n+l.

Similarly, we obtain

(bs)(as)k = (as)k+l, (sb)(sa)k = (sa)k+l

for a positive integer k. Hence
as a bs

and
sa a sb.

Next we prove that u is weakly separative. Let a2 o ab a b2 • It follows from
ab a b2 that

for a positive integer m , and so

Since o is a congruence, we have
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This implies
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for a positive integer k. Thus

and so
a a b.

Hence a is a weakly separative congruence. We can prove, in a similar way, that
T is a weakly separative congruence on a right weakly commutative semigroup.

o

Lemma 4.4 ([47]) Let S be a weakly commutative semigroup and p a weakly
separative congruence on S. If ab" p bn+1 p b":« and ba" p an+1 p anb for
elements a, b E Sand some positive integer n then a p b,

Proof. By the iduetion for n. Since p is a weakly separative congruence, the
result is true for n = 1. Assume that the assertion holds for some n 2: 1.
We prove that the assertion also holds for n + 1. Let a, b E S be elements with
abn+1 p bn+2 p bn+la and ban+1 p an+2 p an+1b. Since S is weakly commutative,

for some y E Sand a positive integer k. Then

(abn)k+l = abn+1y p bn+2 y = bn+1(abn)k

= bn+labn(abn)k-l p (bn+l)2(abn)k-lp ... p (bn+l)k+l.

Similarly,
(bn+1)t+1 p (bna)t+l

for some positive integer t. By Lemma 4.2, it follows that

for some positive integer m. Let

We prove that ml = 1. Assume, in an indireet way, that ml =I- 1 and let

{
m I if ml is even;

m2 = ml + 1 ifml is odd.

Then, by Lemma 4.2,
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Let

Then

and
((abn)m a)2 = (abn)2ma = (abn)m2 p (bnH)m2 = ((bnH )ma)2

= (bn+1)m2 p (bna)m2 = (bna)2ma = ((bna)m a)2.

Moreover,
(abn)ma(bn+l)ma

= (abn)ma-labnbnH(bn+l)ma-l p (abn)ma-l(bnH)2(bn+l)ma-l

= (abn)ma-l(bn+l)ma+l p ..• p(bn+1)2ma = ((bnH )ma)2.

and, similarly,
(bna)ma(bnH)ma p ((bn+1)ma)2.

Since p is a weakly separative congruence, it follows that

and so
ml ::; ma.

But this contradicts ma < ml. Hence

and so

We can prove
ban p anH p anb

in a similar way. Then, by the condition for n , we can conclude

a p b.

o

Theorem 4.8 ({47J) 1r = CF n T is the least weakly separativ e congruence on a
weakly commutative semigroup.

Proof. Let S be a weakly commutative semigroup, Then, by Theorem 4.7 , 1r

is a weakly separative congruence on S. We show that 1r is the least weakly
separative congruence on S. Let p be an arbitrary weakly separative congruence
on S. If a 1r b for some a,b E S then
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for a positive integer. Then

and
ban pan+! panb.

By Lemma 4.4, it follows that
a p b.

Hence

o



Chapter 5

R-, L-, 1-l-commutative
•sermgroups

In this chapter we deal with semigroups in which the Green equivalence n (L:, 1l)
is a congruence. These semigroups are called n-commutative (L:-commutative,
1l-commutative) semigroups. It is clear that a semigroup is 1l-commutative if
and only if it is n -commutative and L:-commutative. We show that every 'R»
commutative semigroup is a semilattice of archimedean semigroups. We note
that, in general, the archimedean components are not n-commutative. At the
end of the chapter we deal with left soluble (right soluble, soluble) semigroups
of length n. A monoid, with the identity e, is called soluble (right soluble, left
soluble) of length n if it is 1l-commutative (n-commutative, L:-commutative)
and its n t h derived (right derived, left derived) semigroup equals e. We show
that a cancel1ative semigroup is soluble of length n if and only if it is both
right and left soluble oflength n. Moreover, a cancel1ative soluble semigroup of
length n can be embedded in a soluble group of length n.

Definition 5.1 A semigroup S is called an n-commutative (L:-commutative,
1l-commutative) semigroup if, for every elemenis a, b E S, there is an element
x E SI such that ab = bae (ab = xba, ab = bxa] ,

We note that, in [106], an n-commutative (L:-commutative, 1l-commutative)
semigroup is called a right c-semigroup (left c-semigroup, c-semigroup).

Remark 5.1 Every n-commutative (L:-commutative) semigroup is also a left
(right) weakly commutative semigroup. Moreover, every 1l-commutative semi
group is weakly commutative.

Theorem 5.1 A semigroup is 1l-commutative if and only if it is both n-com
mutative and L:-commutative.

Proof. Assume that S is an L:-commutative and n-commutative semigroup.
Let a, b E S be arbitrary. To show that ab = bxa for some x E SI, we can

69
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suppose tha t ab =I- ba. As S is R -commutative,

ab = bay

for some y ES. As S is also .c-commutative,

ay = zya

for some z E SI. Hcnce
ab = bzya.

Consequently, S is 1l- commutative.
Conversely, let S be a 1l-commutative semigroup and a, b E S arbitrary

eleme nts. Then
ab = bxa

for some x E SI. We can suppose that x ES. Then

bx = xyb

and
xa = az x

for some y , z E SI. Hen ce
ab = xyba

and
ab = baz»,

Thus S is both R-commutative and .c-commutative. o

Theorem 5.2 ([55J) A semigroup is R-commutative [Ei-commutctive, 1l-com
mutative) ij and only ij the Green's equivalence R {E, H} on 8 is a com mutative
congruence on S.

Proof. We deal with only the R-commutative case. .c-commutative case can be
proved in a similar way. The 1l-commutative case then follows from Theorem
5.1 and the fact 1l = R n .c.

Let S be an R-commutative semigroup and a, b,s E S be arbitrary eleme nts
with a =I- b and (a ,b) ER. Then

and so
a=by,

b = ax

for some z , y E 8. As as = bys = bsyt and bs = axs = asxt' for some t, t' E 8 1 ,

we get
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that is ,
(as ,bs) E 'R.

Hence 'R is right compatible. As 'R is a left congruence on an arbitrary semi
group, it is a congruence on S. As ab = bax and ba = aby for some x,y E sI,
we have

(ab,ba) E 'R.

Hence 'R is a commutative congruence on S.
Conversely, assume that S is a semigroup in which the Green equivalence 'R

is a congruence. Then, for arbitrary elements a,b ES,

(ab,ba) E 'R

and so
ab = bax

for some x E SI. Hence S is 'R-commutative. o

Corollary 5.1 Ev ery 'R- commutative (.C-commutative, 1l-commutative) nil
semigroup is commutative.

Proof. It is easy to see that the Green equivalence 'R (.c , 1l) is the identity
relation on a nil semigroup S, that is, S/'R ~ S (stc ~ s, S/1l ~ S) . Thus,
by Theorem 5.2 , S is commutative if it is also 'R-commutative (.c-commutative,
1l-commutative). 0

Theorem 5.3 ([55}) Ev ery 'R- commutative semigroup is decomposable into a
semilatt ice 01 archimedean semigroups.

Proof. Let S be an 'R-commutative semigroup. Then , by Remark 5.1 , it is left
weakly commutative. Then, by Theorem 3.1, S is a left Putcha semigroup, By
Corollary 2.2, S is a semilattice of archimedean semigroups. 0

We note that the subsemigroups (and so the archimedean components) of
an 'R-commutative semigroup are not necessarily 'R-commutative.

Lemma 5.1 ([55}) Ev ery right ideal 01 an 'R-commutative semigroup is a two
sided ideal.

Proof. Let R be a right ideal of an 'R-commutative semigroup. Then, for every
r E Rand sES, there is an element x in SI such that

sr = rsx ER.

So
SR~R,

that is, R is also a left ideal of S. o
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Lemma 5.2 ([55J) /1 K is an ideal 01 an n-commutative semigroup such that
K is simple, then K is an n-commutative semigroup.

Proof. Let kI,k2 be arbitrary elements of K. It is evident that k2klK is a
right ideal of 8. By Lemma 5.1, k2klK is a two-sided ideal of 8 and so

Then there is an element k in K such that

that is K is n -commutative. o
Since every n-commutative semigroup is left weakly commutative then , by

Theorem 4.7,

a = {(a,b) E 8 x 8: ab" = bn+l, bo" = an+l for a positive integer n}

is a congruence on an n -commutative semigroup 8.

Lemma 5.3 ([55]) /18 is an n-commutative semigroup and I is an ideal 018
such that (TI/ = id] and I is archimedean, then I is right cancellative.

Proof. Let I be an ideal of an n-commutative semigroup 8 such that I is
archimedean and the restriction (TII of a to I equlas id]. Assume ac = bc for
some a,b,c E I. As I is archimedean, there are elements x,y,u,V E land a
positive integer n such that

and
bn =ucv.

As 8 is n-commutative,
zc = cxz

and
uc = cuw

for some z, w E 8 1• Thus

an+l = ao" = axcy = acxzy = bcxzy = bxcy = ba"

and
bn+l = bbn = buc» = bcuwv = acuwv = aucv = ab",

So
(a,b) Eu

from which we get
a= b.

Thus I is right cancellative. o
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Definition 5.2 For an 1l-commutative, R-commutative, .c-commutative semi
group S , let as , ßs and '"YS denote the colleetion of all maps K: S x S J-+ S
such that X1X2 = x2K(X1,X2)X1, X1X2 = X2X1K(X1,X2), X1X2 = K(X1,X2)X2X1 ,
respeetively for any Xl, X2 ES. For arbitrary Xl, . . . , Xm ES, we write

K(X1, ... , xm ) = K(K(X1,"" xm/2),K(xm/2" '" xm )) ,

where m = 2n . The subsemiqroups of S defined by

s(n) = ({K(X1 ,'" , Xm ) : Xl, ... ,Xm E S,m = 2n, K E as}) ,

skn
) = ({K(X1, •.. ,Xm ) : Xl, . •' ,Xm E S,m = 2n ,K E ßs}),

sin) = ({K(X1" .' ,Xm ) : Xl, .•. ,Xm E S,m = 2n,K E '"Ys})

are called the n t h derived semigroup, n t h right derived semigroup, n t h left derived
semigroup, respeetively.

Notice that if S is also cancellative then there is only one K in as , ßs and
'"YS , respectively. Further, for a group S, s(n) = skn) = sin), and the above
definition is the usual definition for a soluble group of length n.

Lemma 5.4 ({106}) If S is an R-commutative {Ei-commutotioe] semigroup then

(i) S is left (right) reversible ,

(ii) S is cancellative only if its firs right (left) derived semigroup is a group.

Proof. Let X1 ,X2 E S be arbitrary elements. Then, for some K(X1 ,X2) E S ,
we have x1S:2 X1X2S = X2X1K(X1,X2)S ~ X2S. Hence (i) is satisfied.

The proof of (ii): For any x ,y ES, XX = xxK(x,x) and by the cancellation
law X = xK(x,x) = K(x,x)x. But then xy = xK(x,x)y and yx = yK(x,x)x ,
so yK(x,x) = K(x,x)y = y. Thus S contains an identity element. Since S is
cancellative, ßs contains only one element and so

and

Therefore,

o

Lemma 5.5 ({106}) If S is a cancellati ve 1l-commutative semigroup then S (l) =

(S~), si1»).

Proof. By Theorem 5.1 , it is obvious. n
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Definition 5.3 A monoid S (with identity e) is called soluble (right soluble, left
soluble) of length n if it is an 1l-commutative (n-commutative, l.-commutaive)
semigroup and sen) = {e} (S1n) = {e}, sin) = {e}}.

Theorem 5.4 ([106)} A cancellative right soluble semigroup of length n can be
embedded in a soluble group of length n.

Proof. Let S be a cancellative right soluble semigroup of length n. By Lemma
5.4, S is left reversible and so, by Theorem 1.24 of [19], S is embeddable into
the group G of right quotient of S. We know that the elements of S~) satisfies
the law K(Yl, ... , Ym) = e, where m = 2n and K E ßs. Since ßs has only one
element and 9 :2 S then K(a,b) = a-Ib-Iab for any a,b ES. We will see that
the elements of G satisfy the law K' = (Xl,." ,X2m) = e for K' E ßa, that is,
K'(YI, ... , Ym) = e, where Yi = K'(X2i-I,X2i), m 2 i > O. Let X2i-1 = ab- l

and X2i = cd-l for some a, b, c, dES. Then

Yi = (ab-l)-l(cd-l)-lab-Icd- l =

bd(d-Ia-l da)(a- l c-Iac)(c-Ib-Icb)b-l d- l =

bdXib-Irl,

where x. E S~). Thus b-Id-IYidb = Yi, where Yi = K(b,d)Xi E S~). We can

therefore choose Pi E S for each integer i, m 2 i > 0, so that p;IYiPi = Yi E S~).

Notice that, for rES and Y E S~), r-IYr = YK(Y,r) E S~). Thus, writing
P = PIP2 . .. Pi-I, q = Pi+lPi+2 '" Pm and P = PPiq, we get

P-IYiP = q-Ip;lp-IYiPPiq = q-l K(Pi,P)p-lYipK(p,Pi)q E S~l).

But then

K'(yl, ... ,Ym ) = PK'(P-IyIP, ... ,p-IYmP)p-1 ==

PK(P-IyIP, .. . ,p-IYmP)p-1 = pp- l = e.

o

Lemma 5.6 ([106)} A cancellative semigroup S is soluble of length n if and
only if it is both right and left soluble of length n.

Proof. Let S be a soluble semigroup of length n. By Lemma 5.5, S(1) :2 S~).

Proceeding by induction we assume that s(r) :2 s};"). Then

s(r+l) = (s(r»)(l) :2 (S};"»)~) = S};"+l).

Thus, if sen) = ethen s1n) = e. Similarly, sin) = e. Hence S is both right and
left soluble of length n.

Conversely, if S is both left and right soluble of length n and G is its right
quotient group then G also its left quotient group. By Theorem 5.4, G is soluble
of length n. Since G:2 S then G(n) = s'» = e. 0
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Theorem 5.5 ([106)} A cancellative soluble semigroup of length n can be em
bedded in a soluble groups 0/ length n.

Proof. By Theorem 5.4 and Lemma 5.6, it is obvious. o



Chapter 6

Conditionally commutative
•senugroups

In this chapter we deal with semigroups S in which, for any a, b ES, the as
sumption ab = ba implies axb = bxa for all z ES. These semigroups are
called conditionally commutative semigroups, In the beginning of the chapter we
present equivalent conditions for a conditionally commutative semigroup to be
a semilattice of archimedean semigroups, a reetangular band of t-archimedean
semigroups, or a semilattice of t-archimedean semigroups, respectively. We
prove the followig results. A conditionally commutative semigroup is a semi
lattice of archimedean semigroups if and only if it is a band of t-archimedean
semigroups. A conditionally commutative semigroup is a reetangular band of
t-archimedean semigroups if and only if it is archimedean. A conditionally com
mutative semigroup S is a semilattice of t-archimedean semigroups if and only
if, for every a,b ES, there is a positive integer k such that (ab)k = (ba)k. We
also prescnt results about weakly separative conditionally commutative semi
grollpS. It is shown that every weakly separative conditionally commutative
semigroup is a disjoint union of commutative cancellative pover joined semi
groups. It is also proved that a conditionally commutative semigroup is weakly
separative and regular if and only if it is a normal band of abelian groups.
It is shown that the simple conditionally commutative semigroups are exaetly
the Rees matrix semigroups over an abelian group. By the help of this result,
the conditionally commutative archimedean semigroups containing at least one
idempotent element are described. It is shown that S is a conditionally com
mutative archimedean semigroup containing at least one idempotent element if
and only if it is a retraet extension of a Rees matrix semigroup over an abelian
group by a nil semigroup N such that if 4> is the retraet homomorphism of Sand
c denotes the produet in N then the relations aob = bo a, 4>(a)4>(b) = 4>(b)4>(a)
imply a 0 z 0 b = box 0 a for every a, b,x E N - {O}. At the end of the chapter,
it is shown that a semigroup is conditionally commutative and t-archimedean
containing at least one idempotent element if and only if it is a retraet extension
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of an abelian group by a conditionally commutative nil semigroup.

Definition 6.1 A semigroup 8 is called a conditionally comm utative semigroup
i/, [or any a, b E 8 , ab = ba implies axb = bxa [or all z E 8.

Lemma 6.1 Ev ery conditionally com mutati ve semigroup satisfies the identity
aba": = amba [or every positive integer m.

Proof. It is obvious, because a and am are commutable with each other. 0

Corollary 6.1 Ev ery conditionally commutative cancellative semigroup is com
mutative.

Proof. As aba2 = a2ba for every elements a and b of a conditionally commuta
tive semigroup 8, we get ba = ab if 8 is also cancellative. 0

Theorem 6.1 ([13}) For a conditionally commutative semigroup 8 , the [olloui
ing conditions are equivalent.

(i) 8 is a band 0/ t-archimedean semigroups.

(ii) S is a semilattice 0/ archimedean semigroups.

Proof. (i) implies (ii). Let a, b be arbitrary elements of a conditionally com
mutative semigroup 8 with b E 8 1a8 I

, that is,

b= xay

for some x , y E 8 1 . As 8 is a band of t-archimedean semigroups, by Theorem
1.7,

xay -t xa 2y

and so there is a positive integer n such that

which implies

that is,
(xay)n E 8 I xa2 y <;;; 8 I a28I

•

Thus 8 is a Putcha semigroup and so, by Theorem 2.1, 8 is a semilattice of
archimedean semigroups.

(ii) implies (i). Assume that a conditionally commutative semigroup 8 is
a semilattice of (conditionally commutative) archimedean semigroups. Then ,
by Theorem 2.1, 8 is a Putcha semigroup. Let a E 8 , z , Y E SI be arbitrary
elements. As a divides xay (x , y E 8 1 ) , it follows that a2 divides some power of
xay, that is,
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for a positive integer n and some u, v E SI. In view of Lemma 6.1, we have

and

whence
(xay)n+l = xa 2yuav = uavxa2y E xa2ySl n Sl xa2 y

and, by Theorem 1.7, S is a band of t-archimedean semigroups. o

Theorem 6.2 (flS)) On a conditionally commutative semigroup S, the [ollow
ing are equivalent.

(i) S is a rectangular band 0/ t-archimedean semigroups.

(ii) S is archimedean.

Proof. (i) implies (ii). Let SbearectangularbandB = LxRoft-archimedean
semigroups Si ,j (L is a left zero semigroup, R is a right zero semigroup, i E L,
j ER). Let a E Si ,j , s e Sm ,n be arbitrary elements of S. Then, for arbitrary
xE Si ,m and y E Sn ,j , we have

As Si ,j is an archimedean semigroup,

for some u, v E Si,j and a positive integer k. Hence

ak E SbS.

We can prove, in a similar way, that

for some positive integer h. Thus S is archimedean.
(ii) implies (i). Assume that S is a conditionally commutative archimedean

semigroup. Then, by the previous theorem, S is a band of t-archimedean semi
groups. It is sufficient to show that if T is the band congruence induced by the
decomposition of S then ab = ba implies a T b for every a, b E S. In fact, if
a,b E S , there are x,y E SI such that

Therefore if ab = ba then it follows that

an+2 = axbya = b(xaya) = (axay)b.
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Hence

that is
blt an +2

•

We can prove, in a similar way, that

altbm+2

for some positive integer m. Then

and so, by Theorem 1.7,
arb.

o

Theorem 6.3 ([13]) For a conditionally commutative semigroup S, the [olloui
ing are equivalent.

(i) S is a semilattice 0/ t-archimedean semigroups.

(ii) For every a,b ES, there is a positiv e integer k su ch that (ab)k = (ba)k .

Proof. (i) implies (ü). Let a, b E S be arbitrary elements. Then

(ab)n = xba

and
(ba)n = aby

for a positive integer n and elements z , y E SI. Thus

(ab)2n+l = a2bybxba = abybxba2 = (ba)2n+l.

(ü) implies (i). Let a, b E S be arbitrary elements such that a = xby for
some z , y E SI. Then there are positive integers p and q such that

aP = (xby)P = (yxb)P

and

Hence
ap+q = (yxb)P(byx)q,

that is, b2 divides ap+q• Thus S is a Putcha semigroup and so S is a semilattice
Y of archimedean semigroups Sa , a E Y. Let c,d E Sa, a E Y. Then there is
a positive integer r such that

for some u , v E Sa. Thus

crk = (udv)k = (dvu)k = (vud)k

for some positive integer k. Hence Sa is t-archimedean. o
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Theorem 6.4 (fl S)} For a condit ionally com mutati ve sem igroup S , th e [olloui
ing are equivalent .

(i) S is t-archimedean.

(ii) S is archimedean and, for every a , b ES, there is a positive integer m such
that ab": = b":«.

Proof. (i) implies (ii). Let S be a conditionally commutative t-archimedean
semigroup. Then, for every a, bE S , there is a positive integer n such that

an = bx = yb

for some x , y E SI. Therefore

a2n = bxby

and, by Lemma 6.1, it follows that

Hence S satisfies (ii).
(ii) implies (i). Let S be a conditionally commutative semigroup satisfying

(ii). Let a, b E S be arbitrary elements. Then there are positive integers m , n
such that

and
b" = xay

for some x , y E SI. From these it follows that

and

Then S is t-archimedean, o

Corollary 6 .2 If S is a conditi onally commutative t-archimedean semigroup
then, [or every a , b ES, there is a positive integer n such that an = bz = zb for
some z E S .

Definition 6.2 A sem igroup S is called a strongly reversibl e semigroup if, for
every a,b ES, th ere are positive integers h ,k,j such that (ab)h = akbi = bia k.

Theorem 6.5 (fl S)} Ev ery conditionally commutative t-archimedean sem igroup
is strongly reversible.
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Proof. Let S be a conditionally commutative t-archimedean semigroup and
a, b E S be arbitrary elements. By Theorem 6.3, there exists a positive integer
k such that

H k = 1 then S is commutative and so

for every positive integer n. Assume k > 1. Then

(ab)k+l = (ab)(ab)k = (ab)(ba)k = ab(ba)k-1ba

= a(ba)k-1b2a = (ab)kba = (ba)k+l.

Hence, by induetion,

for every positive integer n 2': k. Thus, we can suppose that k 2': 2 and (ab)n =
(ba)n for every positive integer n 2': k. By Theorem 6.4 , there exists an integer
m > 1 such that

Then, for every r 2': 0, we get

Thus

and
(ab)k+3 = a(ba)k+2b = a(ab)k+2b = a3b2(ab)kb = a3b3(ab)k,

and therefore we get
(ab)k+m = ambm(ab)k.

Then, using abm+r = bm+ra (r 2': 0), we have

Hence S is strongly reversible. o

Corollary 6.3 Ev ery conditionally commutative archimedean semigroup is a
disjoint union of power join ed semigroups.

Proof. It fol1ows from Theorem 6.2, Theorem 6.5 and from Lemma 6 of [10]. 0

Lemma 6.2 (f13}) In a conditionally commutative weakly separative semigroup
S , anbk = bkan implies ab = ba for every a, bE Sand positive integers n , k.
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Proof. Let S be a weakly separative conditionally commutative semigroup and
a, s« S be arbitrary elements such that anb k = bkan for some positive integers
n , k, By Lemma 6.1 , we have

Then, by Lemma 1.2, it follows that

abk = bka.

Hence, in the same way, it follows that

ab = ba.

D

Theorem 6.6 (f13}) A weakly separativ e conditionally commutative semigroup
S is a disjoin union 0/commutative cancellative power joined semigroups Pi, i E
I. Moreover, [or every a,a' E Pi, b,b' E Pj (i,j E I) , ab = ba implies a'b' =
b'a'.

Proof. Let p be the equivalence relation on S defined by

p = {(a,b) ES X S: an = bm for positive integers n,m}.

ab = ba.

Thus
(ab)m = ambm = an+m.

Hence (a, b) E pimplies (a , ab) E p and the p-classes Pi (i E I) are commutative
cancellative power joined semigroups (see Prop. 5 of [10]). Next, let a, a' E Pi ,
b, b' E Pj (i, j E I) with ab = ba. Then there exist positive integers p, q, T, s such
that

aP = (a,)q, b" = (b')ß.

Since ab = ba implies aPbT = b"aP then

and so, by Lemma 6.2 , a'b' = b'a'. D

Theorem 6.7 ([13]) On a t-archimedean semigroup S , the /ollowing are equiu
alent.

(i) S is condit ionally commutative and weakly separative.

(ii) S is commutative and cancellative.
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Proof. (i) implies (ii). Let S be a conditionally commutative weakly separative
semigroup and a, b E S be arbitrary elements. By Theorem 6.4,

for some positive integer m. Then, by Lemma 1.2,

ab = ba,

that is, S is commutative. By Theorem 3.3, S is a semilattice of (commutative)
cancellative semigroups. As S is t-archimedean, by Theorem 2 of [81], S is
cancellative.

(ii) implies (i). It is obvious. D

Theorem 6.8 (Th. III.4.S 0/ [75}) The /ollowing conditions on a semigroup S
are equivalent.

(i) S is conditionally commutative and weakly cancellative.

(ii) S is a reetangular band 0/ commutative cancellative semiqroups,

(iii) S is embeddable into a Rees matrix semigroup over an abelian group.

Theorem 6.9 (Th. IV.2.1 0/ [75}) The /ollowing conditions on an arbitrary
semigroup S are equioalent .

(i) S is conditionally commutative and the classes 0/S modulo the least semi
lattice congruence are weakly cancellative.

(ii) S is a normal band 0/ commutative cancellative semigroups.

Theorem 6.10 (flS}) An archimedean conditionally commutative weakly sep
arative semigroup is weakly cancellative.

Proof Let S be an archimedean conditionally commutative weakly separative
semigroup. By Theorem 6.2, S is a reetangular band B = Lx R of t-archimedean
semigroups Si,j (L is a left zero semigroup, R is a right zero semigroup; i E L, j E
R). By Theorem 6.7, each Si,i> i E L,j E R is commutative and cancellative.
Then, by Theorem 6.8, S is weakly cancellative. D

Theorem 6.11 (Th. III.5.7.6 0/[75}) The /ollowing conditions on a semigroup
S are equivalent.

(i) S is conditionally commutative and right cancellative.

(ii) S is right commutative (Definition 10.1) and right cancellaiive.

Theorem 6.12 (flS}) For a conditionally commutative semigroup S, the /01
lowing are equivalent.



85

(i) 8 is regular and weakly separative.

(ii) 8 is right (left) regular.

(ii i) 8 is intra-reqular,

(iv) 8 is a normal band of abelian groups.

Proof. (i) implies (ü). Let 8 be a conditionally commutative regular weakly
separative semigroup. Then, for every a E 8 , there is an element x E 8 such
that

a2 = a2xa2 = a2xa2xa2 = a2xa3xa = (a2xa)2.

As a2 = (a2xa)a, we get
a = a2xa,

because 8 is weakly separative, Hence 8 is right regular. We can prove, in a
similar way, that 8 is left regular.

(ü) implies (üi). If 8 is right regular then, for every a E 8, there is an
element x E 8 such that

and so

Hence 8 is intra-regular.
(üi) implies (iv). Let 8 be a conditionally commutative intra-regular semi

group and a, s« 8 be arbitrary elements with bE 8 Ia8I , that is ,

b= xay

for some z , y E 8 1 • As 8 is intra-regular,

a = ua2v

for some u , v E 8. Then

b = xay = xua2vy E 8 I a281
•

Hence 8 is a Putcha semigroup and so it is a semilattice of archimedean semi
groups. Since 8 is conditionally commutative then, by Theorem 6.1, it is a band
of t-archimedean semigroups. Let p denote the corresponding band congruence
of 8. Then we have

ua = u 2a2v p ua2v = a p a2,

and therefore there exist an element z E 8 and a positive integer n such that

(ua) n = a2z.

Then it results
a = (ua)av = (ua)navn = a2zavn,

and 8 is right regular. We can prove, in a similar way, that 8 is left regular.
Thus 8 is completely regular (see IV.1.2 of [73]) and so the statement follows
from IV.2.7j5 of [75].

(iv) implies (i). It is obvious. 0
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Theorem 6.13 ([55}) For a semigroup 5 , th e Jollowing are equivalent.

(i) 5 is a simple conditionally commutative semigroup.

(ii) 5 is a Rees matrix semigroup over an abelian group.

Proof. (i) implies (ü). Let 5 be a simple eonditionally eommutative semigroup.
Let a be an arbitrary element of 5. Then there are elements x ,y E 5 such that

As a3a = aa3 , we get
a3 = axa3a3ya = a3xaaya3

and so xa2ya3 is an idempotent element of 5. We show that 5 is eompletely
simple. Assume, in an indirect way, that 5 is not completely simple. Then, by
Theorem 1.22, 5 has a bicyelie subsemigroup C(p,q) sueh that pq = t, qp #- i ,
where fis an idempotent element of 5. It is evident that C(p, q) is eonditionally
eommutative. So

q2p = q2p2q = qp2q2 = q

whieh is a eontradiction. Consequently 5 is eompletely simple, and so 5 is
isomorphie with a Rees matrix semigroup M(I ,G,JjP) over a group G with a
J x I sandwich matrix P. We mayassume that Pis normalizcd, that is, there
are elements io E land jo E J sueh that

Pio ,i = Pi,io = e

for all i E I and j E J. Here e denotes the identity element of G. Consider
elements (io,g,jo) ,(io, e,jo) and (io,a,jo) of M(I ,G,JjP) , where 9 and a are
arbitrary elements of G. As eg = ge, we have

(io, e, jo)(io, g,jo) = (io, g,jo)(io, e, jo)

and so
(io,ag,jo) = (io, eag,jo) = (io, e,jo)(io,a,jo)(io,g,jo)

= (io,gae,jo) = (io,ga ,jo)

from which we get
ag = ga.

Thus Gis a eommutative group and so (ü) is satisfied.
(ii) implies (i). Assume that a semigroup S is isomorphie with a Rees matrix

semigroup M(I,G,JjP) over a eommutative group G. We show that 5 is
eonditionallyeommutative. Let (i ,g ,j) and (k ,h,l) be arbitrary elements of S
with (i ,g ,j)(k,h,l) = (k ,h,l)(i,g ,j). Then

(i,9Pi,kh,l) = (k ,hpI ,jg,j) ,

that is, i = k and j = I. Let (rn,r,n) be arbitrary element of 5 . Then

(i ,g ,j)(rn,r,n)(k,h,l) = (i ,gPi,mrpn,ih ,j)
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and
(k, h, l )(m, r, n )(i, g, j ) = (i ,hPi ,mrpn,ig ,j).

As G is commuta tive,

gPi ,mrpn,ih = hPi ,mrpn,ig

and so S is conditionally commut a tive.

Corollary 6.4 (f13}) For a semigroup S , th e following are equi valen t.

(i) S is right simple and conditi on ally com m utati ve.

(i i) S is a right abelian group.

o

Proof. Let S be a right simple conditionally commutative semigroup . Then S is
also simple and so it is a Rees matrix semigroup M(I ,G,JiP) over an abelian
group G with a sandwich matrix P. We can suppose that P is normalized
(pio,i = Pi ,io = e, the identity of G). Since (io, g, j) S = S for every 9 E G and
j E J then, for arbitrary (i, h, k) ES, there is an element (t , x, r) E S such tha t

(io ,9pi,tx ,r) = (io ,g,j)(t, x ,r) = (i ,h,k).

From this we get that i = i o and so the elements of P are equal to e. Hence
S is the direet produet of the right zero semigroup J and the abelian group G.
Thus (ii) follows from (i) . It is obvious that (ii) implies (i) . 0

Theorem 6.14 (f1 3}) For a semigroup S , the f ollowing are equivalent.

(i) S is a conditi on all y com m utative archimedean sem igroup containing at
least on e idempote nt element.

(ii) S is a retra ct exte nsion of a Rees matrix semigroup over an abelian group
by a nil semigroup N su ch that if 4J is th e retra ct homomorphism of Sand 0

denotes ih e product in N th en th e relations aob = boa, 4J(a)4J(b) = 4J(b)4J(a)
imply a 0 x 0 b = b o x 0 a for every a , b, x E N - {O}.

(i ii) S is conditionally com m utati ve and a rectangular band of t-archimedean
sem igroups containing each on e id empotent.

Proof. (i) implies (ii). Let S be a conditionally commuta tive archimedean
semigroup containing at least one idempotent element. Then , by Theorem 2.2 ,
S is an ideal extension of a simple semigroup K by a nil semig roup N. Since
K is also conditionally commutative then , by Theorem 6.13 , it is a Rees matrix
semigroup M(I ,G,JiP) over an abelian group G with a sandwich matrix P.
Then , by Theorem 1.23 , K is the reetangular band I X J of abelian groups
Gi,i = {( i ,g,j): 9 E G} . Let a E S be an arbitrary element . As N is a nil
semigroup, there is a positive integer n su ch that an E K. Let

n (' ' )a = t, g , J .
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Then
a(i,e,j) = a(i,g-l pj} , j )(i, g , j) = a(i ,g-l pj} ,j)an

n(. -1 -1 ') (' ')(' -1 -1 ') (. ')= a t,g Pi,i , ] a = t,g,] t,Pi,i g , ] a = t, e,] a

andso

n+l n (' ' ) (' ' ) ( ' -1 ' ) (' ') (' -1 ')a =aa =at,g,] =at,e,] t ,Pi,ig,] = t, e,Jat,pi,ig,].

As
(i,e,j)a(i,Pj}g,j) = ((i,e,j)a)(i,Pj}g,j) = (k,h,j)

and
(i,e,j)a(i,pj,;g,j) = (i,e,j)(a(i,pj,;g,j)) = (i,p,l)

for some k EI, h,p E G and 1 E J, we get k = i, h = P and 1= j, that is,

n+l (' h ')a = t, ,].

Consequently, if n is the least positive integer such that an E Gi ,i then, am E
Gi,i for every positive integer m ~ n. Hence (i,j) E I X J is well defined by the
element a in the above mentioned sence. Let

4>(a) = ae,

where e denotes the identity of Gi,i' We show that 4> is a retract homomorphism
of S onto K. Let a,b E S be arbitrary elements. Then there exists a positive
integer n such that

an, v . (ab)n E K.

Assume an EGo, b" E Gß (a,ß E I X J). First let us verify that (ab)n E GOß.
In fact, calling e the identity of Go and a-n the inverse of an in Go, it results

In the same way, if fis the identity of Gß' it results

bf = fb.

Thus we have
abef = afeb = efab,

whence

which implies
(abt E Goß,

because K is a rectangular band of groups Gi,i' Therefore, calling u the the
identity of Goß, it results

abu = uab.
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As uf,eu E Ga ß , we have

(uf)2 = ufuf = uf

and
(eu)2 = eueu = eu.

Thus
uf = eu = u.

That being stated, the function tP : a -+ ae results to be a retract homo
morphism of S onto K. In fact, let tP(a) = ae, tP(b) = bf, tP(ab) = abu. Since
aeb], eb E Gs» , we get

abu = uab = euab = aueb = auf(eb) = a(eb)fu = (ae)(bf),

that is,
tP(ab) = tP(a)tP(b).

It remains to verify that N satisfies the condition of the statement. In fact, let
a,b E N - {O} with a 0 b = boa, tP(a)tP(b) = tP(b)tP(a) . If a 0 b = boa:f 0, we
have

ab = a 0 b = b o a = ba.

If a 0 b = b o a = 0 then it follows

ab,ba E K,

and we have

ab = tP(ab) = tP(a)tP(b) = tP(b)tP(a) = tP(ba) = ba,

Thus in both cases it results
ab = ba.

As S is conditionally commutative, we get

axb = bea

for every x ES. So we can conclude that

a o x o b ec b o x o a

for every x E N.
(ii) implies (iii). Let S be a semigroup satisfying (ii). Then S is a retract

extension of a rectangural band K of abelian groups Gi (i E K) and so, by
111.2.12;7 of [75], S is a rectangular band of semigroups Ti (i E K) such that
Ti nK = Gi. For every a, bE Ti, there exist a positive integer n with an, b" E G,
and an element x E Gi with
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Thus Ti is t-archimedean with an idempotent. Finally it remains to prove that
S is conditionally commutative. Let a, b,x E S be arbitrary elements with
ab = ba. Ifaxb E S - K then

a,b,x E S - K = N - {O}

and so
asib = bxa.

In fact ab = ba implies a 0 b = boa and ef>(a)ef>(b) = ef>(b)ef>(a), whence

aoxo b=boxoa

and finally
aeb = a 0 x 0 b = box 0 a = bea,

Hence it follows also that axb E K implies bza E K. In this case, since S is a
reetangular band of semigroups Ti, the ralation ab = ba implies that a and b
are in the same Ti, whence

axb ,bxa E Ti nK = Gi,

Now it is immediately verifiable that Gi is an ideal of Ti and that

ae, ea, be, eb E G;

(e is the identity of Gd. Then, K being a weakly cancellative conditionally
commutative semigroup (see Theorem 6.8), it results

eaxbe = eaezbe = beezea = ebezeae = ebxae,

whence
eaxb = ebxa

and
axbe == beae.

Hence it follows
axb = bea.

(üi) implies (i). It immediately follows from Theorem 6.2. o

Corollary 6.5 (f13}) A conditionally commutative archimedean semiqroup with
an unique idempotent is t-archimedean.

Corollary 6.6 (f13}) A semigroup is t-archimedean and conditionally commu
tative containing at least one idempotent element ij and only ij it is a retraet
extension 01 an abelian group by a conditionally commutative nil semigroup.
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Proof. Suppose that S is a conditionally commutative t-archimedean semigroup
with an idempotent. By Theorem 6.14 , S is a retract extension of an abelian
group G by a nil semigroup (N, 0). Let a, bEN be arbitrary elements such that
a 0 b = b o a, If a 0 b = b o a 1:- 0 then

ab = a 0 b = b c a = ba.

If a 0 b = b o a = 0 then
ab, ba E G

and, calling e the identity of G, we find

ab = (ab)e = (ae)(be) = (be)(ae) = (ba)e = ba.

Thus, in both cases, a 0 b = b o a implies ab = ba. As S is conditionally
commutative, we get

aeb = bx«

for every x ES. Hen ce, for every x E N ,

a 0 x 0 b = box 0 a.

The converse easily follows from Theorem 6.14, since a conditionally com
mutative nil semigroup sa tisfies the condition contained in the statement of that
theorem. 0



Chapter 7

RC-commutative
•sermgroups

In this ehapter we deal with semigroups whieh are both 'R-eommutative and
eonditionally eommutative. These semigroups are ealled 'RC-eommutative semi
groups. The 'R-eommutative semigroups and the eonditionally eommutative
semigroups are examined in Chapter 5 and Chapter 6, respeetively. From the
results of those ehapters it follows that every 'RC-eommutative semigroup is a
semilattiee of eonditionally eommutative arehimedean semigroups. In this chap
ter, we show that the simple 'RC-eommutative semigroups are exaetly the right
abelian groups. By the help of this result we show that every 'RC-eommutative
arehimedean semigroup eontaining at least one idempotent element is an ideal
extension of a right abelian group by a eommutative nil semigroup. As a con
sequenee, we prove that every 'RC-eommutative regular semigroup is a spined
produet of a right normal band and a semilattiee of abelian groups. We deter
mine the subdireetly irredueible 'RC-eommutative semigroups with a globally
idempotent eore. We show that they are those semigroups whieh are isomor
phic to either G or CO or F or R or ß!J, where G is a non-trivial subgroup of
a quasicyelie p-group (p is a prime) , F is a two-element semilattice and R is
a two-element right zero semigroup, At the end of the ehapter we deal with
the 'RC-eommutative A-semigroups. It is shown that a semigroup S is an 'RC
eommutative A-semigroup if and only if it is isomorphie to either G or GO or R
or RO or N or Ni , where G is a non-trivial subgroup of a quasicyelie p-group
(p is a prime), R is a two-element right zero semigroup and N is a eommutative
nil semigroup whose ideals form achain with respeet to inclusion.

Definition 7.1 A semigroup is called an 'RC-commutative semujroup i/ it IS

'R-commutative and conditionally commutative.

Lemma 7.1 Ev ery 'RC-commutative semigroup is a semilattice 0/conditionally
commutative archimedean semigroups.

93
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Proof. Let S he an nc-commutative semigroup. Then, by Theorem 5.3, S
is a semilattice of archimedean semigroups. It is dear that the archimedean
components of S are conditionally commutative. 0

Theorem 7.1 ([55]) A semigroup is simple and nc-commutative i/ and only
i/ it is a right abelian group.

Proof. Let S be a simple nc-eommutative semigroup. By Theorem 6.13, S is
isomorphie with a Rees matrix semigroup M(l,G,J;P) over an ahelian group
G. We note that 1 and J ean be considered as a left and a right zero semigroup,
respeetively. We may assume that the sandwich matrix P is normalized, that
is, Pio ,i = Pi,io = e for some io E J, i o E 1 and for all j E J, i E 1, where e is
the identity element of G. Let a = (io,g ,io) and b = (m,h,jo) be elements of
S, where g, h E G and m E 1 are arhitrary. As S is simple, there are elements
e, y E S sueh that

ab = xbay.

As S is n-eommutative, there is an element z in SI such that

xba = baxz.

Let xzy = (k, r, l). Then

(io,gh,jo) = ab = xbay = ba(xzy) = (m, hgr, l).

Thus m = io, for all m E 1, that is, 111 = 1. Consequently, P has only one
eolumn and every element of P is e, This implies that S is a direct produet of
the commutative group G and the right zero semigroup J , that is, S is a right
ahelian group.

As a right abelian group is simple and nc-commutative, the theorem is
~~. 0

Theorem 7.2 ([55]) A semigroup is an nc-commutative archimedean semi
group containing at least one idempotent element i/ and only i/ it is a retract
eztension 0/ a right abelian group by a commutative nil semigroup.

Proof. Let S be an nc-eommutative archimedean semigroup containing at
least one idempotent element. Then, hy Theorem 6.14, S is a retract extension
of a Rees matrix semigroup K over an ahelian group hy a nil semigroup N.
By Lemma 5.2, K is n-eommutative. It is dear that K is also conditionally
commutative. Thus, hy Theorem 7.1, K is a right ahelian group. We show that
N is 'R.-commutative. Let a, bEN be arhitrary elements. First, we show that
ab = 0 in N if and only if ba = 0 in N. Assume ab = 0 in N. Then ab E K
in S. As S is 'R.-commutative, ba = ab» E K for some x E SI and so ba = 0
in N. Similarly, ba = 0 implies ab = 0 in S. Next, assume that ab =I=- 0 in N.
Then ba =I=- 0 and so a, b, ab, ba rt K (in S). As S is 'R.-commutative, there is
an element z E SI such that ab = baa: It is dear that z rt K. Hence N is
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'R.-commutative. By Corollary 5.1, N is commutative. Thus the first part of the
theorem is proved.

Conversely, assume that a semigroup S is a retract extension of a right
abelian group by a commutative nil semigroup. Denote 0 the product in N
and 4> the retract homomorphism of S onto K. Since N is commutative, 4>
satisfies condition (ü) of Theorem 6.14. Thus S is a conditionally commutative
archimedean semigroup containing at least one idempotent element. It remains
to show that S is also 'R.-commutative. Let a, b E S be arbitrary elements. As N
is commutative, ab E K if and only if ba E K, and we can suppose ab, ba E K.
As K is right simple, ab = bax for some x E K. Thus S is 'R.-commutative. 0

CoroUary 7.1 Every regular 'RC-eommutative semigroup is a spined produet
0/ a right normal band and a semilattiee 0/ abelian groups.

Proof. Let S be a regular 'RC-commutative semigroup. By Lemma 7.1, S
is a semilattice Y of conditionally commutative archimedean semigroups Sa
(0 E Y). As S is regular, every Sa is regular and so contains at least one
idempotent element. Then, by Theorem 2.2, every Sa is an ideal extension of a
simple semigroup containing at least one idempotent element by a nil semigroup.
From this we can conclude that every Sa is simple. Let 0 E Y be an arbitrary
element. Let Ra = U{Sß: 0::; ß}. Let b,e E Ra be arbitrary elements.
Assume b E Sß and e E S-y for some ß,'Y 2: o. Then 0::; ß'Y and so be,eb E Ra.
Thus Ra is a subsemigroup of S. It is clear that bc and eb are in the same S6
(02: 15). As S is R-commutative, there is an element xE Sl such that bc = ebx.
If z E Se then 15 = t5{ and so 15 ::; { which implies 0 ::; { . Thus x E Se ~ Ra.
Hence Ra is R-commutative. Since Sa is an ideal of Ra, and Sa is simple then,
by Lemma 5.2 , it follows that Sa is R-commutative. Then, by Theorem 7.1,
Sa is a right abelian group. Thus S is a semilattice of right abelian groups,
(If we apply this result for an 'RC-commutative band B then we get that B is
a semilattice of right zero semigroups.) By Theorem 1.27, S is an orthogroup
and so Es is a subsemigroup of S. Let a, b E S be arbitrary elements with
a2 = ab = b2 • Then a and b are in the same semilattice component of S. As
the semilattice components of S are right abelian groups, we get a = b. Thus S
is weakly separative and so, by Theorem 6.12, it is a normal band B of abelian
groups. Then S is an orthodox normal band of abelian groups. By Yamada's
Theorem S is the spined product of Es and a semilat t ice of abelian groups.
Moreover, B ~ Es. As a homomorphic image of an 'RC-commutative semigroup
is 'RC-commutative, we get that B is 'RC-commutative. By the above remark,
B is a semilattice of righ zero semigroups and so it is a right regular band. Let
a, z , y EBbe arbitrary element. As B is normal, we get axya = ayxa. As B is
also right regular, we have xya = axya = ayxa = yxa. Thus B and so Es are
right normal. 0
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Subdirectly irreducible 'RC-commutative semigroups

Theorem 7.3 A semigroup 8 is a subdireetly irredueible 'RC-eommutative semi
group with a globally idempotent eore i/ and only i/ it satisfies one 0/ the /ollowing
eonditions.

(i) 8 is isomorphie to either G or ao, where G is a non-trivial subgroup 0/ a
quasieyclie p-group (p is a prime) .

(ii) 8 is a two-elem ent semilattiee.

(iii) 8 is isomorphie io R or R?, where R is a two-elem ent right zero semigroup.

Proof. Let 8 be a subdirectly irreducible 'RC-eommutative semigroup with a
globally idempotent eore K. First assume that 8 has no zero element. Then
K is simple and, by Lemma 5.2 , it is 'R-commutative. It is clear that K is also
conditionally commutative. Then, by Theorem 7.1, K is a right abelian group
(that is a direct produet of an abelian group G and a right zero semigroup R).
By Corollary 1.4, we have either K = G or K = R. In the first ease 8 is a
homogroup and so, by Theorem 1.47, 8 = G. By Theorem 3.14, 8 is a non
trivial subgroup of a quasicyclie p-group (p is a prime). Then (i) is sa tisfied .
Assume K = R. It is clear that

TR = {(a, b) E 8 x 8: ("Ir E R) ra = rb}

is a congruence on 8 and

TR IR = idR ,

where TRIR denotes the restrietion of TR to R. As R is a dense ideal of 8 ,

TR = ids.

Let s E 8 be arbitrary. As 8 is conditionally eommutative and R is right zero,

for every r E R. Henee

and so

Consequently, 8 is a band. As 8 is 'R-commutative, for every a, b E 8 , there is
an element x E 8 1 such that

ab = bae.

Then
bob = b2ax = bae = ab,
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that is, 8 is a right regular band. Then, for every a, b E 8,

b(ab) = ab = (ab)b,

that is, b and ab are commute with each other. Then, for every z E 8, we have

bx(ab) = (ab)xb,

because 8 is conditionally commutative. Let r E Rand a, b E 8 be arbitrary
elements. Then

rab = (ra)b = b(ra)b = br(ab) = (ab)rb = (abr)(rb) = rb,

because R is a right zero semigroup and r E R. Thus (ab, b) E TR and so ab = b.
Hence 8 is a right zero semigroup. By Theorem 1.48, 181 = 2 and so (iii) is
satisfied.

In the second part of the proof, assume that 8 has a zero element. We show
that S - {O} is a subsemigroup of 8. Assume, in an indirect way, that ab = 0
for some a, b f= O. Then Al = {x E 8: ax = O} is a non-trivial right ideal
of 8. As every right ideal of an 'R.-commutative semigroup is a two-sided ideal
(see Lemma 5.1), K ~ Al' Thus aK = {O}. Let A 2 = {x ES: xK = {O}}.
It is easy to see that A2 is a non-trivial two sided ideal of S and so K ~ A2 •

Hence K 2 = {O} which contradicts the fact that K is a globally idempotent
core of S. Consequently, 8* = S - {O} is a subsemigroup of 8 . By Lemma 7.1,
8 is a semilattice of archimedean scmigroups. Let 'TJ denote the corresponding
(least) semilattice congruence of 8. It is easy to see that (a, 0) f/. 'TJ for every
a E 8*. H 8* has a zero element 0* then K* = {O,O*} is a non-trivial ideal
of 8 and PK* n 1/ = ids, where PK* denotes the Rees congruence on 8 modulo
K*. As 8 is subdirectly irreducible, we get 1/ = ids. Consequently, S is a
semilattice and so, by Theorem 3.14, (ii) is satisfied. H S* does not contain zero
elements then it is a subdirectly irreducible RC-commutative semigroup with
a globally idempotent core. Consequently, S ~ an or S ~ RO, where G is a
non-trivial subgroup of a quasicyclic p-group, p is a prime ((i) is satisfied) and
R is a two-element right zero semigroup ((iii) is satisfied). As the semigroups
listed in the theorem are 'RC-commutative subdirectly irreducihle semigroups
with a globally idempotent core, the theorem is proved. 0

Theorem 7.4 An 'RC-commutative semigroup is subdireetly irreducible with a
non-trivial annihilator and a nilpotent core if and only if it has a non-zero
disjunctive element.

Proof. By Theorem 1.49, it is ohvious.

'RC-commutative .6.-semigroups

o

By Remark 5.1, every 'RC-commutative semigroup is left weakly commuta
tive. Then, by Theorem 4.7,

a = {(a,b) E S x S: ab" = bn+l
, bo" = an H for some positive integer n}
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is a congruence on an 'RC-commutative semigroup S. In the next , a will denote
this congruence.

Lemma 7.2 ([55]) 11S is an 'RC-commutative Ä-semigroup and S has an (not
necessarily proper) ideal which does not contain idempotent elem ents , th en a =
ids·

Proof. Let S be an 'RC-commutative Ä-semigroup and I be an ideal of S such
that I has no idempotent elements. Let {!", denote the Rees congruence on S
determined by the ideal S1 xS1, z E S. As S is a Ä-semigroup, a ~ {!", or
{!", ~ o for every x E S. Assume {!", ~ a for some z E I, As (x,x2

) E {!", ~ o ,
we get x 2xn = x n+1 • Thus xn+l is an idempotent element of l, contradieting
the assumption that I has no idempotent elements. Consequently,

for all x E l. We show that ull = id/. Assume (a,b) E o for some a,b E l ,
a f:- b. As a ~ {!a6, we have

(a,b) E {!a6 ,

that is,

Then
a = xa 6 y

for some x ,y E s». As a3a = aa3 , we get

and so xa2ya3 is an idempotent element of I which is a contradiction. Thus

As S is a Ä-semigroup, l is a dense ideal of S and so

a = ids.

o

Lemma 7.3 ([55]) 11 S is a conditionally commutative Ä-s emigroup and I is
an ideal 01 S such that I is a nil ext ension 01 a non-trivial right zero semigroup
R then S is a band and I = R.

Proof. Let S be a conditionally commutative Ä-semigroup and l an ideal of S
which is a nil extension of a non-trivial right zero semigroup R. Since R2 = R
then , by Theorem 1.14, R is an ideal in S. It is easy to see that

TR = {(a, b) E S x S : (Vr E R) ra = rb}



99

is a congruence on S such that TRIR = i dR. As S is a ß-semigroup, R is a
dense ideal of S. So

TR = ids.

As S is conditionally commutative,

for all a ES and rE R. As ra ,ra2 ER, we get

ra 2 = ra.

Thus

which implies that

that is, S is a band and I = R. o

Theorem 7.5 ([55}) S is an archimedean 'RC-commutative ß-semigroup if and
only if it sat isfi es on e of the following conditions.

(i) S is a non-trivial subgroup of a quasicyclic p-group , p is a prime.

(ii) S is a two-elem ent right zero semiqroup,

(iii) S is a commutative nil semigroup whose ideals form a chain with respect
to inclusion.

Proof. Let S be an archimedean 'RC-commutative ß-semigropup. If S has a
zero element then S is a nil semigroup from which we get that S is a commutative
nil semigroup whose ideals form achain with respect to inclusion (see Corollary
5.1, Theorem 1.56 and Theorem 1.54). Condition (üi) is satisfied.

Next, assume that S does not contain zero element. First , consider the case
when S is simple. Then, by Theorem 7.1, S is a direct product of a commutative
group G and a right zero semigroup R. As S is a ß-semigroup, we have either
S = G (and so, by Theorem 3.22, (i) is satisfied) or S = R (and so, by Theorem
1.50, (ii) is satisfied).

Consider the case when S has a proper ideal. We show that S has an
idempotent element. We may assume that S is not a commutative semigroup.
If S is not right cancellative then, by Lemma 5.3, (T =I i ds and so, by Lemma
7.2, S has an idempotent element. Assume that S is right cancellative. As S is
not commutative and conditionally commutative, there are elements a, b and x
of S such that

ab = abx

and so
xab» = xabx2 = x2abx
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from which we get x = x2 • Consequently, S has an idempotent element in
both cases , By Theorem 7.2, S is an ideal extension of a right abelian group
K = G x R (G is an abelian group, R is a right zero semigroup). By Theorem
1.52, IGI = 1. Thus K = R which contradicts the assumption for S . Thus the
first part of the theorem is proved. As the semigroups listed in the theorem are
'RC-commutative d-semigroups, the proof is complete. 0

Consider the case when S is a semilattice decomposable 'RC-commutative
d-semigroup. Then, by Remark 1.2, S is a semilatice of two semilattice inde
composable semigroups So and SI such that SOSI ~ So.

Lemma 7.4 ([55]) // SI is an abelian group, then either So is a commutative
nil d-semigroup and ISll = 1 or ISol = 1.

Proof. By Theorem 3.22, the assertion holds if S is commutative. Assurne
that S is not commutative. Let e denote the identity element of SI . As S is
an 'R.-commutative semigroup, by Lemma 5.1, eS is a two-sided ideal of Sand
eS n SI "I 0, eS n So "I 0. As S is a d-semigroup, eS must be equal to S. So
e is a left identity element of S. We show that So has an idempotent element.
Assume, in an indirect way, that So has no idempotent elements. By Lemma
7.2,

o = ids.

So, By Lemma 5.3, So is right cancellative. Let a, b be arbitrary elements of So.
Then

aeb = eaeb = eab.

As ae, ea E So and So is right cancellative, we get

ae = ea.

Consequently, e is a (two-sided) identity element of S. As S is conditionally
commutative, it follows that it is commutative which is a contradiction. Conse
quently, So is a conditionally commutative archimedean semigroup with idem
potent elements. There are two cases.

Consider the case when So has a zero element, Then So is a nil semigroup.
Assurne ISll = 1. We show that e is an identity element of S. Let a be an
arbitrary element of So. As S is an 'R.-commutative semigroup,

a = ea = aex

for some x E SI. We mayassume x E So. Then

a = aex = ax

and so
a= ax n
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for every positive integer n. As So is a nil semigroup, a = 0 and so

ea = ae = O.

Thus e is a two-sided identity element of S. Hence S is a commutative semigroup
which is a contradiction. So we may assume IS11 > 1. By Theorem 1.59,
ISol = 1.

Consider the case when So has no zero element. Let / be an idempotent
element of So. Then M = So/So is the kernel of So and M is simple. It is
evident that M is conditionally commutative. Since M 2 = M then, by Theorem
1.14, M is an ideal of S. By Lemma 5.2, M is also 'R.-commutative. Then, by
Theorem 7.1, M is a direct product of a commutative group G and a right zero
semigroup R. As S is a ß-semigroup and So is a proper ideal of S, IGI = 1 (by
Theorem 1.52). Thus M = R and so So is a nil extension of the (non-trivial)
right zero semigroup R. By Lemma 7.3, So = R. It can be easily verified that

1] = {(a,b) ES x S: (Vr E R) ra = rb}

is a congruence on S and 1]IR = idR . As S is a ß-semigroup, R is a dense ideal
of S. Thus

1] = ids·

Let 9 be an arbitrary element of S1. Then

eg = ge

(e is the identity element of S1)' As S is conditionally commutative, we get

erg = gre

for all r E R, from which we get

rerg = rgre.

As R is right zero and re, rg E R, we get

rg = re

for all r E R. Thus
(g, e) E 1],

that is,
9 = e.

SO IS11 = 1. Let r be an arbitrary element of R. Then

re E R

and
(re)e = re.
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So there is an element ro of R such that

roe = ro = ern.

As S is conditionally commutative, we have

re = rore = erro =ro

for all r E R. So
Re = {ro}.

Let 0 be the equivalence relation on S such that

o = {(a, b) E S x S: a, b E {e, rn} or a = b}

We show that 0 is a congruence on S. Let (a, b) E o. We may assume that
a f: b. Then, for example, a = e and b = ro. Let r be an arbitrary element of
R. Then

er = r = ror,

re = rn = rro,

e2 = e 0 ro = ero

and

So
(ax,bx) E 0

and
(xa ,xb) E 0

for all x E S. So 0 is a congruence on S. Let ß denote the least semilattice
congruence on S. As S is a d-semigroup and e E {e ,ro}, we have

ßr;;,o

which implies
R r;;, {e,ro}·

SO IRI = 1. Thus the theorem is proved. o

Theorem 7.6 ([55}) S is a semilattiee deeomposable 'RC-eommutative ß-semi
group if and only if it satisfies one of the following eonditions.

(i) S is isomorphie to CO , where G is a non-trivial subgroup of a quasieyclie
p-group (p is a prime).

(ii) S is isomorphie to no, where R is a two-element right zero semigroup.

(iii) S is isomorphie to s», where N is a eommutative nil semigroup uihose
ideals form a chain with respeet to inclusion.
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Proof. Let S be a semilattice decomposable 'RC-commutative ~-semigroup.

Then, by Remark 1.2, S is a semilattice of two semilattice indecomposable
subsemigroups SI and So with SOSI ~ So. It is easy to see that SI is R
commutative. We can suppose that S is not commutative (the commutative
semilattice decomposable ~-semigroups are exactly semigroups which satisfiy
either (i) or (üi)). By Theorem 1.51, Sr is a ~-semigroup and so, by Remark
1.1, SI is a semilattice indecomposable 'RC-commutative ~-semigroup. Then
SI satisfies one of the conditions of Theorem 7.5.

Consider the case when SI is a non-trivial subgroup of a quasicyclic p-group
(p is a prime). Then, by Lemma 7.4, ISol = O. Thus S is isomorphie to ao and
so (i) is satisfied.

Consider the case when SI is a nil semigroup. Then, by Theorem 1.57,
ISll = 1. Assume SI = {e}. As S is R-commutative, eS is a two-sided ideal of
Sand

eSn SI i 0,
eSn So i 0.

As S is a ~-semigroup, eS must be equal to S . So e is a left identity element
of S.

We show that So has an idempotent element. Assume, in an indirect way,
that So has no idempotent elements. By Lemma 7.2, (J' = ids. So, by Lemma
5.3, So is right cancellative. Let a, b be arbitrary elements of So. Then

aeb = eaeb = eab.

As ae, ea E So and So is right cancellative, we get

ae = ea.

As ea = a, we get that e is a (two-sided) identity element of S . As S is con
ditionally commutative, it follows that it is commutative which contradicts our
assumption for S. Consequently So is a conditionally commutative archimedean
semigroup containing idempotent elements. By Theorem 6.14, So is an ideal ex
tension of a Rees matrix semigroup K over an abelian group by a nil semigroup
N.

Consider the case when IKI = 1, that is, So is a nil semigroup. We show
that eis an identity element of S. Let a be an arbitrary element of So. As S is
an R-commutative semigroup, a = ea = aex for some x E SI . If x <t So then

ae = a.

If z E So then
a = aex = ax

and so
a = ax n

for every positive integer n . As So is a nil semigroup,

a= O.
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But
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ea = ae = O.

So e is a two-sided identity element of S. Thus S is a commutative semigroup
which is a contradiction,

Consider the case when IKI > 1, that is, So has no zero element. By Lemma
5.2, K is also 'R.-commutative. Then, by Theorem 7.1, K is a direct product of
a commuta tive group G and a right zero semigroup R. As S is a ß-semigroup
and So is a proper ideal of s, IGI = 1 (see Theorem 1.52). Thus K = R and
so So is a nil extension of the (non-trivial) right zero semigroup R. By Lemma
7.3, So = R. Let r be an arbitrary element of R. Then

re E R

and
(re)e = re.

So there is an element ro of R such that

ro e = ro = er n.

As S is conditionally commutative, we have

re = rore = erro = rO

for all r E R. So
Re = {ro}.

Let a be the equivalence relation on S such that

a = {(a,b) E S x S: a, b E {e, ro} or a = b}

We show that a is a congruence on S. Let (a,b) E a . We may assume that
a f. b. Then, for example, a = e and b = ro. It is clear that (ea, eb) E a
and (ae, be) E a, because e is a left identity of Sand R e = {ro}. Let r be an
arbitrary element of R. Then

er = r = ror,

re = rO = rro,

e2 = e a rO = erO

and

So
(ax ,bx) E a

and
(xa ,xb) E a
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for a1l x ES. So a is a eongruenee on S. Let 1] denote the least semilattiee
eongruence on S (the 1]-classes are {e} and R). As S is a ß-semigroup and
e E {e,ro}, we have

whieh implies
R c;, {e,ro}.

Thus
R = {ro}

and so S is eommutative. But this is a eontradietion.
It remains to examine the ease when SI is a two-element right zero semi

group. Let u and v denote the elements of SI . As S is a ß -semigroup and uS
is an ideal of S , we have

uS=S.

Similarly,
vS=S.

So u and v are left identity elements of S. By Theorem 4.7,

a = ({a ,b) ES x S: abn = bn+l , bo" = an+1 for a positive integer n}

is a eongruenee on S and
(u ,v) E o,

Then the Rees eongruenee of S modulo So is eontained by a, So

(a ,b) Eu

for a1l elements a, bE So. So

that is,

for some positive integer n (a E So). Consequently So has an idempotent
element. By Theorem 6.14, So is an ideal extension of a Rees matrix semigroup
K over a eommutative group by a nil semigroup N. There are two eases .

Consider the ease when IKI = 1, that is, S is isomorphie to N. Consider the
following relation T: on S:

T: = ({a ,b) ES x S: au = bu}.

It is evident that T: is a left eongruenee on S. We show that T: is also right
eompatible. Assurne (a ,b) E T: for some a, b ES. Then

au = bu,

Let x be an arbitrary element of S . Then

ax = aux = bux = bz ;
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because u is a left identity element of 5. So

axu = bxu;

that is, r: is right compatible. Consequently it is acongruence on 5. It is
evident that

(u,v) E <.
As 5 is a A-semigroup, the Rees congruence of 5 moduIo 50 is contained by r:.
So

(a,b) Er:

for all a, b E 5o, that is,
au =00

for all a, b E 50' It is evident that the zero of 50 is a zero of 5. So

Ou =0.

Thus
au = 0

for all a E 50' As 5 is an 'R.-commutative semigroup,

ua = aus

for some s E 51. Consequently

a = ua= O.

Thus 150 1 = 1 and so 5 is a two-element right zero semigroup with a zero
adjoined.

Consider the case when IKI > 1, that is, 50 has no zero element. As K
is simple, K 2 = K and so it is an ideal of 5 . By Lemma 5.2, it is also 'R.
commutative. Then, by Theorem 7.1, K is a right abelian group, that is, K
is a direct product of an abelian group G and a right zero semigroup R. By
Theorem 1.52, IGI = 1. Thus K = R. By Lemma 7.3, 50 = Rand so 5 is a
band. By Theorem 1.61, IR 1= 1 and so 5 is a two-element right zero semigroup
with a zero adjoined. Thus the theorem is proved. 0

We summarize our resuIts:

Theorem 7.7 ([55J) A semigroup 5 is an 'RC-eommutative A-semigroup if and
only if it satisfies one of the following eonditions.

(i) 5 is isomorphie to either G or CO , where G is a non-trivial subgroup of a
quasieyclie p-group (p is a prime).

(ii) 5 is isomorphie io either R or Ra , where R is a two-elem ent right zero
settuqroup,
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(iii) S is isomorphie to either N or NI, where N is a eommutative nil semi
group whose ideals form a ehain with respeet to inclusion.

We note that our proofs are mainly based on the fact that the conditionally
commutative semigroups satisfy the identity azai = aiza for every positive
integer i (2: 2).

In [79], B. Pondelföek defined the notion of the generalized conditionally
commutative (briefly, GC-commutative) semigroup as a semigroup satisfying the
identity aza2 = a2za. He shoved that every GC-commutative semigroup satis
fies the identity azai = aiza for every integer i 2: 2. Using this result, he proved
that every GC-commutative ß-semigroup which is a band of t-archimedean
semigroups is weakly exponential. We note that these semigroups are examined
in Chapter 14.

Definition 7.2 For a positive integer n, a semigroup is ealled generalized condi
tionally n-eommutative (or GCn-eommutative) if it satisfies the identity anzai =
aizan for every integer i 2: 2.

Definition 7.3 A semigroup whieh is n-eommutative and GCn-eommutative
is ealled an RGCn-eommutative semigroup.

Theorem 7.8 ([62]) A semigroup S is an RGCn-eommutative ß-semigroup if
and only if it satisfies one of the following eonditions.

(i) S is isomorphie to either G or ao , where G is a non-trivial subgroup of
a quasieyclie p-group (p is a prime).

(ii) S is isomorphie to R or R!J, where R is a two-element right zero semigroup.

(iii) S is isomorphie to N or Ni, where N is a eommutative nil semigroup
whose ideals form a ehai with respeet to inciusion:

We remark that Theorem 7.7 and Theorem 7.8 show that the subclasses of
ß-semigroups in the dass of RGCn-commutative semigroups and in the dass
of 'RC-commutative ones are identical.



Chapter 8

Quasi commutative
•semigroups

A semigroup 5 is called left (right) quasi commutative if, for every a, b E 5,
there is a positive integer r such that ab = b"a (ab = bar). A semigroup 5
is called O"-reflexive if ab E H implies ba E H for every a, b E 5 and every
subsemigroup H of 5. In this chapter it is proved that the left quasi commu
tative semigroups, the right quasi commutative semigroups and the O"-reflexive
semigroups are the same. They are called quasi commutative semigroups. As a
quasi commutative semigroup is also weakly commutative, they are semilattice
of archimedean semigroups. As the commutative archimedean semigroups are
describen in Chapter 3, here is considered only the non-commutative case. It is
proved that a semigroup is a non-commutative quasi commutative archimedean
semigroup containing at least one idempotent element if and only if it is an ideal
extension of a hamiltonian group by a commutative nil semigroup. At the end
of the chapter, the least weakly separative congruence of a quasi commutative
semigroup is constructed. It is shown that, on aquasi commutative semigroup
5,0" defined by a 0" b (a,b E 5) if and only if an+1 = bo" and bn +1 = ab" for
some positive integer n is the least weakly separative congruence.

Definition 8.1 A semigroup 5 is said io be a left (right) quasi commutative
semigroup if, for any a, b E 5, there is a positive integer r such that ab = b"a
(ab = bar).

Definition 8.2 A semigroup is called a O"-reflexive semigroup if any subsemi
group of 5 is reflexive.

Lemma 8.1 ([12]) A semigroup 5 is o-refiezive if and only if, for every element
a, bE 5, there is a positive integer m such that ab = (ba)m.

109
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Proof. As ab is contained by the cyclic subsemigroup of au-reflexive semigroup
S generated by the element ba, there is a positive integer m such that ab =
(ba)m. The converse statement is obvious.

Lemma 8.2 Every lejt quasi commutative (nght quasi commutative, a-reflez
ive) semigroup is weakly commutative.

Proof. By Definition 8.1 and Lemma 8.1, it is obvious. o

Corollary 8.1 Every left quasi commutative (right quasi commutative, o-reflez
ive) semigroup is a semilattice oj lejt quasi commutative (right quasi commuta
tive, u-reflexive) archimedean semigroups.

Proof. By Lemma 8.2 and Theorem 4.3, it is obvious. o

Lemma 8.3 ([12J) 11 a and bare arbitrary elemenis 01 au-reflexive semigroup
S with ab i= ba then there is an integer m > 1 such that ab = (ab)m •

Proof. Let a and b be arbitrary elements of au-reflexive semigroup S with
ab i= ba. Then, By Lemma 8.1, ab = (ba)k and ba = (ab)n for some integers
k,n> 1. Hence ab = (ab)nk. 0

Lemma 8.4 ([12J) The idempotents 01 au-reflexive semigroup are in the cen
tre.

Proof. Let a E S, e E Es be arbitrary elements of au-reflexive semigroup S.
If ae i= ea then, by Lemma 8.3 , (ae)m = ae for a least integer m > 1 and so
the cyclic subsemigroup (ae) of S is a group whose identity element is (ae)m -l.
Clearly (ea) = (ae) and (ea)m = ea from which we get (ea)m-l = (ae)m-l.
Then

ae = (ae)m = (ae)m-l(ea)e = (ea)(ae)m-l e = (ea)(ae)m-l = ea

which is a contradiction, Hence e is in the centre of S

Theorem 8.1 ([12)) For a group G the lollowing are equivalent.

(i) G is a-refleziue.

(ii) G is left quasi commutative.

o

(iii) G is right quasi commutative.

(iv) Every subgroup 01 G is normal.

Proof. (i) implies (ü). Let G be a u-reßexive group. Let H be an arbitrary
subgroup of G. Let gE G and h E H be arbitrary elements. Then
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and so
ghg-1 EH.

Hence H is anormal subgroup. We can suppose that G is not commutative.
Then G is periodie (see p.19i of [30]). Thus, for every element bEG, the
subsemigroup (b) of G generated by bis a subgroup of G. Then (b) is anormal
subgroup of G and so, for every a E G, we have

a(b) = (b)a.

Thus
ab E (b)a

which implies that

for a positive integer T. Hence Gis left quasi commutative.
(ü) implies (üi). Let G be a left quasi commutative group and a,b E G be

arbitrary elements. Then

for some positive integer n. From this we get

which means that Gis right quasi commutative.
(üi) implies (iv). Let G be a right quasi commutative group and H be an

arbitrary subgroup of G. Ir 9 E G and h E H arbitrary elements then

and
hg-1 = g-lh"

for some positive integers T and s, From the second equation we get

Thus
Hg~gH

and
gH~Hg.

Hence
gH=Hg,

that is, H is anormal subgroup.
(iv) implies (i). Let G be a group in which every subgroup is normal. We

can suppose that G is not commutative (in the commutative case the proof is
trivial). Then, by p.19i of [30], G is periodie. Thus the subsemigroup (g) of
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G generated by an element 9 E G is a subgroup of G. Let A be an arbitrary
subsemigroup of G. If ba E Athen

ab E (ba) ~ A,

because (ba) is reflexive in G. Hence Gis u-reflexive. o

Definition 8.3 A non-commutative group in called a hamiltonian group il its
every subgroup is normal.

Lemma 8.5 ([12}) 11ab =1= ba [or sorne elements a and b 01 a left quasi com
mutative (right quasi commutative, a-reflezive] semigroup S then there is a
hamiltonian subgroup 01 S with identity e which conta ins ab,ba, ae, be.

Proof. Let S be a left quasi commutative semigroup and a, b E S be elements
such that ab =1= ba, By definition,

and

for some integers r, S > 1. Then we have

=(ab)hbr - 2(baS- 1) = (ab)hbr - 2ak(s-1)b

= ab((ab)h-1br - 2ak(S-1)-1)ab = ((ab)h-1br - 2ak(s-1)-1)m(ab)2

= (ab)2n((ab)h-1br - 2ak(s-1)-1)m

for some positive integers h, m , n (here we used the convention xOy = yxO = y,
x,y ES). By Lemma 8.2, S is weakly commutative. Then, by Theorem 4.3, it
is a semilattice Y of archimedean semigroups Si (i E Y) . If a E Si and b E Sj
then

ab E Sij

and, by the previous equation,

Then, by Proposition IV.1.2 of [73], ab contained in a subgroup of Sij . As Sij
has at most one idempotent, it contains an unique maximal subgroup G. Thus

ab,ba E G.

Let e denote the identity of G. As G is an ideal in Sij and ae, be E Sij, we get

ae,beEG.
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Since Gis a left quasi commutative group then, by Theorem 8.1, every subgroup
of G is normal. If G was commutative, then we would have

ab = (ab)e = (ae)(be) = (be)(ae) = (ba)e = ba

which would be a contradiction. Hence G is not commutative and so it is a
hamiltonian group. Thus the assertion for left quasi commutative semigroups
is proved. The proof is similar for a right quasi commutative semigroup,

Let S be a O"-reflexive semigroup and ab =f:. ba for some a,b E S. Then, by
Lemma 8.3,

and

ba = (ba)n

for some integers m,n > 1. Thus the cyclic subsemigroups (ab) and (ba) gener
ated by ab and ba, respectively, are groups. As S is a semilattice of archimedean
semigroups, the statement follows as in the preceding case. 0

Theorem 8.2 ([12)) For a semigroup S the Jollowing are eqiuvalent .

(i) S is o-refiezive.

(ii) S is left quasi commutative.

(iii) S is right quasi commuiaiiue.

Proof. (i) implies (ü). Let a and b be arbitrary elements of a O"-reflexive semi
group S with ab =f:. ba. Then, by the previous theorem, there is a hamiltonian
subgroup G of S such that ab,ba, ae, be E G, where e denotes the identity of G.
Since Gis left quasi commutative (see Theorem 8.1), there is a positive integer
r such that

ab = (ab)e = (ae)(be) = (ber(ae) = br(ae) = br-1(ba)e = bra

and therefore S is left quasi commutative. By a similar process it can be proved
that (ü) implies (i) and (i) is equivalent to (üi). 0

By the previous theorem we need not distinguish left and right quasi com
mutative (and O"-reflexive) semigroups.

Definition 8.4 A semigroup will be called a quasi commutative semiqroup iJ it
is left quasi commutative or, equivalently, right quasi commutative or, equiva
lently, o-refiexioe.

Theorem 8.3 ([12}) Every quasi commutative semigroup is strongly reversible.
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Proof. Let S be a quasi commutative semigroup and let a, b E S with ab i= ba,
By Theorem 8.5, there is a hamiltonian subgroup G of S such that

ab, ba, ae, be E G,

where e is the identity of G. As a hamiltonian group is periodic, there is a
positive integer n such that

(abt = (ba)n = (aet = (bet = e.

Hence
(ab)n = (ae)n(be)n = anebne = anbne

= an-1abbn-1 e = an-1(ab)ebn-1 = an-1(ab)bn-1 = anbn.

In the same way it follows that

Thus S is strongly reversible. o

Theorem 8.4 ([12]) Every quasi commutative nil semigroup is commutative.

Proof. As the unique maximal subgroup of a nil semigroup N contains only
the zero of N , the assertion follows from Lemma 8.5. 0

The commutative archimedean semigroups are described in Chapter 3. Next
we deal with the non-commutative quasi commutative archimedean semigroups.

Theorem 8.5 ([12}) A semigroup is a non commutative quasi commutative
archimedean semigroup if and only if it is an ideal extension of a hamiltonian
group by a com mutative nil semigroup.

Proof. Let S be a non-commutative quasi commutative semigroup, Then, by
Lemma 8.5, S has an idempotent e. As S is weakly commutative (see Lemma
8.2), S is an ideal extension ofa group G by a nil semigroup N (see Theorem 4.5).
By Theorem 8.2, S is rr-reflexive. Thus G and N are rr-refiexive. By Theorem
8.1, G is either abelian or hamiltonian. By Theorem 8.4, N is commutative.
As an ideal extension of an abelian group by a commutative nil semigroup is
commutative, G must be hamiltonian,

Conversely, let S be an ideal extension of a hamiltonian group G by a com
mutative nil semigroup. By Theorem 2.2, S is archimedean. As G is non
commutative, S is non-commutative. By Lemma 3 of [22], S is rr-reflexive and
so, by Theorem 8.2, it is left quasi commutative. 0

Corollary 8.2 A non commutative quasi commutative archim edean semigroup
is a periodic power joined semigroup.

Theorem 8.6 ([12}) A quasi commutative semigroup S is a sem ilattice of power
joined semigroups if and only if every group and group with zero homomorphic
imag e of S is periodic.
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Corollary 8.3 ([12}) A periodic quasi commutative semigroup is a semilattice
01 power joined semigroups.

Lemma 8.6 ([12}) Let S be an archimedean semigroup with idempotents. 11
the idempotents are in the center th en S is t-archimedean.

Theorem 8.7 ([12}) For a semigroup S the lollowing are equivalent .

(i) S is a-reflexiv e (equivalently, quasi com mutative).

(ii) The eventual idempotents 01 S are in the center; the maximal subgroups
01 S are quasi commutative and [or any a, bE S with ab -=I ba, ab belongs
io a subgroup 01 S.

(iii) S is a semilattice Y 01 quasi commutative archimedean semigroups Sa
(a E Y) and, [or every a, b E S with ab -=I ba, ab belongs to a subgroup 01
S.

Proof. (i) implies (ii). This is obvious if S is commutative, and follows from
Lemma 8.4 and Lemma 8.5 if S is not commutative.

(ii) implies (iii). Let a, b E S be arbitrary elements with b = xay (x, Y E SI).
Then

b2 = xayxay.

H (ay)(xa) = (xa)(ay) then

H (ay)(xa) -=I (xa)(ay) then
(ay)(xa) E G

for a subgroup G of S. Let e denote the identity of G. Then

b2 = x(ayxa)y = x e(ayxa)y = x(ayxa)-I(ayxa)2 y

= x(ayxa)-layxa2yxay.

Thus, whenever a divides b, a2 divides apower of b, Then S is a Putcha semi
group and so, by Theorem 2.1, S is a semilattice Y of archimedean semigroups
S i (i E Y) . We show that , for each i E Y , Si is zr-reflexive. Let a, b E Si arbi
trary elements with ab -=I ba. Then, by Lemma 8.5, there are maximal subgroups
GI and G2 of S such that

and

By Corollary 2.1,
Gl ,G2 ~ Si'

By condition, the idempotents of S are in the center. Thus, by Lemma 8.6, Si
is t-archimedean. Thus
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Let e denote the idempotent element of GI. As GI is an ideal of Si, we have

ae,be E GI.

As GI is zr-reflexive, there is a positive integer n such that

ab = abe = aebe = (beae)n = (baet = (ba)n.

Thus, by Lemma 8.1, Si is o-reflexive.
(üi) implies (i). Let a,b ES be arbitrary elements with a E Si and b E Si>

ab l' ba. Then, there are subgroups GI , G2 of S such that

ab E GI

and

Since ab, ba E Sij, it follows
GI,G2 ~ Si j

(see Corollary 2.1). Since Sij has a unique maximal subgroup G, we get

ab, ba E G.

Let e denote the identity of G. Then

ae,beEG,

because G is an ideal of Sij. As G is o-reflexive, there is a positive integer n
such that

ab = abe = aebe = (beae)n = (ba)n.

Thus, by Lemma 8.1, S is o-reflexive. o

Theorem 8.8 ([12)) Let S be a quasi commutative semigroup. Then 0"

{(a,b) E S X S: an+I = be"; bn+I = ab" for some positive integer n} is
the least weakly separative congruence on S.

Proof. Since a quasi commutative semigroup is left weakly commutative then,
by Theorem 4.7, 0" is a weakly separative congruence on S. To show that 0"

is the least weakly separative congruence on S, consider an arbitrary weakly
separative congruence p of S. It is clear that the faetor semigroup F = S / p is
quasi commutative. By Theorem 8.3 , F is strongly reversible. By Proposition
8 of [10], Fis left and right separative. Assume (a,b) E 0" (a ,b ES). Then ,
denoting the P-class of S containing an element x of S by [x], we have

and



By Lemma 11.6.3 of [73],
[al = [b].

Hence
uc;;.p

and so a is the least weakly separative congruence on S.
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Chapter 9

Medial semigroups

In this ehapter we deal with semigroups whieh satisfy the identity xaby = xbay.
These semigroups are ealled medial semigroups, It is shown that every medial
semigroup is a semilattiee of medial arehimedean semigroups. We show that the
simple medial semigroups are exaetly the rectangular abelian groups, and prove
that a semigroup is medial arehimedean and eontains at least one idempotent
element if and only if it is a retraet extension of a reetangular abelian group by a
medial nil semigroup. It is also shown that every medial archimedean semigroup
without idempotent has a non-trivial group homomorphie image. We also deal
with the regular medial semigroups. It is shown that they are those semigroups
whieh are orthodox normal bands of abelian groups. We also give other equiv
alent eonditions. It is proved that a medial semigroup is weakly separative,
left separartive, right separative, or separative if and only if its arehimedean
eomponents are weakly caneellative, left eaneellative, right caneellative, or can
eellative, respeetively. It is shown that a medial weakly eaneellative semigroup
is embeddable into a reetangular abelian group. Moreover, a semigroup can
be embedded in a semigroup whieh is a union of groups if and only if it is
weakly separative, The least left separative eongruenee, the least right separa
tive eongruenee, the least weakly separative eongruenee and the least separative
eongruenee of a medial semigroup are also eonstrueted. We deal with the sub
direetly irredueible medial semigroups. It is proved that a semigroup is medial
and subdireetly irreducible with a globally idempotent eore if and only if it is
isomorphie to either Gor ao or F or R or Jl!l or L or LO, where Gis a non-trivial
subgroup of a quasieyelie p-group (p is a prime), Fis a two-element semilattiee,
R is a two-element right zero semigroup and L is a two-element left zero semi
group. At the end of the ehapter we deseribe the medial d-semigroups. It is
shown that a semigroup is a medial d-semigroup if and only if it is isomorphie
to either G or ao,where G is a non-trivial subgroup of a quasieyclie P-group (p
is a prime), or a two-element semilattiee, or R or Jl!l , where R is a two-element
right zero semigroup, or L or LO , where L is a two-element left zero semigroup,
or a medial nil semigroup whose prineipal ideals form a ehain with respeet to
inclusion, or a medial Tl semigroup.
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Definition 9.1 A semiqroup is called a medial semigroup if it satisfies ihe iden
tity xaby = xbay.

Theorem 9.1 Every finitely generated periodic m edial semigroup is finite .

Proof. By Theorem 1.1, it is obvious.

Semilattice decomposition of medial semigroups

Theorem 9.2 Every medial semigroup is a left and right Putcha semigroup.

o

Proof. Let 8 be a medial semigroup and a, b E S be arbitrary elements with
b E a81 , that is, b = ax for some x E 8 1 • Then

that is,

Hence 8 is a left Putcha semigroup. We can prove, in a similar way, that 8 is
a right Putcha semigroup. 0

Theorem 9.3 Every medial semigroup is a semilattice of m edial archim edean
semsqroups,

Proof. Let 8 be a medial semigroup. By Lemma 9.2, 8 is a left and right
Putcha semigroup. Then, by Corollary 2.2, 8 is a semilattice Y of archimedean
semigroups 8a. (0 E Y). Clearly, the subsemigroups 8a. are medial. 0

Theorem 9.4 ([66}) Let 8 be a m edial semigroup. 8 is a semilattice of power
joined semigroups if and only if every right and left group and right and left
group with zero homomorphic image of 8 is a periodic group and a periodic
group with zero , respectively.

Theorem 9.5 ([66]) Let S be a medial semigroup. Th e following are equivalent.

(i) 8 ia power joined.

(ii) Every subsemigroup of 8 is t-archimedean.

(iii) Ev ery finitely gen erated subsemigroup of 8 is t-archimedean.

Theorem 9.6 Every m edial semigroup is a band of t-archimedean m edial sem i
groups.

Proof. Since a medial semigroup satisfies the identity (ab)3 = a2b2 (ab) =
(ab)a2b2 then, by Theorem 1.8, it is a band oft-archimedean medial semigroupsl

o
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Theorem 9.7 ([66J) Let S be a medial semigroup. S is a band of power joined
semigroups if and only if every group and every group with zero homomorphic
image of S is a periodic group and a periodic group with zero , respectively.

Theorem 9.8 ([16}) A semigroup S is medial and simple if and only if it is a
reetangular abelian group.

Proof. Let S be a simple medial semigroup. By Theorem 9.2, S is a left and
right Putcha semigroup. Then, by Theorem 2.3, S is completely simple and so
S is isomorphie to a Rees matrix semigroup M(I,G,JiP) over a group G with
a normalized sandwich matrix P . Let e denote the identity element of G. As P
is normalized, there are elements io E I and jo E J such that

Pi,io = Pio,i = e.

Then, for every a, bEG,

(io,ab,jo) = (io,e,jo)(io,a,jo)(io ,b,jo)(io,e,jo)

= ((io, e,jo)(io, b,jo)(io, a,jo)(io, e,jo) = (io, ba,jo) .

Hence
ab = ba,

that is, G is an abelian group. Let i EI, j E J and a, bEG be arbitrary
elements, Then

( ' ') (' ')2 (( ' ')( ' '))2 (' . )2(' ')2t,Pi,i,) = t,e,} = t,e,Jo to,e,} = t,e,Jo to,e,}

= (i,e,jo)(io ,e,j) = (i,e,j)

and so
Pi,i = e.

Hence S is a direct produet of the reetangular band I x J and the abelian group
G, that is, S is a reetangular abelian group, As the converse is obvious, the
theorem is proved. 0

Corollary 9.1 A semigroup is medial and O-simple if and only if it is a reet
angular abelian group with a zero adjoined.

Proof. Let S be a medial O-simple semigroup. By Theorem 9.3, S is a semi
lattice Y of archimedean semigroups. Let a, b E S be arbitrary elements with
a, b =1= O. Then SlaS I = S and SlbS I = S and so

a E SlbS I and b E SlaSl,

Thus a and b are in the same 11-class A of S, where 11 denotes the least semilattice
congruence on S (see also Theorem 2.1). HO was in Athen S would a nil
semigroup which contradict the assumption that S is O-simple. Consequently
the 11-classes of S are A and {O}. It is clear that A is simple. Hence, by the
previous theorem, A is a reetangular abelian group. Thus S is a reetangular
abelian group with a zero adjoined, As the converse is trivial, the corollary is
~~. 0
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Theorem 9.9 ([16}) A semigroup S is a medial archimedean semigroup con
taining at least one idempotent element i/ and only i/ it is a retraet extension
0/ a reetangular abelian group by a medial nil semigroup.

Proof. Let S be a medial archimedean semigroup containing at least one idem
potent element. Since S is a left and right Putcha semigroup (see Theorem 9.2)
then, by Theorem 2.4, it is a retraet extension of a completely simple semigroup
K by the nil semigroup N = S / K. It is clear that K and N are medial. By
Theorem 9.8, K is a reetangular abelian group. Hence S is a retraet extension
of a reetangular abelian group K by the medial nil semigroup N.

Conversely, let the semigroup S be a retraet extension of a reetangular
abelian group and a medial nil semigroup. By Theorem 2.2, S is an archimedean
semigroup containing at least one idempotent. Since a reetangular abelian group
is medial and the medial semigroups form a variety then, by Theorem 1.40, S
is medial. 0

Theorem 9.10 The /ollowing conditions on a semigroup S are equivalent.

(i) S is medial and regular.

(ii) S is an orthodox normal band 0/ abelian groups.

(iii) S is a strong semilattice 0/ reetangular abelian groups.

(iv) S is a spined pruduci 0/ a normal band and a semilattice 0/ abelian groups.

Proof. (i) implies (ii). Let S be a medial and regular semigroup. Then, by
Theorem 9.3, it is a semilattice Y of archimedean medial semigroups Si, i E Y.
As S is regular, each Si is regular and so has an idempotent element. Then,
by Theorem 9.9, each Si is a retraet extension of a reetangular abelian group
K; = Bi X Gi (Bi is a reetangular band and G; is an abelian group) by a medial
nil semigroup. As K; contains all idempotent elements of Si, we can conclude
that Si = K i. Hence S is a semilattice Y of reetangular abelian groups K i,
i E Y. By Theorem 1.27, S is an orthogroup and so the set of all idempotents
of S is a subsemigroup. It is clear that each K; is a union of abelian groups
/ X Gi, where / E Bi. Hence S is a disjoint union of abelian groups. The
idempotent elements of S are / X e, (i E Y), where e; denotes the identity
element of the group Gi and / E Bi be arbitrary. Identify Bi with Bi X ei·
Then

B = UiEyBi

can be considered as the semigroup of all idempotents of S. As S is medial, B
is a normal band. To show that S is an orthodox band of (maximal) subgroups
/ X Gi (i E Y, / E Bd, by Theorem 1.29, it is sufficient to show that the
Green's equivalence 11. = n n r. is a congruence on S. Assume aSI = bS I for
some a,b E S. Then a = bx and b = ay for some x,y E SI. We can suppose
that x,y E S. Let sES be arbitrary. As S is regular, sis = s for some tE S.
Thus

as = bxsts = bsxts
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and
bs = aysts = asyts ,

that is,
as E bsS1

and
bs E asS1

•

Hence the left congruence 'R is a congruence on S. We can prove, in a similar
way, that the right congruence .c is a congruence on S. Hence 1l is a congruence
on S .

(ü) implies (üi) and (üi) implies (iv) by Theorem 1.32. It is obvious that
(iv) implies (i). Thus the theorem is proved. 0

Theorem 9.11 Every medial archimedean semigroup without idempotent ele
ment has a non-trivial group homomorphic image.

Proof. Let S be a medial archimedean semigroup without idempotent element.
It is clear that S satisfies the identity (ab)2 = a2b2. Then, by Theorem 1.42, the
principal right congruence 'Rs. is a group congruence on S for every a ES. If
Sa i= S then SI'Rs. is a non-trivial group homomorphic image of S. Consider
the case Sa = S. In this case, for every x E S, there are positive integers i,j, k
such that aixai = ak • Assume that

also holds for some positive integers p, q, m. Then

from which we get
m - (p + q) = k - (i + j),

because S does not contain idempotent element. Thus the integer k - (i +j) is
well-determined by the element x. Let ep be the following mapping.

ep: xES ---+k-(i+j),

where k - (i+j) is the integer which is determined by x as above. Since Sa = S
then ep is defined on S, and it maps Sinto the additive semigroup of integers.
We show that ep is a homomorphism. Let x , y E S be arbitrary. Assume

and
amyaß = ah

for some positive integers i,j, k, m, n, h. Then
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and so
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rp(xy) = k + h - (i + j + m + n) = k - (i + j) + h - (m + n) = rp(x) + rp(y) .

Hence rp is a homomorphism of Sinto the additive semigroup of integers. It
is clear that rp(a) = 1. Thus rp(S) equals either the additive semigroup of all
integers or the additive semigroup of all non-negative integers or the additive
semigroup of all positive integers. Since all of these additive semigroups have
non-trivial group homomorphic Images, the theorem is proved. 0

Cancellation and separativity

Let S be a medialieft separative semigroup. Assume a2 = ab = b2 for some
a.b ES. Then

and
(ba)(ab) = ba2b = b4 = b2a2 = (ba)2.

As S is left separative, we get ab = ba. Thus ab = a2 and ba = b2. Using
again the left separativity of S , we get a = b, Hence S is weakly separative. We
can prove, in a similar way, that a medial right separative semigroup is weakly
separative. We note that a reetangular band L x R with ILI ~ 2 and IRI ~ 2
shows that the converse is false .

Lemma 9.1 ([16)} Let S be a weakly separative medial semigroup and x ,y be
arbitrary elements of S such that x n+1 = xny (x n+1 = yxn) for some positive
integer n. Then xy = x 2 (yx = x 2).

Proof. Let S be a weakly separative medial semigroup. H, for an integer n ~ 2,
x n+! = xny (x,y E S) then

=x n+1xn- 2y = x nyxn- 2y = (x n-1y)2,

where x n - 2y = y if n = 2. Thus

because S is weakly separative. Repeating this process n - 1 times, we get

x 2 = xy.

Similarly, x n+! = yxn implies x 2 = yx for every positive integer n. o

Lemma 9.2 /f S is a m edial archimedean semigroup then , [or every a,x,y E S ,
ax = ay (xa = ya) implies x n+1 = xny and yn+l = ynx (x n+1 = yxn and
yn+l = xyn) for a positive integer n.
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Proof. Let S be a medial archimedean semigroup and a, z , y E S be arbitrary
elements with ax = ay. Then there are elements U,V,z,W E Sand a positive
integer n such that x n = uav and yn = zaw. Thus

x n+1 = uavx = uvax = uvay = uavy = xny

and
yn+l = zawy = zway = zwax = zawx = yn x.

We can prove, in a similar way, that xa = ya implies xn+1 = yxn and yn+l =
xyn for a positive integer n. 0

Theorem 9.12 ([16}) /j S is a medial semigroup with archimedean components
Sa (a E Y) then

(i) S is weakly separative ij and only ij each Sa is weakly cancellative.

(ii) S is left (right) separative ij and only ij each Sa is left (right) cancellative.

(iii) S is separative ij and only ij each Sa is cancellative.

Proof. To prove (i), first assume that S is a weakly separative medial semi
group. Let Sa, a E Y be an arbitrary archimedean component of S and
a,b,x,y E Sa be arbitrary elements with ax = ay , xa = ya. Then, by Lemma
9.2,

and
yn+l = xyn

for some positive integers m and n. Then, by Lemma 9.1 ,

As S is weakly separative, we get

x = y.

Conversely, assume that each Sa is weakly cancellative. Then, by Lemma
1.1, Sa sarisfies the condition that, for every a, b,z , y E Sa, ax = ay and xb = yb
together imply x = y. Assume x2 = xy = y2 for some x,y ES. Then there is a
I E Y such that

x,y,xy ES..,.

Since xx = xy and xy = yy in S.." we get x = y.
To prove (ü), first assume that S is a left separative medial semigroup, Let

Sa, a E Y be an arbitrary archimedean component of S and a, b,z , y E Sa be
arbitrary elements with ax = ay. Then, by Lemma 9.2 ,
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yß+l = yß x

for a positive integer n. By Lemma 9.1 ,

and
yx = y2.

As S is left separative, we get x = y. Hence Sa is left cancellative.
Conversely, assume that each Sa is left cancellative. Assurne xy = x 2 and

yx = y2 for some z , y E S. Then there is a"l E Y such that x, y, xy E S-y. Since
S-y is left cancellative, we get x = y.

We can prove, in a similar way, that S is right separative if and only if each
Sa is right cancellative.

The proof of (iii) follows immediately from (ii). 0

Theorem 9.13 ([16]) Let S be a medial weakly cancellative semigroup. Th en
S can be embedded into a rectangular abelian group.

Proof. Let S be a medial weakly cancellative semigroup. Then , by Lemma
1.1, S satisfies the condition that , for every a, b, x , y E S, ax = bx and ya = yb
imply a = b. Define a relation , on the semigroup S* = S x S x S by

(a , b, c)'(a' , b' , c' )

if and only if
cab'c' = c'a' bc.

Reflexivity and symmetry of , follows immediately. To prove transitivity, let

and

By the definition of "

and

Then
c2c2a2(clalb3c3) = c2clal(c2a2b3c3)

= c2clal(c3a3~c2) = c2c3a3(clal~c2)

= c2c3a3(c2a2blcI) = c2c2a2(c3a3blcI).

Similarly,
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By our assumption on S,

that is,

(al, bl , cde(as , bs , cs).

The proof that e is compatible involves a routine application of mediality. It is
clear that the faetor semigroup S* /e is medial. Let [a,b,c]e denote the e-dass
of S* containing the element (a,b,c) E S* . It is clear that

[b,a,g]da,b,c]de,f,g]e = [e,f,g]e

for every [a,b,c]e,[e,j,g]e E S*/e. Hence S*/e is simple. Then, by Theorem
9.8, S* /e is a reetangular abelian group. Let 4> be a mapping of S to S* /e
defined by

Since

4>(a)4>(b) = [a,a2,aJe[b,b2,b]e

= [ab, a2b2, ab]e = [ab, (ab)2,ab]e = 4>(ab)

then 4> is a homomorphism. To show that 4> is an isomorphism, assume

4>(a) = 4>(b)

for some a, b ES. Then

Thus

Consequently,

and
a(a2b5 ) = (a2bs)(ab2) = (b2aS)(ab2) = bWas)ab

= b(a2bs)ab = bWas)b2 = b(a2bs)b2 = b(a2b5
) .

By our assumption on S,
a= b,

Hence 4> is an isomorphism. o

Theorem 9.14 ([16]) A medial semigroup can be embedded into a semigroup
which is a union of groups if and only if it is weakly separative.
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Proof. It is easy to see that if a semigroup S is embeddable into a semigroup
which is a union of groups then S is weakly separative.

Conversely, let S be a weakly separative medial semigroup. By Theorem
9.3, and Theorem 9.12, S is a semilattice Y of weakly cancellative medial
archimedean semigroups Si (i E Y). Then, by Theorem 9.13, for every i E Y,
there is an isomorphism cPi of Si into the reetangular abelian group

Ri = Si/{i,

where Si denotes the semigroup Si x Si X Si and {i a congruence on Si defined
by

(a, b,c){i(a', b', c')

if and only if
cab'c' = c'a'bc

(a,b,c,a',b' ,c' E Si). We can suppose u.n s, = 0 if i =1= i- Let

R = UiEyRi.

On R we define a product by

[a, b,c]e;[x, y, z]ej = lax,by,czJe.j '

To show that the product is weIl defined, let

(a, b, C){i(a', v, c')

and
(x, y, z ){j (x', y', z').

Then
(ax, by,CZ){ij (a'x' ,b'y', c' z'),

because
(cz)(ax)( b'y')( c' z') = (cab'c')(zxy'z')

=(c'a'bc)(z'x'yz) = (c'z')(a'x')(by)(cz) .

Hence
lax, by,czJe.j = [a'x', b'y', c' z'Je.j'

The operation is obviously associative. Finally, define a mapping cI-: S -+ R
by

(a)cI- = cPi(a) = [a,a2,a]e; E R;

if a E Si. Since the restrietion of cI- to each Si is injective and since (Si)cI- n
(Sj)cI- = 0 if i =1= j, cI- is injeetive. It is also a homomorphism, because

(ab)cI- = [ab, (ab)2,ab]eij = [ab, a2b2,ab]e;j

= [a,a2,a]e;[b,b2,b]ej = (a)cI-(b)cI-.

Thus S is embedded in the union of groups. 0

Next, we give equivalent conditions for a semigroup to be medial and weakly
separative.



129

Theorem 9.15 (Th. IV.9.5 01 [75]) The lollowing conditions on a semigroup
S are equivalent.

(i) S is medial and weakly separative.

(ii) S is a normal band 01 cancellative semigroups and satisfies the identity
(xy)2 = x2y2 .

(iii) S is embeddable into a strong semilattice 01 reetangular abelian groups.

(iv) S is a subdirect product 01 a normal band and a commutative separative
settuqroup,

Theorem 9.16 ([16]) Let S be a medial semigroup. Then

T = {(a,b) ES x S: an+1 = anb, bn+1 = bna [or some positive integer n}

is the smallest left separative congruence on S,

a = {(a,b) ES x S : an+1 = bo" : bn+1 = ab" [or some positive integer n}

is the smallest right separative congruence on S, 1f =TnU is the smallest weakly
separative congruence on Sand

8 = {(a, b) E S x S: an+2 = an ba, bn+2 = b"ab [or some positive integer n}

is the smallest separative congruence on S.

Proof. By Lemma 4.1, T is an equivalence on S. We shall show that T is a
congruence on S. Let a, b E S be arbitrary elements with

a r b.

Then

and

for a positive integer n. Let s be an arbitrary element of S. Then

(as)n+lbs = as n+1anbs = as n+1an+1s = (as)n+2

and
(sa)n(sb) = sn+l anb = sn+l an+1 = (sa)n+l .

We can prove , in a similar way, that

and
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Hence T is a congruence on 8 . We show that T is left separative. Assume

ab T a2

and

for some a, b E 8. Then
(a2t(ab) = (a2)n+l ,

(b2 )n(ba) = (b2 )n+l ,

and so

and

Hence
a r b.

It remains to show that T is the smallest left separative congruence on 8. Let
a be an arbitrary left separative congruence on 8 and let

aTb

for arbitrary a, b E 8. Then

and

for some positive integer n. Thus

and
bna T bn+1 •

Let Q = 81T and let [al denote the T-class of 8 containing the element a of 8.
Then

and
[b]n[a] = [br+1

.

Let TJ denote the least semilattice congruence on Q. Then

[al TJ [aln+l

= [ar[b] TJ [a][b] TJ[b][a] TJ [br[a]

= [bln +1 TJ [b],

that is,
[a]TJ[b].

By Theorem 9.11, the TJ-classes of Q are left cancellative. Hence a = b.
As the proofs are similar in the other cases, the theorem is proved. 0



131

Theorem 9.17 (Th. III..l. 7 0/ [75)} The /ollowing eondition on a semigroup
S are equivalent.

(i) S is medial and weakly eaneellative.

(ii) S is a reetangular band 0/eaneellative semigroups and satisfies the identity
(ab)2 = a2b2.

(iii) S is embeddable into a reetangular abelian group.

(iv) S is a subdireet produet 0/a reetangular band and a eommutative eaneella
tive semigroup.

Remark 9.1 A medial right (left) cancellative semigroup satisfies the identity
axy = ayx (xya = yxa). Semigroups satisfying this identity are examined in
the next chapter.

Subdirectly irreducible medial semigroups

Theorem 9.18 A semigroup S is a subdirectly irredueible medial semigroup
with a globally idempotent eore i/ and only i/ it satisfies one 0/ the /ollowing
eonditions.

(i) S is isomorphie io either G or CO , where G is a non-trivial subgroup 0/ a
quasicyclie p-group (p is a prime).

(ii) S is a two-element semilattiee.

(iii) S is isomorphie to R or RO, where R is a two-element right zero semigroup.

(iv) S is isomorphie to L or LO, where L is a two-element left zero semigroup.

Proof. Let S be a subdirectly irreducible medial semigroup with a globally
idempotent core K. First, assume that S has no zero element. Then K is
simple. As K is also medial, by Theorem 9.8, it is a reetangular abelian group,
that is, K = L x R x G, where L is a left zero semigroup, R is a right zero
semigroup and G is an abelian group. By Corollary 1.4, we have either K = L
or K = R or K = G.

Assume K = G. Then S is a homogroup and so, by Theorem 1.47, it is a
subdirectly irreducible abelian group. Then, by Theorem 3.14, S is a non-trivial
subgroup of a quasicyclic p-group (p is a prime).

Assume K = L. It can be easily verified that

tS = {(a, b) E S x S: ax = bx for all x E L}

is a congruence on S such that its restrietion to L is idL. As L is a dense ideal
of S, we get

tS = ids.



132 CHAPTER 9. MEDIAL SEMIGROUPS

Let x E L and sES be arbitrary elements. Then

( )
2 2 2 2sz = sx = s x = s z ,

that is, (s, s2) E d. Hence s = s2. Thus S is a band. Let Xl, x2 E L be arbitrary
elements. Then, for every sES,

that is (s, SX2) E d for every X2 E L. Thus s = SX2 E L. So S =L, that is, S is
a left zero semigroup. As S is subdirectly irreducible, by Theorem 1.48, it has
two elements. We can prove, in a similar way, that S is a two-element right zero
semigroup if K = R. Summarizing our results, S is either a non-trivial subgroup
of a quasicyclic p-group (p is a prime) or a two-element left zero semigroup or
a two-element right zero semigroup.

Next, assume that S has a zero element O. As S is a medial semigroup, it is a
semilattice of medial archimedean semigroups. Let So denote the archimedean
component of S containing O. Let a, b E S be arbitrary elements with a =I 0 and
b =I 0 and ab = O. Let B = {x ES: ax = O}. It is clear that B is a right ideal of
S and bEB. We show that B is also a left ideal. Let sES, x EBbe arbitrary.
Then asx and sax are in the same archimedean component. Hcnce ase E So. If
ISol = 1 then asx = 0 and so sx E B. Assumc ISol > 1. Then So is a non-trivial
ideal of S and so it contains the core K of S. As So is archimedean and contains
the zero of S, it is a nil semigroup, As K is O-simple and medial, by Corollary
9.1, it is a reetangular abelian group with a zero adjoined. But this contradicts
the fact that So is a nil semigroup. Hence B is an ideal of S. As B contains at
least two elements, K ~ B and so aK = {O}. Let A = {y ES: yK = {O}}.
It is clear that A is a left ideal of S and a E A. Since ysK ~ yK = {O} for
every sES and y E Athen A is also a right ideal of S and so it is an ideal of
S. As A has at least two elements, K ~ A and so K 2 = {O} which contradicts
the assumption that the core K of S is globally idempotent. Consequently, the
set S' of all non-zero elements of S is a subsemigroup and so S is a semigroup
SIO with a zero adjoined. If IS'I = 1 then S is a two-element semilattice. If
IS'I > 1 then S' is a subdirectly irreducible medial semigroup without zero.
Thus the core S' is globally idempotent. Using also the first part of this proof,
we get that S is either GO or LO or RfJ, where G is a non-trivial subgroup of a
quasicyclic p-group (p is a prime), L is a two-element left zero semigroup and R
is a two-element right zero semigroup. As the semigroups listed in the theorem
are subdirectly irreducible medial semigroups, the theorem is proved. 0

Theorem 9.19 A medial semigroup with zero and a non-trivial annihilator is
subdireetly irreducible ij and only ij it has a non-zero disjunctive element.

Proof. By Theorem 1.49, it is obvious. o
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Medial ß-semigroups

Theorem 9.20 ([23]) A semigroup S is a m edial ß-semigroup if and only if it
sat isfi es one of th e following eonditions.

(i) S is isom orphie to either G or CO , where G is a non-trivial subgroup of a
quasieyclie p-group (p is a prime).

(ii) S is a two-element sem ilattiee.

(iii) S is isomorphie to either R or RJ , where R is a two-element right zero
setmqroup,

(iv) S is isomorphie to either L or LO, where L is a two-element left zero
semsqroup,

(v) S is a medial nil semigroup whose prineipal ideals form a ehain with respeet
io inclusion.

(vi) S is a medial Tl semigroup (if S has an identity then it is eommutative).

Proof. Let S be a medial ß-semigroup. Then, by Theorem 9.3 , it is a semilat
tice of archimedean medial semigroups. By Remark 1.2, S is either archimedean
or a disjoint union S = SoUSI of an ideal So and a subsemigroup SI of S which
are archimedean.

Consider the case when S is archimedean. If S has a zero element then it
is a nil semigroup whos e principal ideals form a chain with respeet to inclusion
(see also Theorem 1.56). In this case (v) is satisfied.

In the next , we assume that S has no zero element. We have two cases.
First, assume that S is simple. Then, by Theorem 9.8, it is a rectangular

abelian group, that is, a direet produet of a left zero semigroup L , a right zero
semigroup R and an abelian group G. Then, by Corollary 1.3, either S = G or
S = R or S = L. In the first case (i) is satisfied (see Theorem 3.14). In the
second case (üi) is satisfied (see Theorem 1.50). In the third case (iv) is satisfied
(see Theorem 1.50).

Consider the case when S is not simple (and S has no zero element) . Then,
by Theorem 9.11 and Theorem 1.52, S has an idempotent element. By Theorem
9.9, S is a retraet extension of a reetangular abelian group K by a medial nil
semigroup N. Let Adenote the congruence on S determined by the mentioned
retraet homomorphism. Then An PK = ids , where PK denotes the Rees con
gruence of S modulo K. As S is a ß-semigroup, we have A = ids. Then S = K
which contradict the assumption for S.

Next, consider the case when S is a disjoint union S = SoUSI of an ideal So
and a subsemigroup SI of S, where So and SI are archimedean. By Theorem
1.51 and Remark 1.1, SI is a ß-semigroup.

If SI is a nil semigroup (with zero 0) then, by Theorem 1.57, SI has only
one element.
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Thus SI is either a two-element left zero semigroup L or a two-element right
zero semigroup R or a subgroup G of a quasicyclic p-group (p is a prime).

If 180 1= 1 then either 8 = L O or 8 = JlÜ or 8 = CO. If IGI = 1 then S is a
two-element semilattice.

Next, assume ISol > 1. We recall that So is a medial archimedean semigroup.
By Theorem 9.11, and Theorem 1.52, So has an idempotent. Then So is a
retraet extension of a reetangular abelian group K by a medial nil semigroup.
By Theorem 1.52, K is a reetangular band, that is K = R x L, where R is a
right zero semigroup and L is a left zero semigroup. Since K2 = K then, by
Theorem 1.14, K is an ideal of S.

Assume IKI = 1. Then So is a nil semigroup. By Theorem 1.59, we have
either ISI I= 1 or SI is a two-element right zero semigroup or SI is a two-element
left zero semigroup. If ISII = 1 then 8 is a Tl semigroup and so (vi) is satisfied.
Assume that SI is a two-element left zero semigroup. Let SI = {u, v}. It is easy
to see that

T11. = {(a, b) E S x S: ua = ub}

and
T v = {(a ,b) E S x S: va = vb}

are congruences of S such that (u,v) E Tu and (u,v) E T v• As S is a ß
semigroup, we have PSo E Tu and PSo E Tv, where PSo denotes the Rees congru
ence of S modulo So. Thus (a,O) E Tu and (a,O) E T v for every a E 80, that is,
ua = va = °for every a E So. Let 1= {a ES: au = av}. It is easy to see that
I is a left ideal of S . We show that I is also a right ideal of S. Let a E I and
s E 8 be arbitrary elements, Then

asu = asuu = ausu = avsu = asvu = asv

and so as E I. Hence I is an ideal of S. It is clear that u,v E I. As S is a
ß-semigroup, and u , v rf; So, we have I = S. Thus au = av for every a E So.
Let ß be the following equivalence on 8.

ß = {(a,b) E S x 8: a = b or a,b E Sd.

As ua = va and au = av for every a E So, we have that ß is a congruence on S.
It is clear that ßnpso = ids, where PSo is the Rees congruence on S determined
by the ideal 80 of 8. As 8 is a A-semigroup, either ß ~ PSo or os; ~ ß and so
either ß = ids or PSo = ids. As u =I- v , we would have only PSo = ids. Hence
So has only one element which is a contradiction. If SI is a two element right
zero semigroup then we get, in a similar way, that So has only one element.

Assume that IKI > 1. First consider the case when K is a left zero semi
group. It is easy to see that

a = {(a,b) E S x S: az = be for all z E K}

is a congruence on S such that its restrietion to K is the equality relation on K.
As K is a dense ideal, it follows that a = ids. Let x E k and c E 8 be arbitrary
elements. Then
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which means that (c,c2 ) E rx- Thus c = c2 • Consequently, S is a band and so
So = L. By Theorem 1.61, S = LI, where L is a two-element left zero semigroup.
As a medial monoid is commutative, ILI = 1 which is a contradiction.

We have a contradiction in that case when K is a right zero semigroup. Thus
the first part of the theorem is proved. As the semigroups listed in the theorem
are medial ~-semigroups, the theorem is proved. 0



Chapter 10

Right commutative
•semigroups

In this ehapter we deal with semigroups whieh satisfy the identity axy = ayx.
These semigroups are ca1led right commutative semigroups. lt is clear that a
right eommutative semigroup is medial and so we can use the results of the
previous ehapter for right eommutative semigroups. For example, every right
eommutative semigroup is a semilattice of right eommutative arehimedean semi
groups and is a band of right eommutative t-arehimedean semigroups. A semi
group is right eommutative and simple if and only if it is a left abelian group.
Moreover, a semigroup is right eommutative and arehimedean eontaining at least
one idempotent element if and only if it is a retraet extension of a left abelian
group by a right eommutative nil semigroup, We eharaeterize the right commu
tative left eaneellative and the right eommutative right eaneellative semigroups,
respeetively. Clearly, a semigroup is right eommutative and left caneellative if
and only if it is a eommutative caneellative semigroup. A semigroup is right
eommutative and right caneellative if and only if it is embeddable into a left
abelian group if and only if it is a left zero semigroup of eommutative caneella
tive semigroups. It is shown that a right eommutative semigroup is embeddable
into a semigroup whieh is a union of groups if and only if it is right separative.
In this ehapter we give a eomplete deseription of subdireetly irreducible right
eommutative semigroups. We show that a semigroup is a subdireetly irreducible
right eommutative semigroup with a globally idempotent eore if and only if it
is isomorphie to either G or ao or F or L or LO, where G is a non-trivial sub
group of a quasieyelie p-group (p is a prime), F is a two-element semilattiee
and L is a two-element left zero semigroup. A right eommutative semigroup
with a zero and a non-trivial annihilator is subdireetly irredueible if and only if
it has a non-zero disjunetive element. A right eommutative semigroup S with
IA~I = 1, IAsl > 1 is subdirectly irredueible with a nilpotent eore if and only
if it satisfies all of the following three eonditions. (1) S eontains a non-zero
disjunetive element. (2) S is a disjoint union of a non-trivial ideal Rand a
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subgroup G of S, where R is the set of all right divisors of zero of Sand Gis a
subdireetly irreducible commutative group such that the identity element of G
is a right identity element of S. (3) For every k E Ko and 91, 92 E G, k91 = k92
implies 91 = 92. Finally, we show that a right commutative semigroup S with
IAs1=1 A~ 1= 1 is subdirectly irreducible with a nilpotent core if and only if it
is either a commutative subdirectly irreducible semigroup with a nilpotent core
and a trivial annihilator or satisfies both of the following two conditions. (1)
S is a disjoint union of the set RI(S) of all right identity elements of S and a
non-trivial ideal R of all divisors of zero of S , RI(S) has two elements e and J,
Ko has two elements k1 and k 2 such that both of k1, k2 are disjunetive elements
of Sand eKo = {kIl , JKo = {k2 } . (2) If R - K =!' 0 then rR =!' {O} =!' Rr for
all rE R - K.

We also determine the right commutative A-semigroups. We show that a
semigroup S is a right commutative A-semigroup if and only if it satisfies one
of the following. (1) S is either Gor CO, where Gis a non-trivial subgroup of
a quasicyclic p-group (p is a prime). (2) S is a two-element semilattice. (3) S
is either L or LO, where L is a two-element left zero semigroup. (4) S is a right
commutative nil semigroup whose principal ideals form chain with respect to
inclusion, (5) S is a right commutative Tl semigroup. At the end of the chapter
the right commutative Tl semigroups are constructed.

Definition 10.1 A semigroup S is said io be a right commutative semigroup if
it satisfies the identity axy = ayx.

Theorem 10.1 Ev ery finitely generated periodic right commutative semigroup
is finite.

Proof. By Theorem 1.1, it is obvious.

Lemma 10.1 On a semigroup S , the following are equivalent.

o

(i) S is right commutative.

(ii) Tz = {(u, v) E S X S: xu = xv} is a commutative conqruence on S for
every xE S .

(iii) T = {(u, v) E S x S : xu = xv for all x E S} is a commutative congruence
on S.

Proof. (i) implies (ü). Let S be a right commutative semigroup and x E S be
arbitrary. It is clear that Tz is a right congruence on S. As

xsu = xus = xvs = xsv

for every sES and u,v E Tz, we get that Tz is a congruence on S. As xab = z ba
for every a, b ES, Tz is commutative.

(ü) implies (üi). It is a consequence of the equation T = nzES Tz·
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(üi) implies (i). If r is a commutative congruence on a semigroup 8 then,
for every a, b E 8 , we have

ab, ba Er,

that is,
xab = zba

for all x E 8. Hence 8 is right commutative.

Semilattice decomposition of right commutative semigroups

o

Theorem 10.2 Ev ery right commutative semigroup is a left and right Putcha
semlgroup.

Proof. Let 8 be a right commutative semigroup and a, b E 8 be arbitrary
elements with b E a81 , that is, b = ax for some x E 8 1 . Then

Hence 8 is a left Putcha semigroup. Assume b E 8 1a for some a,b E 8. Then

b=ya

for some x E 8 1. Then
b2 = y2a2 E 8 1a2.

Thus 8 is a right Putcha semigroup. o

Theorem 10.3 Ev ery right commutative semlgroup IS a semilattice 0/ right
commutative archimedean semigroups.

Proof. Let 8 be a right commutative semigroup. By Theorem 10.2 and Corol
lary 2.2, 8 is a semilattice Y of archimedean semigroups 8co a E Y. As the
subsemigroups 8 01 of 8 are right commutative, the theorem is proved. 0

Theorem 10.4 Every right commutative semigroup is a band 0/ right commu
tative t-archimedean semiqroups,

Proof Since a right commutative semigroup satisfies the identity (ab)3
a2b2(ab) = (ab)a2b2 then the assertion follows from Theorem 1.8. 0

Theorem 10.5 A semigroup is right commutative and simple i/ and only i/ it
is a left abelian group.

Proof. Let 8 be a right commutative simple semigroup. Then 8 is medial and
so, by Theorem 9.8, it is a reetangular abelian group 8 = L x R x G (L is a left
zero semigroup, R is a right zero semigroup and Gis an abelian group). It is
clear that IRI= 1. Hence 8 is a left abelian group. The converse is obvious. 0
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Theorem 10.6 A semigroup is a right commutative archimedean semigroup
containing at least one idempotent element il and only il it is a retraet extension
01 a left abelian group by a right commutative nil semigroup.

Proof. Let S be a right commutative archimedean semigroup containing at
least one idempotent element. By Theorem 10.2 and Theorem 2.4, S is a retract
extension of a (right commutative) completely simple semigroup K by a (right
commutative) nil semigroup N = SJK. By Theorem 10.5, K is a left abelian
group. Thus the first part of the theorem is proved.

Conversely, assume that the semigroup S is a retract extension of a left
abelian group K by a right commutative nil semigroup. Then, by Theorem
2.2, S is archimedean and contains an idempotent. It is clear that K is right
commutative. As the right commutative semigroups form a variety, by Theorem
1.40, S is right commutative. 0

Corollary 10.1 The lollowing conditions on a semigroup S are equivalent.

(i) S is right commutative and regular.

(ii) S is an orthodox left normal band 01 abelian groups.

(iii) S is a strong semilattice 01 left abelian groups.

(iv) S is a spined pruduct 01 a left normal band and a semilattice 01 abelian
groups.

Proof. By the proof of Theorem 9.10, it is obvious. o

Theorem 10.7 Every right commutative archimedean semigroup without idem
potent has a non-trivial group-homomorphic image.

Proof. As a right commutative semigroup is medial, our assertion fol1ows from
Theorem 9.11. 0

Cancellation and separativity

Theorem 10.8 The following conditions on an arbitrary semigroup S are
equivalent.

(i) S is right commutative and left cancellative.

(ii) S is embeddable into a commutative group.

(iii) S is commutative and cancellative.

Proof. It is obvious. 0

Theorem 10.9 The following conditions on an arbitrary semigroup S are
equivalent.
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(i) S is right commutative and right cancellative.

(ii) S is embeddable into a left abelian group.

(iii) S is a left zero semigroup of commutative cancellative semigroups.

Proof. (i) implies (ü). Let S be a right eommutative right eaneellative semi
group. On the semigroup S X S, define a relation e as follows.

(a,b) e(c,d) ~ ad = cb,

It is easy to see that eis reflexive and symmetrie (for arbitrary semigroup S). To
show that e is transitive, assume (a,b)e(c,d), (c,d)e(e,J) for a,b,c,d,e,f E S.
Then

ad = cb,

cf = ed

and so
afd = adf = cbf = cfb = edb = ebd,

because S is right eommutative. As S is right eaneellative, we have

af = eb,

that is,
(a,b)e(e,J).

Henee e is transitive. Using the right commutativity of S, it is easy to see that
e is a eongruenee on S X S. Let [a, b] denote the e-class of S X S eontaining
the element (a,b) and let M denote the factor semigroup (S X S)/ e. It can be
easily verified that M is right eommutative. As

[e,d][a,b][b,a] = [c ,d]

for every a, b,c, dES, M is simple. As

for every a E S, M eontains an idempotent. Let e and f be arbitrary idempo
tents of M with e ::s: f, that is, ef = fe = e. As M is simple,

f= xey

for some z , y E M. Then

J = J2 = xeyf = xe2yf = xeyef = Jef = ef = e.

Henee every idempotent of M is primitive. Thus M is a eompletely simple
semigroup. As
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for every idempotents e, fES , the idempotents of M form a subsemigroup
in M. Since M is a complete1y simple semigroup whose idempotents for a
subsemigroup then, by Theorem 1.26, M is a rectangular group. It is easy to
see that M is a left abelian group. We show that

is an isomorphism of Sinto M. Assume

4>(a) = 4>(b),

that is,

for some a, b ES. Then

As S is right cancellative, we have

a = b.

Hence 4> is injective. As

for every a, b ES, we get that 4> is a homomorphism. Hence (ii) is satisfied.
(ii) implies (iii). Assume that a semigroup S is embeddable into a left abelian

group B = L x G (L is a left zero semigroup, Gis an abelian group). It is clear
that B is a left zero semigroup L of commutative groups f x G, f E L. Then S
is a left zero semigroup L of subsemigroups SI (J E L) , which are embeddable
into commutative groups f x G. Then each SI is commutative and cancellative.
Hence (iii) is satisfied.

(iii) implies (i). Assume that a semigroup S is a left zero semigroup L of
commutative cancellative semigroups Si (i E L). Let a, b,cES be arbitrary
elements with a E Si, b E Sj, c E Sk. To show that S is right cancellative,
assume

ba = ca.

As

and

we have
j=k

and so
b,c, baca E Sj.
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Then, in Si>
b(ba) = bca = cba = c(ca),

because Sj is commutative. Since Sj is cancellative, we get

b= c.

Hence S is right cancellative. It is clear that, for arbitrary a, b, cES, we have

ab,ac,abc,acb E Si.

Then
(abc)a = a(abc) = a(ab)c = (ab)(ac) = (ac)(ab)

= (ac)ab = a(ac)b = a(acb) = (acb)a,

because Si is commutative. As S is right cancellative, we get

abc = acb,

Hence S is right commutative. o

Theorem 10.10 Let S be a right separative right commutative semigroup and
x, y be arbitrary elements of S such that yxn = x n+1 for some positive integer
n. Then yx = x2.

Proof. By Lemma 9.1, it is obvious. o

Theorem 10.11 1f S is a right commutative right separat ive semigroup then
the archimedean components of S are right cancellative.

Proof. As a right commutative semigroup is medial, our assertion follows from
Theorem 9.12. 0

Theorem 10.12 A right commutative semigroup is embeddable in a semigroup
which is a union of groups if and only if it is right separative.

Proof. Assume that the right commutative semigroup is embeddable into a
semigroup T which is a union of groups. We can suppose that T is a disjoint
union of groups. Let a, b E S be arbitrary elements with

ab = b2, ba = a2.

Then
b4 = (ab)2 = abab = a3b = a2ba = a4

from which we get that
a,b E G

for a subgroup G of T . As G is cancellative, we get

a= b.
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Conversely, let S denote a right commutative right separative semigroup.
By Theorem 10.3 and Theorem 10.11, S is a semilattice Y of right cancellative
right commutative archimedean semigroups Sa, a E Y. By Theorem 10.9, every
Sa is embeddable into a left abelian group M a = (Sa x Sa)/ea. Let 4>a denote
the corresponding isomorphism. We can suppose that M a n Mß = 0 if ai' ß ,
Let [a,b]a denote the elements of Ma (a,b E Sa). On M = UaEyMa define the
following operation

[a, b]a[c, dJß = [ac, bdJaß·

We show that the operation is weIl defined. Assume

[a,b]a = [a',b']a

and
[x,Y]ß = [x',y']ß·

Then
ab' = a'b

and
xy' = x'y.

Thus
axb'y' = ab'xy' = a'bx'y = a'x'by,

that is,
[ax,by]aß = [a'x',b'y' ]aß·

Hence the operation is weIl defined. It is obvious that the oparation is associa
tive. Thus M is a semigroup. It is clear that M is a disjoint union of groups.
We show that the mapping

~ : a t-+ 4>a(a) = [a2,ala, a E Sa

is an isomorphism of Sinto M. Since the restriction of ~ to M a is 4>a and since

if a l' ß then ~ is injective. As

~(ab) = [(ab)2,ab]aß = [a2b2,ab]aß

= [a2,a]a[b2,b]ß = ~(a)~(b)

for every a E Sa and b E Sß, we have ~ is a homomorphism. Hence ~ is a
mapping of Sinto the semigroup M which is a union of abelian groups. 0

Remark 10.1 A right commutative left cancellative semigroup is commutative.

Theorem 10.13 Every right commutative right cancellative archim edean semi
group with an idempotent element is a left abelian group.
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Proof. Let S be a right commutative right cancellative archimedean semigroup.
Assurne that S has an idempotent element. Then, by Theorem 10.6, S is a
retract extension of a direct product K of an abelian group G and a left zero
semigroup L bya nil semigroup N. We show that INI = 1. In the opposite case
there is an element a of S such that a (j. K. As N is a nil semigroup,

for some positive integer n. Let

an = (g,j)

for some gE G and j E L. Then

(e,j)an = (e,j)(g,j) = (g,j) = an,

where e is the identity of G. As S is right cancellative, we get

(e,j)a = a

and so
aEK,

because K is an ideal of Sand (e,j) E K. o

Definition 10.2 A right commutative right cancellative archimedean semigroup
without idempotent is called a left N -semigroup.

Theorem 10.14 ([75]) Let N be the additive semigroup of non-negative in
tegers, L be a left zero semigroup, G be an abeZian group , H = G x L, and
I : H x H ~ N be a funetion satisfying:

(i) I(a,ß) + I(aß,,) = I(a,ß,) + I(ß,,) = Ib,ß) + I(a"ß) (a,ß" EH),

(ii) there ezists an idempotent e in H such that I( e, f) = 1,

(iii) for each a E H, there exists a positive integer m such that I(am,a) > O.

On the sei S = N x H define a multipZication by

(m,a)(n,ß) = (m + n + I(a,ß),aß).

Then S with this multipZication is a Zeft N -semigroup, to be denoted by (R x
G,I). ConverseZy, every Zeft N-semigroup is isomorphie to some semigroup
(R x G,I).
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Suhdirectly irreducihle right commutative semigroups

Theorem 10.15 ([59)) A semigroup is a subdireetly irredueible right eommu
tative semigroup with a globally idempotent eore if and only if it is isomorphie
to either G or ao or F or L or LO , where G is a nontrivial subgroup of a
quasieyclie p-group (p is a prime), F is a two-elem ent semilattiee and L is a
two- elem ent left zero semigroup.

Proof. By Theorem 9.18, it is obvious . o

Theorem 10.16 ([59J) A right eommutative semigroup with a zero and a non
trivial annihilator is subdireetly irreducible if and only if it has a non-zero dis
junetive element.

Proof. By Theorem 1.49, it is obvious. o
Next we deal with right commutative semigroups S in which the annihilator

As is trivial. Recall that As = A~ n As,where A~ and Asdenotes the left and
the right annihilator of S, respectively.

Lemma 10.2 ([59)) Let K be the nilpotent eore of a right eommutative semi
group S with zero, and let R = {r ES : Kr = {On, L = {I ES: IK = {On.
Th en the following hold.

(i) R ~ L.

(ii) 1f L :f. S then L = R.

(iii) 1f IAsl = 1 then IA~I = 1.

(iv) L = S if and only if IAs l > 1.

Proof. To prove (i), let r be an arbitrary element of S with r E Rand r rt L.
Then

Kr = {O}

and
rK :f. {O}.

Thus
SrK = SKr = {O} ~ rK

and
rKS~ rK,

that is, rK is a non-trivial ideal of S. So

K~rK

which means that
rK=K.
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So
K = r

2K = r K r = {O}

which is a contradiction. Hence

R C;; L.

To prove (ü) , assume that there is an element I of L such that I f/:. R. Then

IK = {O}

and
KI =I {O}.

Since SKI C;; KI and KIS = KSI C;; KI then KI is a non-trivial ideal of S.
Then

K C;; KI

and so
K=KI.

If L =I S then there is an element s of S such that

s f/:. L.

Then
{O} =I sK = sKI = slK = {O}

which is a contradiction. Consequently, L =I Simplies L C;; R. This and (i)
together imply

R=L.

To prove (üi) , let s E A~ be an arbitrary element with s =I o. Then A~ is a
non-trivial ideal of S and so

K C;; A~.

Thus
KS = {O}

which means that
R=S.

By (i),
R=L=S

and so
SK = {O}.

Thus
K C;; As·

Consequently, JAsl = 1 implies IA~ 1= 1.
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To prove (iv) , assume L = S. Then

SK = {O},

that is,

K~As·

So
IAsl > l.

Conversely, if IAsl > 1 then K ~ As and so SK = {O} which means that
L=S. 0

If K is the core of a semigroup S with zero then the set of all non-zero
elements of K will be denoted by K o.

Lemma 10.3 ([59}) 11 a subdirectly irreducible right commutative semigroup S
contains elemenis k and e such that k E Ko and k = ke or k = ek then e is a
right identity element 01 S.

Proof. Let S be a subdirectly irreducible right commutative semigroup. As
sume

k = ke

for some elements k E K o, e E S. Let

z = {z ES: z = ze}.

Using the right commutativity of S, it can be easily verified that Z is an ideal
of S. As Z is not trivial,

K~Z,

that is,
k = ke

for all k E K. Let

a = {(a,b) ES x S: ce" = be": for some positive integers n,m}.

It can be easily verified that a is a congruence on Sand

As S is subdirectly irreducible, K is a dense ideal of S. So a = ids. As

ae2 = (ae)e

(that is (a ,ae) E o], we get
a =ae

for all a ES. So e is a right identity element of S.
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Assume k = ek for some k E K o, e ES. Then

k e = eke = eek = k.

By the first part of the proof, e is a right identity element of S. Thus the lemma
is proved. 0

In the next , the set of all right identity elements of a semigroup S will be
denoted by RI(S).

Theorem 10.17 ([59)) A right commutative semigroup S satisfying IA~I = 1,
IAsl > 1 is subdirectly irreducible with a nilpotent core if and only if all of the
following conditions hold.

(i) S contains a non-zero disjunctive elemeni,

(ii) S is a disjoint union of a non-trivial ideal Rand a subgroup G of S,
where R is the sei of all right divisors of zero of Sand G is a subdirectly
irreducible commutative group such that the identity element of G is a right
identity element of S.

(iii) For every k E Ko and g1, 92 E G, k91 = k92 implies 91 = 92'

Proof. Let S be a subdirectly irreducible right commutative semigroup such
that IA~ 1= 1 and IAsI> 1. By Lemma 1.4, S contains a nonzero disjunctive
element. So (i) holds.

The proof of (ü): By Lemma 10.2, S = L. So SK = {O}. First we show
that S has a right identity element. Let

k E K o

be an arbitrary element. As A~ = {O}, we have

k ~ A~

and so
kS =J {O}.

As SK = {O}, kS is a (non-trivial) ideal of S. So

kS=K.

Consequently, there is an element e in S such that

ke = k ,

By Lemma 10.3, e is a right identity element of S.
We show that S has only one right identity element. Assume, in an indirect

way, that S has a right identity element f with f =J e. Let

a = {(a,b) ES X S: (3x ,y E S1) a,b E {xey,xfy}}.
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As a = ae = a] for every a E S , 0: is a reflexive relation of S. It is clear that
0: is symmetrie. Let ß denote the transitive doser of 0:. It is easy to see that
ß is a congruence. Evidently, (e, f) E ß. Let k E K o be an arbitrary element.
Suppose (k,s) E ß for some sES. We show that k = s, As (k,s) E ß, there
are elements Xo, Xl , .••, Xn E S such that k = xo, s = Xn, and (Xi, Xi+1) E 0:,

for every i = 0,1 , ..., n - 1. H Xi = Xi+1 for all i = 0,1, ... , n - 1, then k = s. So
we mayassume Xi =f Xi+1 for some i = 0,1, ... , n - 1. Let

j =min{i : Xi =f XiH}'

Then

and
k=fXjH'

So there are elements u, v E Sl such that

k ,Xi+1 E {uev ,ulv}.

If u =f 1 then
uev = u.]»

(because e and I are right identity elements of S) contradicting k =f X j+1. Thus
u = 1 and so k = ev or k = [u, Then

o= ek = e(ev) = ev = k

or
0= Ik = lUv) = Iv = k

which contradicts k E K o• Hence k = s, Thus

ßn {!K = ids,

where (!K is the Rees congruence on S det ermined by the ideal K. But this is
a contradiction. So RI(S) = {e}.

Consider the ideal R of S defined in Lemma 10.2. If R = S then K ~ A~

which contradicts (üi) of Lemma 10.2. So R =f S.
Let G = S - R. We show that G is a subsemigroup of S. Let g , h E

G be arbitrary elements. Then Kg =f {O} and Kh =f {O}. Using the right
commutativity of S , it can be easily verified that Kg and Kh are (non-trivial)
ideals of S. So Kg = Kh = K. Then K = Kh = Kgh which means that
gh E G, that is, Gis a subsemigroup.

We show that the elements of G are not right divisors of zero. Let 9 E G be
arbitrary. Assurne sg = 0 for some sES. Let

P = {p ES: pg = O}.

Using the right commutativity of S , it can be easily verified that P is an ideal
of S. As 9 fi R, P = {O}. So s = O. Thus gis not a right divisor of zero.
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This result and KR = {O} together imply that R is the set of an right
divisors of zero of S.

We show that Gis a subgroup. Evidently, e E G. Let k E K o be arbitrary.
Then kS = K (see above). As kR = {O}, we get kG = K o• Let 9 E G be
arbitrary. Then kg E Ko which implies kgG = Ko• Then there is an element
g1 in G such that kgg1 = k, By Lemma 10.3, gg1 = e. So every element of G
has a right inverse in G with respect to the right identity element e. So G is a
group. As G is right commutative, it follows that it is commutative.

We prove that G is subdirectly irreducible. Let Bi, i EIbe a family of
subgroups of G such that

niEIBi = {e}.

Let ,si, i Eldenote the congruence on G determined by the subgroup Bi. Let

15: = {(a,b) ES X S: «H, = bBil, i E I.

As S is right commutative, 15;, i E I is a congruence on S . It is evident that

15: 10= s;
We show that niE1tS; = ids. Let

for some k1, k2 E K o. As k2G = Ko, there is an element 9 in G such that

As
(k1 , k2) E ,s:, i EI,

for every i EI, there is an element gi in B i such that

So
k2g = k2gi

for an i E I. Let g-1 denote the group inverse of gin G. Then

k 2 = k2 e = k2gg-
1 = k2g;g-1.

By Lemma 10.3,
-1gig = e

from which it follows that

So
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which means that

So
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eg = e,

k1 = k2g = k2eg = k2e = k2.

As the elements of G are not right divisors of zero ,

for all k E Ko. Consequently,

As S is subdireetly irreducible, K is a dense ideal of Sand so

Using again the condition that S is subdirectly irreducible, there is an element
i in I such that

15; = ids.

So
15j = 15; la= ida·

Thus Gis subdireetly irreducible and so (ü) is proved.
To prove (üi) , let k E Ko, gl,g2 E G be arbitrary elements with kg 1 = kg2.

Then

By Lemma 10.3,
-1

9291 = e,

that is,
g1 = g2·

Thus (üi) holds, and the first part of the theorem is proved.
To prove the converse, let us suppose that S is a right commutative semi

group such that I A~ 1= 1, 1As I> 1 and S satisfies all of conditions (i)-(iii)
of the theorem. We show that S is a subdirectly irreducible semigroup with a
nilpotent core.

By condition (i), S has a core K (see Lemma 1.5). As I As I> 1, we have
K ~ As' So K 2 = {O}, that is, K is nilpotent.

By (ü) , S is a disjoint union of a non-trivial ideal R and a subgroup G of
S, where R is the set of all right divisors of zero of S and G is a subdirectly
irreducible commutative group such that the identity element e of G is a right
identity element of S. We note that RI(S) = {e}.

We show that KR = {O}. Let r ERbe an arbitrary element. Then there is
an element s=/:.O in S such that

sr = o.
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Let k be an arbitrary element in K . Then k E S1sS1 and so

k= xsy

for some x, y E S1. Consequently

kr = xsyr =xsry =0,

because S is right commutative. So KR = {O}, indeed.
By (iv) of Lemma 10.2, L = S and so SK = {O}. Let k E Ko be arbitrary.

Using Sk = {O}, it can be easily verified that kS is an ideal of S. As k rt. A~,
we get kS =I- {O}. So

K = kS = kG U{O},

that is,
kG=Ko·

Consider the case when the subgroup G has only one element. Then K o =
kG = {k} which means that K has only two elements. With other words, K
is primitive. By Lemma 1.6, a semigroup with a primitive core is subdireetly
irreducible if and only if its zero is disjunetive. We show that the zero of S is
disjunetive. Let a and b be arbitrary elements of S with a =I- b. Let k denote
the non-zero disjunetive element of S. Evidently,

(a, b) rt. c{k}'

So there are elements e, y E S1 such that, for example,

xay = k

and
xby =I- k .

If xby = 0 then (a,b) rt. C{o}. If xby =I- 0 then xby rt. r{k} and so there are
elements u, v in S1 such that

uxbyv = k,

As xby =I- k , u E S or vER. If u E S then ukv = 0, because SK = {O}. If
u rt. S then vER. So kv = 0, that is, ukv = O. Consequently, ukv = 0 in both
cases, From this result it fol1ows that

uxayv = ukv = O.

This and
uxbyv = k

together imply that
(a,b) rt. C{o}.

So the zero of S is disjunctive. Thus S is subdireetly irreducible.
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Consider the case when the subgroup G has at least two elements. As G is
a non-trivial subdirectly irreducible commutative group, it has a Ieast nonunit
subgroup H. Let ~ be a congruence on 8 with ~ =I- ids. Denoting a non-zero
disjunetive element of 8 by k, {k} does not form a ~-class. In the opposite case,
~ ~ C{k} which contradicts ~ =I- ids. So there exists an element s is 8 such that
s =I- k and (s,k) E~.

Consider the case when s rt. K. Then s E G and so

Thus there are elements x,y in 8 1 such that

xsy = k

and so
(xky,k) E~.

As s =I- k, we have z E 8 or y =I- e, where eis the right identity element of S. If
xE 8 then

xky =0

(because SK = {O}) and so
(O,k)E~.

If x rt. 8 and y E G - {e} then
sy = k

which implies
s = se = syy-l = ky-l,

because yy-l = e. So s E K which is a contradietion. If x rt. 8 and y E R then

xky = 0

and so
(k,O) E~.

Consequently,
(k,O) E ~

in all cases. Thus (kH,O) E ~, that is, kH is contained by a ~-class.

Consider the case when s E K o. As kG = K o, there is an element a in G
such that

s = ka = kea.

So
(kea,k) E~.

As s =I- k, we have
ea =I- e.

Let
P={bEG: (kb,k)EÜ .
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It can be easily verified that P is a subgroup of G. As ea E P and ea i= e, P is
a non-trivial subgroup of G. Thus H ~ P and so

(kH,k) E ~ .

Then kH is contained by a ~-class.

Ir s = 0 then (k,O) E ~ and so

which means that kH is contained by a ~-class.

Summarizing our results, kH is in some ~-class in all cases, By (üi),

I kH 1=1 H I> 1.

Let ~i, i EIbe a family of non-identical congruences on S. Then kH is in
some ~i-class for all i E I. So

which means that S is subdirectly irreducible. Thus the theorem is proved. 0

Example: Let S be a semigroup defined by the following Cayley table:

e a u v 0
e e a 0 0 0
a a e 0 0 0
u u v 0 0 0
v v u 0 0 0
0 0 0 0 0 0

It can be easily verified that S is a subdirectly irreducible right commutative
semigroup and, using the notations of the previous theorem, RI(S) = {e},
G = {e,a}, Ak = {O}, As = {O ,u,v} = K and K 2 = {O}.

Next we describe the subdirectly irreducible right commutative semigroups
S with a nilpotent core and the condition lAs 1=1 Ak 1= 1.

Theorem 10.18 ([59}) A right commutative semigroup S satisfying IAsl
JAkl = 1 is subdirectly irreducible with a nilpotent core if and only if it is either a
commutative subdirectly irreducible semigroup with a nilpotent core and a trivial
annihilator or satisfies both of the following conditions.

(i) S is a disjoint union of RI(S) and a non-trivial ideal R of all divisors of
zero of S , RI(S) has two elem ents e and f , K o has two elements k1 and
k2 such that both of k1 , k2 are disjunctive elements of Sand eK o = {k1 } ,

fKo = {k2 } .

(ii) If R - K i= 0 then r R i= {O} i= Rr for all r E R - K.
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Proof. Let S be a subdirect1y irreducible right commutative semigroup such
that IAs1=1A~ 1= 1 and the core K of S is nilpotent. We may assume that
S is not commutative. (The commutative case has been described in Theorem
3.16.)

By Lemma 1.4, S has a non-zero disjunctive element. Consider the ideals
L and R of S defined in Lemma 10.2. As I As1= 1, we get R = L 1= S . Let
G = S - R. As R 1= S, we get G 1= 0. We can prove, as in the proof of Theorem
10.17, that Gis a subsemigroup.

We show that every element of G is not a divisor of zero. Assume, in an
indirect way, that G has an element 9 which is a divisor of zero. Then there is
an element 8in S such that 81=0 and 8g = 0or g8 = O. Assume 8g = O. Let

Pg = {8 ES: 8g = O}.

As S is right commutative, Pg is a (non-trivial) ideal of S. So

that is, Kg = {O} which means that gER. But this is a contradiction , Consider
the case g8 = O. Using again the right commutativity of S , it can be proved
that

P; = {8 ES: g8 = O}

is a (non-trivial) two-sided ideal of S. So

KCP·
- 9

which implies gK = {O}, that is, gEL. But this is also a cont radiction.
Consequently, every element of G is not a divisor of zero . As RK = KR = {O} ,
R is the set of all divisors of zero of S.

Let k E K o be arbitrary. As Sk is a non-trivial ideal of S , we have

K = Sk = Gk U {O}

and so
Ko = Gk.

Thus there is an element e in G such that

k = ek,

By Lemma 10.3, e is a right identity element of S.
We prove that Gis a left group. Let 9 E G and k E K o be arbitrary elements.

Then gk E Ko and so
Ggk =Ko•

Thus there is an element gl in G such that
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By Lemma 10.3, gIg E RI(S). Then, for every element b of G,

b = b(g19) = (bgI)g

whieh implies that
G=Gg.

So G is left simple. Sinee G has an idempotent element then, by the dual
of Theorem 1.27 of [19], G is a left group and so it is a union of its disjoint
subgroups, and these subgroups are isomorphie with each other.

We show that the identity elements of the subgroups of Gare in RI(S). Let
e be the identity element of the subgroup Ge of G. Then e is not a divisor of
zero. Thus, for an arbitrary element k E K o, ke E K o and

ke = (ke)e.

By Lemma 10.3, it follows that e E RI(S).
It can be easily verified that the Green's relation 1l on Gis a congruence on

G. As the 1l-classes of Gare the maximal subgroups of G, the factor semigroup
G11l is a left zero semigroup.

Let Ge, e E RI(S) be an arbitrary (maximal) subgroup of G. We show that,
for every g, hEGe and k E K o,

gk = hk or kg = kh ==? 9 = h.

Assume
gk = hk

for some k E Ko, g, hEGe. Then

from whieh it follows that

and
ek E Ko.

By Lemma 10.3,

that is,

which implies
9 =h.

Assume
kg = kh
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for some k E Ko, g, hEGe. Then

gk = egk = ekg = ekh = ehk = hk.

Using the previous result,
g=h.

So (*) holds , indeed.
Assume that ek = k for all e E RI(S) and k E K o. Let e E RI(S) be an

arbitrary element. As S is right commutative,

Te = {(a, b) E S X S : ea = eb}

is a congruence on S such that Te IK= idK. As S is subdireetly irreducible,
Te = ids . So ea = e(ea) implies a = ea for all a E S. Then e is also a left
identity element of S. So S has an identity element, that is, S is commutative
which is a contradiction.

Consider the case when there are elements fE RI(S) and k l E Ko such that
fk l 1= klo As Gk l = Ko, there is an element e in RI(S) such that ekl = kl o
We note that e 1= f. Let 9 E G be an arbitrary element. As klg = kleg and
eg E Ge, we get klG = klGe. Let

(XI = {(a,b) E S x S: a = b OT (3g E Ge): a,b E {klg,fklg}} .

We show that (XI is an equivalence relation on S . Assume klg = klh for some
g,h E Ge' Then, by (*), 9 = h, Similarly, fklg = fklh implies 9 = h for all
g,h E Ge' Assume klg ~ fklh, (g,h E Ge) Then fklg = fklh and so 9 = h,
Consequently, the subsets Tg = {klg,fklg} have two elements and Tg n Th = 0
if 9 1= h, g,h E Ge' Thus (XI is an equivalence on Sand (XI 1= ids-

As 8klg = 8fklg for all 8 E Sand 9 E Ge, it fol1ows that (XI is left compati
ble. We show that (X I is also right compatible. Let 8 E S be arbitrary. If 8 E R
then

If 8 E G then
(k lg)8 = kl(gs),

(fklg)8 = fkl(g8)

and g8 E Ge' SO (XI is right compatible. Consequently, (XI is a congruence on
S.

Assume that, for some tE RI(S), fk l 1= tkl 1= klo Then (Xt is a congruence
on S such that (Xt 1= ids .

We show that (XI n (Xt = ids. If tklg = fklh for some g,h E Ge then
fklg = fklh which implies 9 = h and so

tkl = tkle = tklgg- l = fklhg- l = fklhh - l = fkle = fk l

which is a contradietion. So tkW 1= fklh for all g, hEGe. If tklg = klh then
fklg = fklh. So 9 = hand tkl = k l which is a contradiction. So tkw 1= klh for
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a1l g, hEGe. We can prove, in a similar way, that fk1g # k1h for a1l g ,ue o..
Thus

and

Consequently, 01 n 0t = ids.
As S is subdirectly irreducible, 01 = ids or 0t = ids which is a contradic

tion. So, for a1l tE RI(S) , tk1 = k1 or tk1 = fk 1 • Thus there are subsets E and
F of RI(S) such that EnF = 0,EuF = RI(S) and Ek1 = {kI}, Fk1 = {fkI}.

Let k2 denote fk1 • We show that K o = {k1,k2}. Let 9 E G be an arbitrary
element. Assurne gE Gw for some w E E. Then

If gE Gw , for some w E F , then

Thus, for a1l 9 E G,

that is ,

As Gk1 = K o, we get

So
K o = k1G u k2G = k1Ge U k2Ge.

We note that k1Ge n k2Ge = 0. Let

TJ = {(a,b) E S x S: a = b or a,b E klGe or a,b E k2Ge}.

Evidently, TJ is an equivalence on S. We show that TJ is a congruence on S . Let
(a,b) E TJ, sES be arbitrary elements. We may assume a # b. Consider the
case a = k1g, b = k1h for some g,h E Ge, 9 # h.

If sE R then
as = k1gs = 0 = k1hs = bs

and, similarly,
sa = 0 = sb.

So
(as ,bs) E TJ

and
(sa , sb) E TJ.
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So

and

Assume s E Gw , w E E. Then

sb = wsb = wbs = wk1hs = k1hs E k1Ge,

as = k 1gs E k1G e,

bs = k1hs E k1Ge.

(sa , sb) E TJ

(as,bs)ETJ'

Assume s E Gw , w E F . Then

sb = wsb = wbs = wk1hs = k2hs E k 2Ge,

as = k 1gs E k1Ge,

bs = k1hs E k1Ge.

So
(sa,sb) E TJ

and
(as,bs) E.,.,.

Consequently .,., is a congruence on S. It is evident that

.,.,n Cl! = ids.

As S is subdirect1y irreducible and Cl! i:- ids , we get .,., = ids. So k1Ge = {kd
and k2Ge = {k2}' Thus

We show that k1 and k2 are disjunetive elements of S. By Lemma 1.5, one of
k1 and k2, for example, k1 is a disjunctive element of S. Assume (0, kI) E C{k

2
} '

Then, for some f E F , (O ,fkd E C{k2} which means that (0,k2 ) E C{k2} '

because fk 1 = k2 • This is a contradiction. So C{k2 } n e« = ids which implies
C{k

2
} = ids , that is , k2 is a disjunctive element of S.

We show that I E 1=/ F 1= 1. Let e1, e2 be arbitrary elements of E. Let
~ denote the congruence on S generated by { eI , e2} . Assume (k , s) E ~ for
some k E K and sES, s i:- k. Then there are elements x ,Y E SI such that
k,s E {xe1y ,xe2Y} . As s i:- k and e l,e2 are right identity of S, we have that
x i:- 1. Let , for example, k = e1Y, s = e2Y. From this equations it follows that



161

and
s = e2Y = e2e1Y = e2k,

that is, k and c generate the same ideal of S . We not e that s =I O. As k E K o,
we get s E Ko• As Ko = {k1,k2} , we get, for example, k = k1 and s = k2. Then

whieh eontradicts EKo = {kd. So

where e« denotes the Rees congruenee on S generated by K. As S is subdirectly
irreducible, e= ids, that is, e1 = e2. So IE 1= 1. We can prove, in a similar
way, that IF 1= 1.

Let E = {e} and F = {f} . Consider two elements g, h in Ge. As k1Ge =
{kd (see above) , k1g = k2h whieh implies that 9 = h (see (*)). So IGe 1= 1.
As Ge and Gf are isomorphie, G = {e,f} = RI(S). As GUR = S , (i) holds .

The proof of (ii): Assume R - K =10. We show that , for every rE R - K,
rR =I {O} =I Rr. Assume, in an indirect way, that rR = {O} or Rr = {O}. If
rR = {O} then erR = {O} and so eR r = {O}. As e is not a divisor of zero,
Rr = {O}. Similarly, Rr = {O} implies rR = {O}. So rR = Rr = {O}. As k1
is a disjunetive element, r ~ r{kd and so there are elements x ,y E Sl sueh
that xry = k1. Evidently, x ,y ~ R , because Rr = rR = {O}. So z,y E G and
zr = k1 • From this it follows that

k1 = ek1 = ezr = er.

Then
er = eer = ek1 = k1

and
Ir = [ er = Ik1 = k2.

Consider the relation ß on S defined by

ß = {(a, b) E S x S: a = b or a, b E {r , kd}.

Evidently, ß is an equivalenee relation on S. Let sES be an arbitrary element.
If sE R then

So (sr ,skd E ß and (rs,k1s) E ß. If s = e then sr = sk1 = k1, rs = r and
k1s = k1. So (sr,skd E ß and (rs ,k1s) E ß. If s = I then sr = sk1 = k2,
rs = r and k1s = k1. So (sr ,skd E ß and (rs,k1s) E ß. Consequently ß is a
eongruenee on S.

We can prove , in a similar way, that

~ = {(a, b) E S x S: a = b or a, b E {r , k2 }}
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is a congruence on 5. It is evident that ß n b = ids . As 5 is subdireetly
irreducible, ß = ids or b = ids which is a contradiction. So rR -=I {o} -=I Rr as
it was asserted. So (ü) holds . Thus the first part of the theorem is proved.

To prove the converse, we may assume that 5 is a right commutative semi
group sucht that IAs1=1 A~ 1= 1 and 5 satisfies both of conditions (i)-(ii) of
this theorem (the commutative subdirectly irreducible semigroups with a nilpo
tent core and a trivial annihilator has been described in Theorem 3.16) . As 5
has a non-zero disjunetive element, 5 has a core K and every disjunetive ele
ment of 5 is contained by K (see Lemma 1.5). We prove that RK = KR = {o}.
Let r ERbe an arbitrary element. Then there is an element s in 5 such that
s -=I °and sr =°or rs = 0. Let 9 E RI(5) be an arbitrary element. Ir sr =°
then gsr =°and so grs = 0. As 9 is not a divisor of zero, rs = 0. Similarly,
rs = °implies sr = 0. So rs = sr = 0. Let k E K be an arbitrary element.
Then k E 51s51 , that is, k = xsy for some z , y E 51. Thus

rk = rxsy = rsxy = °
and

kr = xsyr = xsry =°
which implies that RK = KR = {O}, indeed. As K ~ R, we get K 2 = {O},
that is, the core of 5 is nilpotent.

We show that 5 is subdireetly irreducible. Let ° be a congruence on 5 such
that ° -=I ids. Assume that k1 is a non-zero disjunctive element of 5. As k1

is a disjunctive element, there is an element s is 5 such that (s, kt) E ° and
s -=I kl . Let k2 denote the element of K o which differs from k1 • We show
that (k 1 , k2) E o. Consider the case when s = e, Then k1s = k1 and kr = °
imply that (k 1 ,0) E a and so (k 2,O) E 0, because fk1 = k2. So (k1,k2) E o,
Consider the case when s = f . Then s2 = s and SkI = k2 imply (s,k2) E °
and so (k2, 0) E 0, because sk2 = k2 and k~ = 0. Thus (kl,O) E 0 , because
k1 = ek 1 and eO = 0. So (k1,k2) E o . Consider the case when s = 0. Then
0= fO, fk 1 = k2 imply (k 2,0) E a, that is, (k 1,k2) E a. Ir sE K o then s = k2
and so (kl,k2) E o . Assume sE R - K. From (s,kt) E a, we get (rs,rkt) E °
and (sr , kIr) E ° for all r E R. As rk1 = kIr = 0, we get (rs,O) E o and
(sr,O) E ° for all r E R. Let

Q = {q ER: (q,O) E o}.

Then Q is an ideal of 5 and so K ~ Q or Q = {O}. Ir K ~ Q then (k 1 ,k2 ) E a.
Ir Q = {O} then sr = rs = °for all r E R, that is, Rs = sR = {O} which
contradicts (ü). Consequently (kl, k2) E ° in all cases. Let 0i , i EIbe an
arbitrary family of non-identical congruences on 5. As (k1 , k2 ) E 0i , for all
i E I, that is, niEIOi -=I ids, we get that 5 is subdireetly irreducible (see
Corollary 1.1.). Thus the theorem is proved. 0
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Example. Let S be a semigroup defined by the following Cayley table:

e / k1 k2 0
e e e k1 k1 0

/ / / k2 k2 0
k1 k1 k1 0 0 0
k2 k2 k2 0 0 0
0 0 0 0 0 0

S is a right commutative subdirectly irreducible semigroup such that IAsl =
IA~I = 1 and the core of S is nilpotent. We note that RI(S) = {e,f}, K o =
{k1,k2 } , and R - K = 0.

Example. Let S be a semigroup defined by the following Cayley table:

e / r t k1 k2 0
e e e r r k1 k1 0

/ / / t t k2 k2 0
r r r k1 k1 0 0 0
t t t k2 k2 0 0 0
k1 k1 k1 0 0 0 0 0
k2 k2 k2 0 0 0 0 0
0 0 0 0 0 0 0 0

It can be easily verified that S is a subdirectly irreducible right commutative
semigroup with a nilpotent core such that I As 1=1 A~ 1= 1 and S satisfies
both of the conditions (i)-(ü) of Theorem 10.8. We note that K o = {k1,k2 } ,

RI(S) = {e,f} and R = {r,t,kl,k2,O}. So R - K =1= 0.

Right commutative A-semigroups

Lemma 10.4 ([63]) I/ a right commutative semigroup S is a disjoint union
S = N U L 0/ an ideal N 0/ Sand a subsemigroup L 0/ S which is a lelt zero
semigroup then the Tu-dass [U]Tu 0/ S containing u equals L [or every u E L
(Tu is defined in Lemma 10.1).

Proof. Let u E L be arbitrary. By Lemma 10.1, Tu is a congruence on S. As
u 2 = uv for every v E L, we have

For every a E N, u 2 ~ N and ua E N imply (u,a) ~ Tu. Thus

L = [uk.

o
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Lemma 10.5 {[69}} I/ a right commutative L:i.-semigroup S is a disjoint union
S = N U L 0/ an ideal N 0/ Sand a subsemigroup L 0/ S which is a left zero
semigroup with ILI ~ 2 then INI = 1.

Proof. Let PN denotes the Rees congruence on S modulo N. By Lemma 10.1
and Lemma 10.4, Tu is a congruence on Sand

L=[uk

for every u E L. As S is a L:i.-semigroup,

for every u E L. Thus
(a,O) E Tu

and so

ua= °
for every a E N and u E L. Let

7 = {(x, y) E S x S: x = y or z , y E L}.

Clearly, 7 is an equivalence relation on S. As

su = suv = svu = sv

for cvery 8 E S and u, v E L, 7 is left compatible. To show that 7 is also right
compatible, let (x,y) E 7, x '" y for some »,» E S. Then x,y E L. If sEN
then

X8 = y8 =°
by the above. If s E L then

xs,ys E L.

Consequently,
(xs,ys) E 7.

Thus 7 is right compatible, that is, it is a congruence on S. As ILj ~ 2, we have

7'" ids.

As
7 n PN = ids

and S is a L:i.-semigroup, we get

and so
PN = ids·
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Hence

INI = 1.

o

It is clear that a right commutative right zero semigroup is trivial (it has
only one element) . This and Lemma 10.5 together imply the following.

Lemma 10.6 ([63)) There is no right commutative T2R or T2L semigroup.

Theorem 10.19 A semigroup S is a right commutative 6.-semigroup if and
only if it satisfi es one of the following eonditions.

(i) S is isomorphie to G or GO , where G is a non-trivial subgroup of a quasi
eyclie p-group (p is a prime},

(ii) S is a two-element semilattice.

(iii) S is isomorphie to L or LO, where L is a two-element left zero semigroup.

(iv) S is a right commutative nil semigroup whose prineipal ideal« form a ehain
with respeet to inclusion.

(v) S is a right eommutative Tl semigroup.

Proof. By Theorem 9.20 and Lemma 10.6, it is obvious. o

We note that if S is a right commutative Tl semigroup (S = N U {e}) such
that e is the identity of S then S is commutative and S = N I.

Newt , we give a construction for right commutative Tl semigroups.

Lemma 10.7 ([63)) If S is a right eommutative semigroup such that SI eSI = S
for some idempotent element e of S then e is a right identity element of S.

Proof. Let a be an arbitrary element of S . Then

a = xey

for some z , y E sI . As S is right commutative, we get

ae = xey e = xe2y = xey = a.

o

In our investigation we need some notions from the theory of automata.

Let S be a semigroup. By a right S-aet (briefly, an S-aet or an aet ) we
mean a triplet (A , S, <5) such that A is an arbitrary set, <5: A x S --+ A is
a mapping such that <5(a,st) = <5(<5(a,s),t) for every a E A and s,t E S. If S
has an identity element ethen we suppose that <5(a, e) = a for every a E A.
Sometimes d'(a, s) will be denoted by as and the act (A, S, d') is denoted by A.
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An equivalenee relation 0: of A is ealled a eongruenee of the S-act A if
(a ,b) E 0: implies (as,bs) E 0: for every a,b E A and sES.

An S-act A is ealled a Ä-act if the eongruenees of A form a ehain with
respect to inclusion.

Ir B is a subact of the act Athen ß = {(x, y) E A x A: x = y or z , y E B} is
a eongruenee of A. This eongruenee is ealled the Rees eongruenee of A modulo
B.

Ir the subact B has only one element, denoted by b, then b is ealled a trap of
A. Ir I is an ideal of S then AI is a subaet of A , where AI = {ai; a E A, i EI}.
The S-aet A is ealled a juli aci if AI = A for every non-zero ideal I of S.

Construction 10.1 Let A be a nonempty sei and (B ,o) be an arbitrary semi
group with zero OB . Suppose that A = (A,B,<5) is a (right) B-act with a trap
OA such that aOB = OA for every a E A. We note that A can be considered as a
null semigroup with zero OA. Assume An B = 0 or An B = {OA} = {OB}' Let
B* = B - {OB} and S = AU B*. On S we define an operation o~ as [ollouis:

{

a s b,
a o~ b = OA,

<5(a,b),

if a,b E B* .a o b i= OB;
if a, b E B*, a ob = OB or b E A;
if a E A, b E B* .

It is easy to see that S is a semigroup under the operation o~ in which OA is a
null element, A (as a null semigroup with a zero OA) is an ideal of S, and S is
an ideal extension of A by B . This semigroup will be denoted by [A,B,o~l .

Definition 10.3 A semigroup which is isomorphie to the semigroup [A, B, 061
defined in Construction 10.1 will be called an overact of the null semigroup A
by the semigroup B.

We note that an overact S of a null semigroup A by a eommutative semigroup
B with an identity element is eommutative if and only if lAI = 1. In this ease
S is isomorphie to B. This will be used in Theorem 10.20.

Definition 10.4 An overaet of a null semigroup A by a semigroup B will be
ealled a Ä-overact if A (as a B-act) is a Ä-aet.

Definition 10.5 An overact of a null semigroup A by a semigroup B is called
a full overaet if A is a full B -act.

Theorem 10.20 ([63j) A semigroup S is a right eommutative Tl semigroup if
and only if it is a full Ä-overact [A, BI , o~1of a null semigroup A by a commu
tative nil Ä -semigroup BI with an identity adjoined. In ease lAI = 1, B has at
least two elements and S is isomorphie to BI.
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Proof. Assume that S is a right eommutative Tl semigroup. Then S is a
disjoint union S = N U {e} of an ideal N of S whieh is a non-trivial right com
mutative nil semigroup and a one-element subsemigroup {e} of S. By Theorem
1.58, N is a A-semigroup and Sl eS I = S. By Lemma 10.7, e is a right identity
element of S. By Theorem 1.17, S is .J-trivial and so, Theorem 1.18, every
non-identity eongruenee on S is a Rees eongruenee. Let

B' = {b ES: eb = b}.

It is clear that B' is a subsemigroup of S and

e, OE B'.

Moreover, e is an identity element of B'. As a, b E B' implies ab = eab = eba =
ba, B' is eommutative and B = B' - {e} = B' n N is a subsemigroup of S. Let

A = N -BU{O}.

Ir a E N - B then
ea :f:. a.

It is clear that
(ea,a) E T,

where T is defined in Lemma 10.1. Henee

T:f:. ids .

By Lemma 10.1, T is a eongruenee on S. As every non-identity eongruenee of
S is a Rees eongruenee,

(a,O) E T

whieh implies that
xa = xO = 0

for every x ES. Consequently,

A = {a ES: Sa = {OH.

Clearly, A is a null semigroup and an ideal of S, and the Rees faetor semigroup
S / A of S modulo A is isomorphie to BI. We define a mapping 8: A X BI ---+ A.
For arbitrary a E A and b E BI, let 8(a,b) = ab in S. Then A = (A ,B1,8) is
a B I-aet. It is clear that ab = a 0 cf b for every a, b ES, where 0 s is defined in
Construetion 10.1. Consequently, S is an overaet of A by BI = B U {e}. By
Theorem 1.51 and Remark 1.1, BI (and so B) is a A-semigroup. It remains to
show that this overaet is fuU and a A-overaet. Let I be an arbitrary non-zero
ideal of BI. Then AI is a subact in the BI-aet A. It is clear that J = I* U AI
is an ideal of S, where I* = I - {O}. The ideals A and J of S are eomparable
only that case when A ~ J , that is, AI = A. Cons equently, the overaet is full.
To show that the overaet is a A-overact, we must show that A = (A ,BI ,8) is a
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Ä-act. Let ai, i = 1,2 be arbitrary eongruenees of the B 1-act A. Consider the
following relations

a; = {(z ,y) E 8 x 8: z ,y E A and (z ,y) E a i or z = y} ,

i = 1,2. Clearly, ai , i = 1,2 is an equivalence relation on 8. We show that
ai, i = 1,2 is right and left compatible on 8. Assume [z , y) E ai , z f. y.
Then z ,y E A and (z ,y) E ai. As ai is a eongruenee of the B 1-aet A , we get
z s, y s E A and (zs ,ys) E ai for every s E B 1. Moreover, zs = ys = 0 for every
lJ E A. Thus (zs,ys) E A and (zs,ys) E a for every s E 8. Thus ai is right
eompatible on 8. As sz = sy = 0 for every s E 8 and z,y E A, we get that
ai is also left eompatible on 8. Thus ai, i = 1,2 is a eongruenee on 8. As 8

is a Ä-semigroup, ai ~ ai or ai ~ ai. As the restriction of ai to A equals
ai, i = 1,2, we get a1 ~ a2 or a2 ~ a1. Thus A is a Ä-act (as a B 1-act ).
Consequently, 8 is a full Ä-overaet of A by B 1

• It is dear that if lAI = 1 then
B = N and 8 is isomorphie to B 1 • Thus the first part of the theorem is proved.

Conversely, let 8 = 8[A,B 1 , 0 6] be a full Ä-overact of a null semigroup A by
a eommutative nil Ä-semigroup B1 = B U {e} with an identity e adjoined, If
lAI = 1 then 8 is isomorphie to B 1 • Next we suppose lAI ~ 2. Then N = AUB*
is a non-trivial nil semigroup and 8 is a disjoint union of the ideal N and the
one-element subsemigroup {e} of 8. Clearly, 8106 e 0681 = 8 and e is a right
identity element of 8. Moreover, e 06 s = OA if and only if s E A. Thus, for
every a, b E 8 , a 06 b E A if and only if b 06 a E A and, in this ease,

e 06 (a 06 b) = OA = e 06 (b 06 a).

If a 06 b 1:- Athen a 06 b = b 06 a and so

e 06 (a 06 b) = a 06 b = b 06 a = e 06 (b 06 a).

Thus, for every a, b E 8 ,

Consequently, for arbitrary a, b,c E 8, we get

c 06 (a 06 b) = c 06 (e 06 (a 06 b))

=c06(e06(b06a)) =c06(b06a).

Thus 8 is right eommutative. By Theorem 1.58 and Theorem 1.56, it remains
to prove that the ideals of N are ehain-ordered by inclusion, Let land J be
arbitrary non-zero ideals of N. Then In A and J nA are ideals of 8. If
I ,J ~ Athen I and J are subacts of the B1 act A. The subacts of A form a
ehain with respect to inclusion. Thus I ~ J or J ~ I. Next, assume I Cl A.
Then I" = 1- Au {OB} is a non-zero ideal of B 1 • As the overact is full and
a ° OB = OA for every a E A, we get A = A ° I ~ In A and so A = In A, that
is , A ~ I . Thus we can suppose that J Cl A and so A ~ J. As the ideals of B
are ehain ordered with respect to inclusion, we get J* ~ [* or 1* ~ J*. Then
J ~ I or I ~ J. Thus N is a Ä-semigroup. 0
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Corollary 10.2 ([6S}) A full overact of a null semigroup A by a commutative
nil t1-semigroup BI with an identity adjoined is a t1-overact if and only if the
subacis of the Bl-act A form a chain with respeci io inclusion.

Proof. Let A = (A, BI ,0) be an act such that S = [A, BI , 0eS1is a full overact.
If thi s overact is a t1-overact then A is a t1-act which implies that the Rees
congruences and so the subacts of A form achain with respect to inclusion,
Conversely, if the subacts of the act A form achain with respect to inclusion
then, by the second part of the proof of Theorem 10.20, the ideals of N form a
chain with respect to inclusion. Then, by Theorem 1.58 and Theorem 1.56, S is
a right commutative Tl semigroup. From the first part of the proof of Theorem
10.20, it follows that Ais a t1-act. 0

If A = (A, S, 0) is an S-act and a E Athen let R(a) denote the subact of
A generated by the element a. R( a) is called the principal subact of the act A
generated by a. Clearly, R(a) = {o(a,s)j sESI}.

Lemma 10.8 ([6S}) In an S-act A the subacis form a chain with respect io
inclusion if and only if the principal subacts do it .

Proof. Assume that the principal subacts of A form achain with respect to
inclusion. Let I and J be two arbitrary subacts of A with I ::f. In J ::f. J.
Then there are elements x E I and y E J such that x rf: J and y rf: I . Clearly,
R(x) = {x} U x S ~ land R(y) E J. By the assumption, R(x) ~ R(y) or
R(y) ~ R(x). Then x E J or y E I which is a contradiction. Consequently,
I~JorJ~I. 0

A construction of right commutative Tl semigroups

In the next eight lemmas, B denotes a commutative nil t1-semigroup and
A = (A ,Bl,o) is a Bl-act such that [A,Bl ,oeSl is a full t1-overact. OA denotes
the trap of A and the zero of BI is denoted by OB.

Lemma 10.9 ([6S}) A is an 'R-trivial Bl-act (that is R(aI) = R(a2) if and
only if al = a2 for every al, a2 E A).

Proof. Assume R(aI) = R(a2) for some al,a2 E A with al ::f. a2. Then
there are elements z , y E B such that al = a2 08 z , a2 = al 08 y. Then
al = (al0eS y) 08 x = al 06 (y 0eS x )n for every positive integer n. As B is a nil
semigroup and y 08 xE B , we get al = OA = a2 which is a contradiction. 0

Lemma 10.10 ([6S)) A is totally ordered by ~A defined by al ~A a2 if and
only if R(aI) ~ R(a2) , al ,a2 E A.

Proof. It is evident that ~A is reflexive and transitive. By Lemma 10.9, A is
'R-trivial. Thus ~A is antisymmetric. As A is a t1-act , Corollary 10.2 shows
that al ~A a2 or a2 ~A al for every al, a2 E A. Thus A is totally ordered by
~A. 0
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Lemma 10.11 ([69]) BI is totally ordered by 50B defined by bI 50B bz i/ and
inly i/ J(bI) ~ J(~), where J(b) denoies the two-sided ideal 0/BI generated by
s e BI.

Proof. By Theorem 1.17, BI is .1-trivial. Thus BI is totally ordered by 5oB. 0

Lemma 10.12 ([69]) For every a E A and b E BI, R(a) = {a' E A: a' 50A a}
and J(b) = {b' E BI : b' 50B b}.

Proof. By the definition of 50A and 5oB , the proof is trivial. o

Lemma 10.13 ([69]) For every a E A, I a = {b E BI : a 08 b = OA} is an ideal
0/ BI. la = BI i/ and only i/ a = OA.

Proof. It is obvious. o

Proof. Let aI 50A a2 for some aI, a2 E A. Then R( aI) ~ R( a2) and so
aI = a2 08 z for some z E BI. Let b E la2 be arbitrary. Then aI 08 b =
(a2 08 z) 08 b = a2 08 (z 08 b) = a2 08 (b 08 z ] = (a2 08 b) 08 z = OB 08 z = OA
which means that bE t, .. Hence la2 ~ la.. 0

Lemma 10.15 ([63]) bI <B ~ implies a 08 bI <A a 08 bz [or every OA =I a E A
and bI,b2 E BI - la.

Proof. Assume that bI <B bz for some bI,b2 E BI - la. Then bI = b2 08 z for
some z E B. Thus a 08 bI = a 08 bz 08 z and so R(a 08 bI) ~ R(a 08~) which
means that a08 bs 50A a08~ . Assume a 08 bI = a08 b2. Then a08 bz 08 z = a08 bz
and a 08 ~ 08 zn = a 08 bz for every positive integer n. As B is a nil semigroup,
a 08 b2 = OA and so b2 E t; contradicting b2 f/:. I«. Hence a 08 bI <A a 08 bz- 0

Lemma 10.16 ([69]) For every a E A, !Pa defined by !Pa(b) = a 08 b, is a
mapping 0/ BI onto [OA,a] = {a' E Aj a' 50A a} such that !Pa(b) = OA i/ and
only i/ se la, and, [or every OA =I a E A, !pa is an order-preserving bijection 0/
BI - la onto (OA,a].

Proof. By Lemma 10.12, Lemma 10.13 and Lemma 10.15, it is obvious. 0

Construction 10.2 Let BI be a commutative nil il-semigroup with an identity
adjoined. Let A be a totally ordered sei by an ordering 5oA. As.mme that A has
a least elemeni OA. Let<fl be a mapping 0/ A into the sei 0/ all ideals 0/BI with
the /ollowing properties:

(i) <fl is monotone decreasiaq;

(ii) <fl(a) = BI i/ and only i/ a = OAi
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(iii) For every a E A, there is a mapping 'Pa of BI onto [OA, a] = {a' E A :
a' :S;A a} such that 'Pa(<<I1(a)) = OA and if a =I OA then 'Pa is an order
preserving bijection of BI - «I1(a) onio (OA,a];

(iv) For every a E A and bs-bz E BI, 'Pa(bIb2 ) = 'P"'a(btl(b2 ) ;

(v) For every a E A and every non-zero ideal I of BI, there is an element
a' E A sueh that a :S;A a' and a E 'Pa'(I) .

Let "!",: A x BI -+ A be a mapping defined by "!",(a,b) = 'Pa(b). Clearly, "!,,, is
well-defined and "!",(a,OB) = OA, "!",(OA,b) = OA, "!",(a,e) = a for everya E A ,
b E BI and the identiy element e of BI. If bl , b2 E BI are arbitrary elements

then, by property (iv), "!",(a,b Ib2 ) = 'Pa(hb2 ) = 'P"'a(bl)(~) = "!",b",(a,bt},b2 ) .

Thus A = (A, BI ,"!",) is a BI -aet. Let [(A, :S;A)j BIj «I1, {'Pa, a E A},o')'", ] denote
the overaet of A by BI, given by Construetion 10.1.

Example. Let B = {OB} be the trivial semigroup. Then BI is a commutative
nil ~-semigroup with an identity adjoined. Let A = {a, 0A}' Define an ordering
:S;A on A such that OA <A a. Let «I1(OA) = BI, «I1(a) = Band 'POA (BI) = {OA},
'Pa(B) = {OA}, 'Pa(e) = a, where e denotes the identity element of BI. It can
be checked that «I1, 'Pa, 'POA satisfy the conditions (i)-(v) of Construction 10.2.
Let "!",(a,b) = 'Pa(b) for every a E A and b E BI. Then (A,B I , ,,!,,, ) is an act, It
can be verified that this act is a full ~-act. The Cayley multiplication table of
the semigroup S = [(A':S;A)jBIj «I1 ,{'Pa, a E A} ,o')'",] defined as in Construction
10.2 is the following:

a

It can be directly verified that S is a right commutative Tl semigroup which
is a disjoint union of the ideal N = {a, OA} and the one-element subsemigroup
{e} of S such that N is a nil semigroup.

Theorem 10.21 ([63J) The aet A = (A,B I , ,,!,,, ) defined in Construetion 10.2
is a full ~-act. Conversely, every Jull ~-aet (A, BI , «5) defined by a null semi
group A and a eommutative nil ~-semigroup BI with an identity adjoined is
isomorphie to an aet (A,B I , ,,!,,, ) given in Construetion 10.2.

Proof. To show that A = (A, BI , "!",) given in Construction 10.2 is full, let a
be an arbitrary element of A and I =I {OB} be an ideal of BI. By property (v),
there is an element a' E A with a :S;A a' such that
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Henee
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1'",,(A,J) = A,

that is, A = (A, BI ,1'",, ) is a full BI-aet. To show that A is a A-aet, by Corollary
10.2 and Lemma 10.8, it is sufficient to show that the prineipal subacts of A
form a ehain with respeet to inclusion. Let a be an arbitrary element of A. By
the definition of 1'"", we have

1'",,(a,b) ::;A a

for every b E BI. Thus

R(a) ~ [OA ,a].

We show that [OA,a] ~ R(a). Let a' ::;A a be arbitrary. We ean suppose that
a =f. OA. Then, by eondition (iii) of Construetion 10.2, there is an element
b' E BI - ~(a) sueh that

a' = rt'a(b') = 1'",,(a,b') E R(a).

Thus

[OA ,a] ~ R(a).

Consequently,

R(a) = [OA,a]

for every a E A. Henee the principal subacts of A form a ehain with respeet to
inclusion.

Conversely, let A = (A ,BI , J ) be a full A-aet , where A is a null semigroup
and BI is a eommutative nil A-semigroup with an identity adjoined. Then th e
semigroup [A,B I , 0';] defined in Construetion 10.1 is a full A-overaet of A by
BI. Then, by Lemma 10.10, Ais totally ordered by ::;A. A has a least element
OA whieh is the trap of the BI-aet A. By Lemma 10.13, for every a E A, Ja is an
ideal of BI. Let ~(a) = Ja. Property (i) is satisfied by Lemma 10.14. Condition
(ii) follows from Lemma 10.13. By Lemma 10.16, for every a E A, rt'a defined
by rt'a(b) = a 0'; b is a mapping of BI onto [OA, a] sueh that rt'a(b) = OA if and
only if b E Ja, and, for every OA =f. a E A, rt' a is an order-preserving bijeetion
of BI - Ja onto (OA ,a] . Thus eonditions (üi) and (iv) are satisfied. As S is a
full overaet of A by BI , J(A ,J) = A for every non-zero ideal of BI. This means
that , for every element a E A, there are elements a' E A and b E BI sueh th at

Thus eondition (v) is satisfied. Let 1'"" be the mapping defined as in Construetion
10.2. Then

J(a,b) = a 0.; b = rt'a(b) = 1'",,(a,b).

Thus th e acts (A, B I, J) and (A ,BI ,1'",, ) are isomorphie. o
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Theorem 10.22 ([6S)) Th e semigroup [(A,::;A) ;Bl ;~,{rpa , a E A} ,0-y",] de
fin ed in Construetion 10.2 is a right eommutative Tl semigroup , and every right
eommutative Tl semigroup is isomorphie to a semigroup

defined in Construetion 10.2.

Proof. By Theorem 10.21, the Bl-aet A = (A ,Bl ' / 1" ) defined in Construetion
10.2 is a full ß-aet. Thus [(A,::;A);Bl;~,{tpa , a E A} ,0-y",] (defined in Con
struet ion 10.2) is a full ß-overaet of A by B l and so, by Theorem 10.20, it is a
right eommutative Tl semigroup,

Conversely, let S be a right eommutative Tl semigroup. Then, by Theorem
10.20, there is a null semigroup A and a eommutative nil Ll-semigroup Bl with
an identity adjoined sueh that the aet (A, BI, c5) is a full ß -aet and S is isomor
phic to the overaet [A,Bl, 05] of A by B l defined in Construetion 10.1. By Theo
rem 10.21, (A, B l , c5) is isomorphie to an act (A, Bl , /1") defined in Construetion
10.2. Thus S is isomorphie to the semigroup [(A,::;A);Bl;~,{tpa, a E A},0-y",]
defined in Construction 10.2. 0



Chapter 11

Externally commutative
•sermgroups

In this chapter we deal with semigroups satisfying the identity axb = bxa. These
semigroups are called externally commutative semigroups. It is clear that an
externally commutative semigroup is medial. Thus the externally commuta
tive semigroups are semilattice of externally commutative archimedean semi
groups. A semigroup is externally commutative and O-simple if and only if it
is a commutative group with a zero adjoined. A semigroup is externally com
mutative and archimedean containing at least one idempotent element if and
only if it is an ideal extension of a commutative group by an externally com
mutative nil semigroup. Moreover, every externally commutative archimedean
semigroup without idempotent has a non-trivial group homomorphic Image. We
show that an externally commutative semigroup is regular if and only if it is
a semilattice of commutative groups. We construct the least separative, left
separative, right separative and weakly separative congruence on an externally
commutative semigroup, respectively. We determine the subdirectly irreducible
externally commutative semigroups. We prove that a semigroup is subdirectly
irreducible and externally commutative with a globally idempotent core if and
only if it is isomorphie to either G or GO or F, where G is a non-trivial subgroup
of a quasicyclic p-group (p is a prime) and F is a two-e1ement semilattice. An
externally commutative semigroup with a zero and a non-trivial annihilator is
subdirectly irreducible if and only if it has a non-zero disjunctive element. If
S is a subdirectly irreducible externally commutative semigroup with zero such
that IAsl = 1 and the core of S is nilpotent then S is commutative (and so is
describen in Chapter 3). At the end of the chapter we determine the ext ernally
commutative ß-semigroups. We prove that a semigroup S is an externally com
mutative ß-semigroup if and only if it satisfies one of the following conditions.
(1) S is isomorphie to Gor CO, where Gis a non-trivial subgroup of a quasicyclic
p-group (p is a prime). (2) S is a two-element semilattice. (3) S is an externally
commutative nil semigroup whose principal ideals form achain with respeet to
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indusion. (4) S is isomorphie to NI where N is a non-trivial eommutative nil
semigroup whose principal ideals form a ehain with respeet to indusion.

Definition 11.1 A semigroup is called an externally commutative semigroup i/
it satisfies the identity aeb = bxa,

We note that , in [48] and [57], the externally eommutative semigroups are
ealled eompletely symmetrieal.

It is clear that an externally eommutative semigroup is eonditionally eom
mutative and weakly eommutative.

Lemma 11.1 Every externally commutative semiqroup is medial.

Proof. Let S be an externally eommutative semigroup and a, b, x , y E S be
arbitrary elements. Then

axyb = (axy)b = (yxa)b = y(xa)b = b(xa)y = b(xay) = b(yax)

= b(ya)x = x(ya)b = (xya)b = (ayx)b = ayxb.

o

Theorem 11.1 Every finitely generated periodic extern ally com mutative semi
group is finite.

Proof. By Theorem 1.1, it is obvious.

Semilattice decomposition of externally commutative semigroup

o

Theorem 11.2 ((57)) Every externally commutative semigroup is decomposable
into a semilattice 0/ externally commutative archim edean semigroups.

Proof. By Theorem 9.3 and Lemma 11.1, it is obvious. o

Theorem 11.3 ((57}) A semigroup is externally commutative and O-simple i/
and only i/ it is a commutative group with a zero adjoined.

Proof. Let S be an externally eommutative O-simple semigroup. Sinee S is
medial then, by Corollary 9.1, it is a rect angular abelian group with a zero
adjoined. As an externally eommutative left (right) zero semigroup has only one
element, S is an abelian group with a zero adjoined. The eonverse statement is
obvious. 0

Lemma 11.2 ((57}) A semigroup is extern ally commutative and archim edean
containing at least one idempotent eleme nt i/ and only i/ it is an ideal ez icnsi on
0/ a commutative group by an externally commutative nil semigroup.
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Proof. Let S be an externally commutative archimedean semigroup containing
at least one idempotent element. As S is also a medial semigroup, it is an
ideal extension of a reetangular Abelian group K by a medial nil semigroup
Q [see Theorem 9.9). Since K is simple and externally commutative then, by
Theorem 11.3, it is a commutative group. It is evident that Q is also externally
commutative.

Conversely, assume that the semigroup S is an ideal extension of a com
mutative group G by an externally commutative nil semigroup Q. Then, by
Theorem 2.2, S is an archimedean semigroup with an idempotent element. It
is easy to see that

4J : s I--t es

is a retract homomorphism of S onto G, where e denotes the identity of G. As
the externally commutative semigroups form a variety, S is externally commu
tative (see Theorem 1.40). 0

Theorem 11.4 On an externally commutative semigroup S , the /ollowing con
ditions are equivalent.

(i) S is regular.

(ii) S is left regular.

(iii) S is right regular.

(iv) S is intra-regular.

(v) S is a semilattice 0/ commutative groups

(vi) S is an inverse semigroup.

Proof. Let a, x and y be arbitrary elements of an externally commutative
semigroup S. Then axa = a implies

a = a(xa)xa = xaxaa = xa2,

xa2 = a implies
a = xaa = aax = a2x,

a = a2x implies

and a = xa2y implies

a = xa2y = (xa)x(a2y2) = (a 2y2)x(xa).

Hence (i) , (ii) , (iii) and (iv) are equivalent. As

ef = ee ] = f ee = f e

for every idempotent elements e and / of S , (i) and (vi) are equivalent. By
Theorem 11.2, S is a semilattice Y of externally commutative archimedean
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semigroups Sa (0: E Y). Ir S is regular then each Sa is regular and so has
an idempotent element. Thus, by Lemma 11.2, each Sa is an ideal extension
of a commutativc group by an externally commutative nil semigroup. We can
conelude that each Sa is a commutative group. Hence (i) implies (v). As (v)
implies (i), the theorem is proved. 0

Theorem 11.5 Every externally commutative archimedean semigroup uniheut
idempotent has a non-trivial group homomorphic image .

Proof. By Lemma 11.1 and Theorem 9.11, it is obvious.

Theorem 11.6 Let S be an externally commutative semigroup and

T = {(a,b) ES x S: an+1 = anb, bn+l = bna for some positive integer n},

o

a = {(a,b) E S x S: an+1 = bo"; bn+l = ab" for some positive integ er n}.

Then T = a and it is the least lejt, right and weakly separative congru ence on
S. Moreover,

J = {(a ,b) E S x S: an+2 = anba , bn+2 = bnab for some positive integer n}

is the least separative congruence on S.

Proof. By Lemma 11.1 and Theorem 9.16, it is obvious, because ab" = b":« for
every integer n ~ 2 and every elements a and b of an externally commutative
semigroup. 0

Subdireetly irreducible externally commutative semigroups

Theorem 11.7 ([57]) A semigroup is subdirectly irreducible externally commu
tative with a globally idempotent core if and only if it is isomorphic to eith er G
or CO or F, where G is a non-trivial subgroup of a quasicyclic p-grottp (p is a
prime) and F is a two-element semilattice.

Proof. As an externally commutative lcft (right) zero semigroup has only one
element, our statement follows from Theorem 9.18. 0

Theorem 11.8 ([57]) An externally commutative semigroup with a zero and a
non-trivial annihilator is subdirectly irreducible if and only if it has a non-zero
disjunctive elemeni.

ProofBy Theorem 1.49, it is obvious. o

Theorem 11.9 ([57]) 1f S is a subdirectly irreducible externally commutative
semigroup with zero such that IAsl = 1 and the core of S is nilpotent then S is
commutative.
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Proof. Let S be an externally commutative subdireetly irreducible semigroup
such that IAsl = 1 and the core K of S is nilpotent. Consider subsets F1 and
F2 of S defined as follows:

F1 = {f ES: fK = {On

and
F2 = {f ES: K f = {On

We show that F1 = F2 . Let f be an arbitrary element of F1. Assume, in an
indireet way, that f rt. F2 • Then Kf = Kf U fK U KfK and so K = Kf.
This implies Kf = Kff = ffK = {O}, because S is externally commutative
and f E F1. But this is a contradiction. Consequently, f E F2 and so F1 ~ F2 .
Similarly, F2 ~ F1. So F1 = F2.
Let F = F1(= F2) and B = S - F. If B were the empty set then S would be
equal to F from which it would follow that SK = KS = {O}, that is, K ~ As
which is a contradietion.
We show that B is a subsemigroup of S. Let a,b EBbe arbitrary elements,
Then

aKUKaUKaK

and
bKUKbUKbK

are non-trivial ideals of S . As K is nilpotent,

KaK = {O}

and
KbK = {O}.

So
aKUKa = K = bKuKb.

Assurne that ab rt. B, that is, abK = K ab = {O}. Then

K = aK U Ka = a(bK U Kb) U (bK U Kb)a

= abK U aKb U bK aU Kba = aKb,

because abK = {O}, Kba = abK = {O} and aKb = bKa.
Since

aKb = a(bK U Kb)b = abK U a(Kbb) = abK U abbK ~ abK = {O},

we get
K = aKb = {O}

which is a contradietion. So
ab E B,
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that is, B is a suhsemigroup of S.
Let k :f. 0 he an arbitrary element of K. As k fj. As, Sk U kS U SkS is a
non-trivial ideal of S. So

si» kSU SkS = K.

As Fk = kF = {O}, we have

Bk UkB uBkBu {O} = K.

So k = eIk or k = ke2 or k = eake4 for some eI,e2,ea,e4 E B.
We show that the third case implies the first two cases. Assume that

for some ea, e4 E B. Then

and, similarly,

So
k = eake4 = eae4k,

where eae4 E B. Consequently, we may consider only the first two cases.
Assume

k = eIk

for some eI E B . We show that Z = {s ES: s = eIs} is an ideal of S. As
k = eIk, Z contains at least two elements of S . It is evident that Z is a right
ideal. Let z E Z and sES he arhitrary elements. Then

As

we get
sz E Z.

So Z is also a left ideal of S. Thus Z is a non-trivial ideal of S.
Then

K~Z,

that is,

for all k E K.
Let adenote the relation on S defined as folIows:

a = {(a,b) E S x S: eta = eib for some positive integers n,m}.
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It is clear that a is a right congruence on S. We show that a is also left
compatible, Let (a,b) E o and x E S be arbitrary elements (a ,b ES). Then

ci a = cib

for some positive integers n and m. So

that is,
(xa,xb) E a.

Consequently, a is left compatible and so it is a congruence on S.
Since cl k = k for all k E K (see above),

As S is subdirectly irreducible, K is a dense ideal of S. Thus

a = ids.

So Cl ci = ci Cl (that is , (ci , er) E a) implies ci = Cl . Consequently, for all
sES,

As CI S = cICl S (that is, (S , ClS) E a) for all sES, we get

for all sES. Consequently, for all sES,

which means that e l is a two-sided identity element of S. So, for all s , t ES,

because S is externally commutative. Thus S is commutative.
In case k = ke2, e2 E B , we can prove the commutativity of S in a similar way.
Thus the theorem is proved. 0

We note that the commutative subdirectly irreducible semigroups with a
nilpotent core and a trivial annihilator have been described in Chapter 3.

Externally commutative ~-semigroups

Theorem 11.10 A semigroup S is an externally eommutative ~-semigroup i/
and only i/ it satisfies one 0/ the /ollowing eonditions.

(i) S is isomorphie to G or ao, where G is a non-trivial subgroup 0/ a quasi
eyclie p-group (p is a prime).
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(ii) S is a two-element semilattiee.

(iii) S is an externally eommutative nil semigroup whose prineipal ideals form
a ehain with respect to inclusion.

(iv) S is isomorphie to N l where N is a non-trivial eommutative nil semigroup
whose prineipal ideals form a ehain with respect io inclusion.

Proof. Let S be an externally commutative A-semigroup. By Lemma 11.1
and the fact that there is no non-trivial externally commutative left (right) zero
semigroup, S is satisfies either (i) or (ü) or (v) or (vi) of Theorem 9.20. In
case (v), S is also externally commutative. Assume that S is an externally
commutative Tl semigroup. Then S is a disjoint union S = P U N of a one
element subsemigroup P = {e} of S and an ideal N of S which is a (non-trivial)
nil semigroup. Since SeS is an ideal of Sand e E SeS, N n SeS i= 0, we get

SeS = S.

Let a E S be arbitrary. Then
a = zey

for some z,y E S. Then

a = xey = (xe)ey = ye(xe) = yeze

and
a = xey = xe(ey) = (ey)ez = eyex.

Thus
ae = (yexe)e = yeze = a

and
ea = e(eyez) = eyez = a,

that is, e is an identity element of S. As an externally commutative monoid is
commutative, S is s», where N is a non-trivial commutative nil semigroup. By
Remark 1.1, N is a A semigroup and so, by Theorem 1.56, the principal ideals
of N form achain with respect to inclusion.

As the semigroups listed in the theorem are externally commutative A-
semigroups, the theorem is proved. 0



Chapter 12

E-rn sernigroups,
exponential sernigroups

In this chapter we deal wih the E-m semigroups and the exponential semigroups.
A semigroup is called an E-m semigroup (m is an integer with m 2 2) if it
satisfies the identity (ab)m = ambm. A semigroup which is an E-m semigroup
for every integer m 2 2 is called an exponential semigroup. We show that
a semigroup is an exponential semigroup if and only if it is an E-2 and E-3
semigroup. It is proved that every E-m semigroup (exponential semigroup) is a
semilattice of archimedean E-m semigroups (exponential semigroups). It is also
shown that every exponential semigroup is a band of t-archimedean semigroups.
We show that a semigroup is a O-simple E-m semigroup if and only if it is a
completely simple E-m semigroup with a zero adjoined. We characterize the
completely simple E-m semigroups and show that a semigroup is an archimedean
E-m semigroup containing at least one idempotent element if and only if it is a
retract extension of a completely simple E-m semigroup by a nil E-m semigroup.
It is proved that every archimedean E-2 semigroup without idempotent has a
non-trivial group homomorphic image. We show that a regular E-m semigroup
is a semilattice of completely simple E-m semigroups. Moreover, a semigroup is
an inverse E-m semigroup if and only if it is a semilattice of E-m groups. We
deal with the regular E-2 semigroups. We show that a semigroup is a regular E
2 semigroup if and only if it is a spined product of some band and a semilattice
of abelian groups and so it is a regular exponential semigroup. At the end of
the chapter we describe the translational hull of a regular E-2 semigroup.

For an arbitrary semigroup S, let E(S) denote the set of all positive integers
m for which S satisfies the identity (xy)m = xmym. It is clear that 1 E E(S) and
E( S) is a subsemigroup of the multiplicative semigroup of all positive integers.
E(S) is called the exponent semigroup of S.

The structure of E(S) seems to be complicated in general and has been
known only in some special cases.

183
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Example 12.1. Let X = {a ,b} and X+ be the set of a1l finite sequences of
elements of X. Define an operation * on X+. H (Xl, X2, ... ,xn), (Yl,Y2, ... , Ym)
are elements of X+ then let (Xl, X2 , .. . , Xn )* (Yl ,Y2, ... ,Ym) be equal to the se
quence consisting ofthe last two elements ofthe sequence (Xl, "" Xn, Yl, . .. ,Ym)
in the original order. More precisely, the result of the product * is (xn , Yd if
m = 1 and (Ym-l, Ym) if m > 1. It is easy to see that S = (X+ , *) is a semigroup
and E(S) contains only 1.

Example 12.2. Let k be an integer with k ~ 2 and denote S the Rees factor
semigroup of a free semigroup :Fx over the set X = {a,b} modulo the ideal I
of :Fx containing a1l elements of :FX whose length greater then or equl to 2k.
It is easy to see that E(S) = {m E s», m ~ k}.

Example 12.3. Let X = {a, b} and m be a fixed integer with m ~ 2. Define
the following relations on the free semigroup :FX:

a = {(u ,v): u = vor (3x ,y E :Fx) u = (xy)m, V = xmym} ,

aa = {(u ,v): (u ,v) E a or (v,u) E a} ,

ß = {(u ,v): (3e,f E :F1-, u',v' E :Fx) u = eu' ]; v = ev ' f and (u' ,v') E a al.

Let 1 be the transitive closer of ß. It is a matter of checking to see that 1 is a
congruence on :Fx- We note that if two distinct elements of :FX are in relation
modulo 1 then their length must be at least 2m. Let S be the factor semigroup
of:Fx modulo I' It is clear that ((xy)m,xmym) EI for a1l x,y E Fx , that is,
mE E(S).

Clearly, ((ab)m-k , am- kbm-k) cf. 1 and so m - k cf. E(S), if 1::; k ::; m - 2.
It is clear that an element w E :FX is in relation ß with an element of

the set A = {(ab)m+l ,abambm,abmamb,ambmab} if and only if w E A. Hen ce
((ab)m+l , am+l bm+l ) cf. I ' and so m + 1 cf. E(S). Hence E(S) ~ {m} U {m +
2,m + 3, . . .}.

Definition 12.1 For a fixed integer m ~ 2, a semigroup S is called an E-m
semigroup if mE E(S).

Definition 12.2 A semigroup S is called an exponential semigroup if m E E(S)
for every integer m ~ 2. With other words , a semigroup is called an expon ential
semigroup if it satisfies the identity (ab)m = ambm for every integer m ~ 2.

Theorem 12.1 ([n)) If a semigroup satisfies th e identity (xy)2 = x2y2 then it
satisfi es the identity (xy)n = xnyn for all positive integers n ~ 4.

Proof; Since 2 E E(S) implies 4 E E(S) , it is sufficient to verify the following:
if n > 2 and 2, n E E(S) then n +1 E E(S). Assume 2, n E E(S) for an integer
n > 2. First, assume that n is odd. Then there is a positive integer k such tha t
n - 1 = 2k and, for arbitrary X,Y ES,

xn+lyn+l = x(xnyn)y = x(xy)ny = x2(yx)n-l y2
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= X2((YX)k)2 y2 = (X(YX)k)2 y2 = ((xy)k X)2y2

(xy)2k x2 y2 = (xy)n-l(xy)2 = (xy)n+l.

Next, we suppose that n is even. Then there is a positive integer k such that
n - 2 = 2k and, for arbitrary x,y E S,

= x 2(yx)n-3(yx)2 y2 = x 2(yx)n-3(yxy)2

= x 2(yx)n-2 y2x y = x 2((yx)k)2 y2x y

= (x(yx)k)2 y2x y = ((xy)k x)2 y2 x y = (xy)2k x2 y2x y

(xy)n-2(xy)2(xy) = (xy)n+l.

o

Corollary 12.1 A semigroup S is exponential if and only if it satisfies the
identities (xy)2 = x 2y2 and (xy)3 = x 3y3.

Corollary 12.2 If S is an E-2 semigroup then eiiher E(S) = N+ (and so S is
an exponential semigroup) or E(S) = N+ - {3}, where N+ denotes the sei of
all positive inieqers.

Proof. By Theorem 12.1, it is obvious. o

We remark that if we apply Example 12.3 for m = 2 then the semigroup
S = Fxh is an E-2 semigroup and E(S) = N+ - {3}.

The exponent semigroup E(S) of an E-m semigroup is fairly simple in case
m = 2, but the situation is much more complicated if m > 2. We have a very
usefull information of E(S) for arbitrary E-m semigroup S.

Theorem 12.2 ([15]) If S is an E-m semigroup for some integer m ;::: 2 then,
for every h E E(S), there ezisi« a positive integer AO such that h +Am(m - 1) E
E(S) for every A ;::: AO'

In theliterature, E(S) = {k E Zm(m-l) : (3Ak ;::: 0) k+Akm(m-1) E E(S)}
is described instead of E(S), where S is an E-m semigroup and Zm(m-l) denotes
the multiplicative semigroup of integers modulo m(m - 1).

If kl,k2 E E(S) (S is an E-m semigroup) then k1 + Aktm(m - 1),k2 +
Ak2m( m - 1) E E( S) for some integers Akt' Ak2 ;::: O. Let k ~ k1k2 modulo
m(m - 1) such that 1 ;::: k ;::: m(m - 1). Then there is a positive integer h such
that (k1 +Aktm(m-1))(k2 +Ak2m(m-1)) = k+hm(m-1). As E(S) is closed
under the multiplication, k E E(S). Consequently, E(S) is a subsemigroup of
the multiplicative semigroup Zm(m-l)'
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Definition 12.3 For an E-m semigroup S, the multiplicative subsemigoup

E(S) = {O Sn< m(m - 1); (3Ao)(VA ~ AO) n + Am(m -1) E E(S)}

0/ Zm(m-l) is called the ezponetü semigroup modulo m(m - 1) 0/S.

For brevity, we shall write E(S) = {Ak + I} if there are integers k > 0 and
A~ 0 such that E(S) = {niO Sn< m(m -1), n ~ Ak +1 mod m(m -I)} and
similarly in the analogous cases.

In [15] and [34], E(S) is described when S is an E-m semigroup, m = 3, ... , 9.
Next, we list these results without proof.

Theorem 12.3 ([34]) Let S be an E-3 semigroup. Then E(S) is one 0/ the
/ollowing Jour subsemigroups 0/ Z6:

{I,3}, {I,3,5}, {0,I,3,4}, {0,I,2,3,4,5}.

Theorem 12.4 ([15]) Let S be an E-4 semigroup. Then E(S) belongs to one
0/ the /ollowing types (A ~ 0):

{A}; {3A,3A + I}; {4A,4A + I};

{3A+I}; {I,4,9,0}; {I,4,}.

Conversely, each 0/ these subsemigroups is an ezponetü semigroup mod 12 0/
some E-4 semigroup.

Theorem 12.5 ([15}) Let S be an E-5 semigroup . Then E(S) belongs to one
0/ the /ollowing types (A ~ 0):

{A}; {2A + I}; {4A,4A + I};

{5A,5A+ I}; {4A+ I}; {1,5,1l ,I5};

{I,5,I6,0}; {I,5}.

Conversely, each 0/ these subsemiqroups is an ezponeni semigroup mod 20 0/
some E-5 semigroup.

Theorem 12.6 ([15]) Let S be an E-6 semigroup. Then E(S) belongs to one
0/ the /ollowing types (where A~ 0):

{A}, {3A,3A+I}, {5A,5A+I},

{6A, 6A + I}, {5A + I}, {I, 6,I6,2I},

{I,6,IO,I5,I6,21,25,0}, {I,6,25,0}, {I,6}.

Conversely, each 0/ these subsemigroups is an exponeni semigroup mod 30 0/
some E-6 semigroup.
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Theorem 12.7 ([15]) Let S be an E-7 semigroup. Th en E(S) belongs io one
of the following typ es (where >. 2:: 0):

{A}, {2>.+1}, {7>.,7>'+1} ,

{3>.,3>' + I}, {3>' + I}, {6>',6>'+ I},

{6>.+1} , {1,7 ,15,21,22,28,36,0} ,

{6>' + 1,6>'+ 3}, {1,7,15,21,29,35},

{1,7,15,21}, {1,7 ,22,28},{1,7,36,0} , {1,7}.

Conversely, each of ihes e subs emigroups is an expone nt semigroup mod 42 of
some E-7 semigroup.

Theorem 12.8 ([15J) Let S be an E-8 semigroup. Then E(S) belongs to one
of the following types (where >. 2:: 0):

{A}, {4>.,4>'+1}, {7>.,7>'+1},

{8>',8>' + I} , {7>' + I},

{1,8 ,21,28,29,36 ,49,0},

{1,8 ,29,36}, {1,8 ,49,0}, {1,8}.

Conversely, each of ih ese subs emigroups is an expone nt semigroup mod 56 of
some E-8 semigroup.

Theorem 12.9 ([15]) Let S be an E-9 semigroup. Th en E(S) belongs to one
of the following types (where >. 2:: 0):

{>'} , {2>.+1}, {4>.,4>'+1},

{3>.,3>'+1}, {9>.,9>'+1}, {4>'+1}

{8>',8>' + I}, {6>' + 1,6>'+ 3},

{8>' + I}, {12>', 12>' + 1,12>'+ 4, 12>' + 9},

{12>' + 1,12>'+ 9}, {18>' + 1,18>' + 9}

{1,9 ,16,24,25,33,40,48,49,57,64,0},

{1,9 ,28 ,36,37,45,64,0} ,

{1,9 ,25,33,49,57}, {1,9 ,37,45},

{1,9 ,64,0} , {1,9}.

Conversely, each of these subs emigroups is an expone nt semigroup mod 72 of
some E-9 semigroup.
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Semilattice decomposition of E-m semigroups

Theorem 12.10 Every E-m semigroup is a right and left Putcha semigroup.

Proof. Let S be an E-m semigroup for some m . Let z , y E S be arbitrary
elements with y E xSt, that is, y = xu for some u E SI. Then ym = (xu)m =
xmym E x mSI . Therefore S is a left Putcha semigroup. Similarly, S is a right
Putcha semigroup. 0

Corollary 12.3 Every exponential semigroup is a right and left Putcha semi
group.

Proof. By Theorem 12.10, it is obvious, o

Theorem 12.11 ([65]) Every E-m semigroup is a semilattice 0/ archimedean
E-m semigroups.

Proof. By Theorem 12.10 and Corollary 2.2, it is obvious. o

Corollary 12.4 ([101]) Every exponential semigroup is a semilattice 0/ ezpo
nential archimedean semigroups.

Proof. By Theorem 12.11, it is obvious. o

Theorem 12.12 ([65]) A strong semilattice 0/ E-m semigroups is also an E-m
setmqroup,

Proof. It is obvious, o

Theorem 12.13 Every E-2 semigroup is a band 0/ t-archimedean semigroups .

Proof. As an E-2 semigroup satisfies the identity (ab)3 = a2b2(ab) = (ab)a2b2
,

the assertion follows from Theorem 1.8. 0

Corollary 12.5 Every exponential semigroup is a band 0/ t-archimedean semi
qroups,

Proof. By Theorem 12.13, it is obvious. o

Theorem 12.14 ([51J,[65]) A semigroup is a O-simple E-m semigroup i/ an
only i/ it is a completely simple E-m semigroup with a zero adjoined.

Proof. Let S be a O-simple E-m semigroup, It follows immediately that thc
semilattice decomposition of S has exactly two arhimedean components So and
SI such that So = {O} and SI is a simple semigroup, that is, S is a simple E-m
semigroup with a zero adjoined, As SI is an E-m semigroup, by Theorem 12.10,
it is a left and right Putcha semigroup. Then, by Theorem 2.3, it is completely
simple. As the converse statement is trivial, the theorem is proved. 0
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Theorem 12.15 ([65]) Let S = M(I, G,JjP) be a completely simple E-m
semigroup ezpressed as a Rees matrix semigroup over a group G with a sandwich
matrix P normalized by Pjo,i = pj,io = e, the identity of G, for all i E land
j E J. Then S is an E-m semigroup if and only if G is an E-m group anda:: = e for all i E land jE J.

Proof Let (i,a,j) E S, a completely simple E-m semigroup as above.

(i,a(pj,ia)m-I,j) = (i,a,j)m = (i,a ,jo)m(io,e,j)m

= (i,am,jo)(io,e,j) = (i,am ,j)

and so
am- 1 = (pj ,ia)m-I

for all a E G, i E I,j E J. It follows, letting a = e, that

m-I = ePj,i

for all i E land j E J. As

(io,ambm,jo) = (io,a,jo)m(io,a,jo)m = ((io,a,jo)(io ,b,jo))m

= (io, ab,jo)m = (io, (ab)m , j o),

we get

Hence G is an E-m group.
Conversely, suppose that Gis an E-m group and p'Jr l = e for all i E land

jE J. Let (i,a,j), (k,b,n) ES be arbitrary elements, Then

(ap ' .)m = amp'!' . = amp " = am-I (ap ' .)) ,1 J," 1,1 1,1

and so

and dually

Thus

Also we have

((i,a,j)(k,b,n))m = (i ,apj,kb,n)m = (i,(apj,kb)(Pn,iaPj,kb)m-l,n)

= (i,(apj ,kb)(apj,kb)m-I ,n) = (i ,(apj,kb)m ,n)

= (i,ampi:kbm,n) = (i,ampj,kbm,n)

and so S is an E-m semigroup. o



190 CHAPTER 12. E-m SEMIGROUPS, EXPONENTIAL SEMIGROUPS

Corollary 12.6 A semigroup is an O-simple E-2 (exponential) semigroup i/ and
only i/ it is a reetangular abelian group with a zero adjoined.

Proof. By Theorem 12.14 and Theorem 12.15, it is obvious. o

Theorem 12.16 ([65J) A semigroup is an E-m archimedean semigroup con
taining at least one idempotent element i/ and only i/ it is a retraet extension
0/ a completely simple E-m semigroup by an E-m nil semigroup.

Proof. Let S be an E-m archimedean semigroup containing at least one idempo
tent element. Since S is a right and left Putcha semigroup (see Theorem 12.10)
then, by Theorem 2.4, it is a retract extension of a completely simple semigroup
K by a nil semigroup N. It is clear that K and N are E-m semigroups.

Conversely, assume that a semigroup S is a retract extension of a completely
simple E-m semigroup K by an E-m nil semigroup N. By Theorem 1.40, S is
an E-m semigroup. By Theorem 2.2, S is archimedean and contains at least one
idempotent element. 0

Corollary 12.7 S is an E-2 (exponential) archimedean semigroup containing
at least one idempotent element i/ and only i/ S is a retraet extension 0/ a
rectangular abelian group by an E-2 (exponential) nil semigroup.

Proof. By Theorem 12.16 and Corollary 12.6, it is obvious. o

Theorem 12.17 ([65]) Every E-2 (exponential) archimedean semigroup with
out idempotent element has a non-trivial group homomorphic image.

Proof. Let S be an E-2 archimedean semigroup without idempotent element,
Then, from Theorem 1.42, it follows that, for every a ES,

is the least reflexive unitary subsemigroup of S that contains a. As S is
archimedean, the principal right congruence 'Rsa is a group congruence on S.
If S« -; S then Sj'Rsa is a non-trivial group homomorphic image of S. Assume
Sa = S . If s is an arbitrary element of S then

for some positive integers i,j,k. If

also holds for some positive integers m, n, t then

and so
n + i + t = j +m + k,
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that is,
i - (j + k) = m - (n + t),

beeause S does not eontain idempotent elements. Thus 8' = i - (j +k) is defined
for eaeh 8 ES. It is clear that ep 8 t-t 8' is a welI-defined mapping of Sinto
the additive semigroup of all integers. We show that ep is a homomorphism.
Assume a i = aiuak and am = anvat for some positive integers i,j,k,m,n,t. As
S is an E-2 semigroup,

and so
ep(vu) = (vu)' = 2i + 2m - (j + i + n + k + m + t)

= i + m - (j + n + k + t) = m - (n + t) + i - (j + k) = v' + u' = ep(v) + ep(u).

As ep(a) = 1, ep(S) is isomorphie to the additive semigroup of either the integers
or the non-negative integers or the positive integers. These semigroups have
non-trivial group homomorphie images,

As an exponential semigroup is an E-2 semigroup, the theorem is proved in
both E-2 and exponential semigroups. 0

Theorem 12.18 ([lOB)} On an E-m semigroup S, the /ollowing are equivalent.

(i) S is regular.

(ii) S is right regular.

(iii) S is left regular.

(iv) S is a union 0/ disjoint groups.

Proof. (i) implies (ii). If S is regular then, for any a E S , a = axa for some
x E S. Sinee ax is an idempotent element, we have

and so

where am - 2xma = x 2a if m = 2. Henee S is right regular
In the same way we may prove that (i) implies (iii).
(ii) implies (iv). If S is right regular then, by Theorem 4.2 of [19], it is a

union of disjoint right simple semigroup Si, i E I. By Theorem 12.14, eaeh Si
has an idempotent element and so, by Theorem 1.27 of [19] eaeh Si is a right
group. As eaeh Si is a union of disjoint subgroups (see Theorem 1.27 of [19]),
S is a union of disjoint subgroups.

In the same way we may prove that (iii) implies (iv). As (iv) implies (i) in
an obvious way, the theorem is proved. 0



192 CHAPTER 12. E-m SEMIGROUPS, EXPONENTIAL SEMIGROUPS

Theorem 12.19 ([65]) A regular E-m semigroup is a semilattice 01 completely
simple E-m semigroups.

Proof. This follows from Theorem 12.11 and Theorem 12.16. n

Corollary 12.8 A regular E- 2 (expon ential) semigroup is a semilattice 01 reet
angular abelian groups.

Proof, By Theoerem 12.19 and Corollary 12.6, it is obvious. o

Theorem 12.20 ([65]) A semigroup is an inverse E-m semigroup il and only
il it is a semilattice 01 E-m groups.

Proof. Let S be an inverse E-m semigroup. By Theorem 12.19 , S is a semilat
tice of completely simple E-m semigroups. It is easy to see that the semilattice
components are inverse semigroups. As a completely simple inverse semigroup
is a group, we have that S is a semilattice of E-m groups. As a semilattice of
groups is a strong semilattice of groups, the converse follows from Theorem 1.21
and Theorem 12.12. 0

Corollary 12.9 An E-2 (expon ential) semigroup is an inverse semigroup il and
only il it is a semilattice 01 commutative groups.

Proof. By Theorem 12.20 , it is obvious. o

Theorem 12.21 ([65]) The lollowing conditions on an arbitrary semigroup S
are equivalent.

(i) S is a regular E-2 semigroup.

(ii) S is a regular exponential semigroup.

(iii) S is an orthodox band 01 abelian groups.

(iv) S is a spined produet 01 some band and a semilattice 01 abelian groups.

Proof. (i) implies (ü): Let S be a regular E-2 semigroup. To show that S is an
exponential semigroup, by Corollary 12.1, it is sufficient to show that S is also
an E-3 semigroup. By Theorem 12.18, S is a union of disjoint subgroups G, of
S (i E I). Let x,y E S be arbitrary elements. Assume x E Gi and y E Gi for
some i ,j E I. Let x-i and y-l denote the inverse of x and y in Gi and in Gi>
respectively. Then

= x(x-1 )2x4 y4(y-l )2y = x(x-1 )2(x2y2)2(y-l )2y

= x(x-l)2x2y2 x2y2(y-l)2y = x(x - 1x)2 y2 x2(yy-l)2 y

= xy2x2y = x(yx)2 y = (xy)3.
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(ü) implies (üi). Let S be a regular exponential semigroup, Then, by Corol
lary 12.8, S is a semilattice of reetangular abelian groups. Then, by Theorem
1.27, S is an orthogroup. By Theorem 1.29, an orthogroup is an orthodox band
of its maximal subgroups if and only if the Green's equivalence H. is a con
gruence on S. The 1-l-classes of our semigroup are the abelian groups which
appears in the semilattice decomposition mentioned above. We must show that
if e,f E Es, and if a EHe, b E Hf then ab E Hef, where He denotes the 1-l-class
of S containing the idempotent e. Let a- l and b-l denote the inverse of a and
b in He and Hf, respeetively. Then

because ef E Es. So, by the foregoing,

and
ab E Hg.

As
9 = ab(b- l)2(a-l)2 ab = afb-la-leb = ab-la-lb

= aeb-la-l fb = a2a-lb-la-lb-lb2 = a2(a-l)2(b-l)2b2

= (aa- lb- lb)2 = (ef)2 = ef,

we have
ab E Hef.

Hence S is an orthodox band of abelian groups.
(üi) implies (iv) by Theorem 1.30. As the spined product of a band and a

semigroup which is a semilattice of abelian group is clearly a regular and E - 2
semigroup, that is, (iv) implies (i) , the theorem is proved. 0

Let S be a regular E-2 semigroup. Then, by Corollary 12.8, S is a semilattice
Y ofreetangular abelian groups Sa. = Ia. x Ga. x Ma. (a E Y). By Theorem 1.27,
S is an orthogroup and so, by Theorem 1.28, the product in S is determined by
left representations ta. ,ß( ) of Sa. by transformations of Iß' right representations
( )ra.,ß of Sa. by transformations of Mß and homomorphisms ( )'l/Ja.,ß of Ga. into
Gß (a,ß E Ywith a:2: ß). HA = (ia. ,ga.,ma.) E Sa. and B = (iß ,gß,mß) E Sß
are arbitrary elements and a :2: ß; then

and

Since
(AB)2 = ((ta. ,ßA)iß, (ga.'l/Ja. ,ß)gß,mß)2

= ((ta.,ßA)iß' ((ga.'l/Ja.,ß )gß)2, mß)
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= ((ta,ßA)iß,(ga'l/Ja,ß)2g$,mß)

= ((ta,ßA)iß, (g~'l/Ja,ß)g~,mß)

and
A2B2 = (i a,(ga)2,ma)(iß,(gß)2,mß)

= ((ta,ßA2)iß,(g~'l/Ja,ß)g~,mß)'

we get
ta ,ßA = t a,ßA

2.

Since ta,ß is a homomorphism then

= t a,ß(ia,gag;;l,ma)

= ta ,ß(ia,ga, m a)ta,ß(ia,g;;l, mal

= ta,ß(ia,g~, m a)ta,ß(ia ,g;;l ,m a)

= ta,ß(ia,ga,ma).

Thus ta,ß(ia,ga,ma) does not depend on ga and so it can be considered as
a homomorphism of Ja X M a into IIß , the semigroup of all transformations of
Jß acting on the left. More precisely, if (ia,ma) E Ja X M a then ta ,ß(ia ,ma) =
ta ,ß(ia, aa, mal for some aa E Ga. Similarly, Ta,ß(ia ,ga , mal does not depend
on ga and so Ta,ß can be considered as a homomorphism of Ja X M a into rMß'
the semigroup of all transformations of Mß acting on the right.

Let (A,p) be an arbitrary bitranslation of S, that is, (A,p) E n(S). Consider
an element (ia, e., ,mal of Sa (ea is the identity of Ga)' Assume A(ia, ea,mal E
Sß and (ia,ea,ma)p E S5. As

= (A(ia, e., , ma))(ia, ea ,mal,

we have ß = ßa.. Similarly, J = Ja.. Moreover,

and, similarly,

As
(A(ia, ea,m a))2

= (A(ia, ea,ma))(A(ia , ea, ma))

= ((A(ia, ea, ma))p)(ia, ea, mal,
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we have ß = ßJa = ßJ. As
«ia,ea,ma)p)2

= ((ia , ea,ma)p)((ia ,ea ,ma)P)

= (ia, ea,ma)(A«ia, ea,ma)P)),

we have J = aßJ = ßJ. Consequently ß = J. Hence for every g~ E Ga and m~ E
Ma, we have A(ia,g~,m~) = (A(ia ,ea,ma))(ia,g~,m~) E Spa = Sp. Similarly,
(i~,g~,ma)P E Sp for every s; E G and i~ E Ja' Let (i~,g~,m~) E Sa be
an arbitrary element. Then (i~,g~,ma)PE Sp and so A(i~,g~,ma) E Sp from
which we can conclude that (A(i~,g~,m~) E Sp. Consequently, A(Sa) ~ Sp.
Similarly, (Sa)P ~ Sp. Let B denote the canonical homomorphism of S onto Y.
Then A' and P' defined by

A'(B(y)) = B(A(y))

and
(B(y))p' = B«y)p)

(y E S) are wen defined mappings of Y into itself such that A' = p', As

(A')2(B(y)) = A'(A'(B(y))) = A'(A'(B(y))B(y))

= A'(B(Y)A'(B(y))) = A'(B(u))A'(B(y)) = A'(B(y))

for every y ES, we get (A')2 = A'. Moreover, for every a,b ES,

A'(B(a)B(b)) = A'(B(ab)) = B(A(ab)) = B(A(a)b) = B(A(a))B(b)

= A'(B(a))B(b) = (A')2(B(a))B(b) = p'(A'(B(a)))B(b)

= «A' (B(a)))p' (B(b)) = A' (B( a))A'(B(b)).

Consequently, A' = J' is an idempotent homomorphism, Let A = A'(Y) and
denote A' by I'A. Then A is a retract ideal of Y. By [73], the set Ry of retract
ideals of Y forms a semilattice under intersection and that associated with each
A E Ry is a unique retract homomorphism r A.

Theorem 12.22 ([65]) Let S be an E-2 regular semigroup such that S is a
semilattice Y 01 reetangular abelian groups Ja X Ga X Ma, a E Y. Let Ry
denote the set 01 retraet ideals 01Y and let 11(S) be the translational hull 01S.
Then

11(S)~ UAERy{([ka( ),aa,( )la])aEA E II ('fro X Ga X 'Mo):
aEA

(Va,ß E A with a ~ ß) (aa)t/Ja .p = ap, and

(V(ia ,ma) E Ja X Ma) kp ota.p(ia ,ma) = ta.p(ka(ia),ma),

ta,p(i a, mal 0 kp = ta .p(ia, (m",)l",),
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Ip 0 Ta,p(ia,mal = Ta ,p(ka(ia) ,mal ,

Ta ,p(ia,mal 0 Ip = Ta ,p(ia, (ma)la),

(Va E Y - A) and ß = I'A(a))(V(ia,ma) E Ja X Ma)

kp 0 ta ,p(ia ,ma), ta ,p(ia,ma) 0 kp,

Ip 0 Ta,p(ia,ma) , Ta,p(ia,ma) 0 Ip are all constant functions.}

The produet in n( S) is given by

Proof. Let S be an E-2 regular semigroup such that S is a semilattice Y of
reetangular abelian groups Sa = Ja X Ga X Ma, a E Y. Let (A,p) E n(S)
be arbitrary. Then, by the remark befor the theorem, A' and p' defined by
A'(8(y)) = 8(A(y)) and (8(y))p' = 8((y)p) (y E S) are idempotent homo
morphisms of Y into itself such that A' = p'. Moreover, A = A'(Y) is a re
traet ideal of Y. Denoting A' by rA, the set Ry of retraet ideals of Y forms
a semilattice under intersection and that associated with each A E Ry is a
unique retraet homomorphism I'A. For all ß E A, (A,p)ISp E n(Sp) , where
n(Sp) ~ 'TIo X Ga X 'Mo by Theorem 1.34. Suppose a E Y - A and let
ß = rA(a). Let (ia,ga,ma) E Sa and (ip,gp ,mp) E Sp arbitraryelements.
Since r A(a) = ß, we have A(ia,ga ,ma) = (ip ,gp ,mp) E Sp. Then there is an
element ap of Gp such that

and so
A(ia,ga ,ma) = (ip ,ap(gatPa,p),mp).

Similarly, we may assume that

Then we have

(A(ia,ga ,ma))(ip, se .mp) = (iß' ap(gatPa,p) ,mß)(ip,gp ,mp)

= (ip ,ap(gatPa,p),mp)

and

A((ia,ga ,ma)(ip ,gp, mp)) = A(ta,p(ia, ma))ip , (gatPa ,p)gp,mp)

= ((kp ota,p(ia ,ma))ip ,ap(gatPa,p)gp,mp).

So
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We can prove, in a similar way, that

Mß((ia,ma)Ta ,ß 0 lß) = mß'

As A and p are linked, we get from

((ia,ga, ma)p)(iß,gß ' mß) = (iß, (gatPa ,ß)aß' mß)(iß ,gß ,mß)

= (iß, (gatPa,ß)aßgß, mß)

and
(ia,ga, ma)(A(iß,gß ,mß)) = (ia,ga, ma)(kß(iß), aßgß,mß)

= ((ta ,ß(ia ,mal 0 kß)iß, (gatPa ,ß)aßYß' mß)

that
(ta ,ß(ia,ma) 0 kß)Iß = iß.

We can prove, in a similar way, that

Mß(lß 0 (ia ,ma)Ta,ß) = mß'

Hence kß 0 ta,ß(ia, mal, ta,ß(ia, mal 0 kß' lß 0 Ta,ß(ia , mal and
Ta,ß (ia ,mal 0 lß are all constant functions. Moreover, it is clear that if we know
how (A,p) acts on UßEASß then we know how (A,p) acts on S. Thus with (A,p)
we can associate

([kß( ),aß'( )lß])ßEA E II (lIß X Gß X IMß)'
ßEA

Let a,ß E A with a ~ ß and (ia,ga,ma) E Sa, (iß,gß,mß) E Sß. Then

(A(ia ,ga, ma))(iß ,gß ,mß)

= (ka(ia), aaga, ma)(iß,gß, mß) = (ta ,ß(ka(ia), ma))iß , ((aaga)tPa,ß)gß,mß)

= A((ia,ga,ma)(iß,gß,mß)) = A(ta,ß(ia,mo))iß' (gatPa,ß)gß,mß)

= kß 0 ta ,ß(io, mo))iß' aß(gatPa,ß)gß' mß).

Thus

and
kß 0 ta ,ß(ia, mal = ta,ß(ka(ia), mal.

We can prove, in a similar way, that

Ta,ß(ia ,mal 0 lß = Ta,ß(ia, (ma)la)'

As Aand p are linked, we find that

ta ,ß(ia,ma) 0 kß = ta,ß(ia , (ma)la)

and
lß 0 Ta,ß(ia, mal = Ta,ß(ka(ia), mal.

Thus the conditions of the theorem are necessary. It is a matter of checking to
see that they are sufficient. 0



Chapter 13

WE-m semigroups

In this chapter we deal with semigroups in which, for every elements a and b,
there is a non-negative integer k such that (ab)rn+k = arnbrn(ab)k = (ab)karnbrn,

where m is a fixed integer m ~ 2. These semigroups are called WE-m semi
groups. It is c1ear that every E-m semigroup is a WE-m semigroup. The
examination of WE-m semigroups need some results about E-m semigroups.
Thus the E-m semigroups were examined in the previous chapter. As a WE-m
semigroup is a left and right Putcha semigroup, it is a semilattice of WE-m
archimedean semigroups. We show that the O-simple WE-m semigroups are
the completely simple E-m semigroups with a zero adjoined. A semigroup is
a WE-m archimedean semigroup containing at least one idempotent element
if and only if it is a retract extension of a completely simple E-m semigroup
by a nil semigroup. We also prove that every WE-2 archimedean semigroup
without idempotent element has a non-trivial group homomorphic image. We
deal with the regular WE-m semigroups. We show that the regular WE-m
semigroups are exact1y the regular exponential semigroups. Moreover, we show
that a semigroup which is an ideal extension of a regular semigroup K by a nil
semigroup N is a WE-2 semigroup if and only if K is an E-2 semigroup and the
extension is retract. We deal with the subdirectly irreducible WE-2 semigroups.
It is shown that a semigroup is a subdirect1y irreducible WE-2 semigroup with
a globally idempotent core if and only if it is isomorphie to either G or CO or
B, where Gis a non-trivial subgroup of a quasicyclic p-group (p is a prime) and
B is a non-trivial subdirectly irreducible band.

For an arbitrary semigroup S, let W E(S) denote the set of all positive
integers m which satisfies the condition that, for every couple (a, b) E Sx S, there
is a non-negative integer k such that (xy)rn+k = xrnym(xy)k = (xy)kxmyrn.

We note that if the equation (xy)mH = xrnyrn(xy)k = (xy)kxrnym holds for
some non-negative integer k then it holds for all integers t ~ k,

Theorem 13.1 ([51]) For every semigroup S , W E( S) is a subsemigroup 0/ the
multiplicative semigroup 0/ all positive integers.

199
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Proof. Let 8 be an arbitrary sernigroup. WE(8) is not empty, because 1 is in
WE(S). Consider two elements n and m in WE(S). Let z and y be arbitrary
elements of S. Then there are positive integers k and t such that

and

Then
(xy)nm+nHk = (xy)n(m+t)+k = (xy)n+n(m+t-l)+k

= x nyn(xy)n(m+t-l)+k = x nyn(xy)n+n(m+t-2)+k

= (x nyn)2(xy)n(m+t-2)+k = ... = (xnyn)m+t(xy)k

= xnmynm(xnyn)t(xy)k = xnmynm(xnyn)t-lxnyn(xy)k

= xnmynm(xnyn)t-l(xy)n+k = ... = xnmynm(xy)nt+k.

Sirnilarly,

Thus nm E WE(8). o
We note that the exponent sernigroup E(8) of a sernigroup S is a subsemi

group of WE(8).

Definition 13.1 For a fixed integer m 2:: 2, a semigroup 8 is called a WE-m
semigroup if m E W E(8). With other words , for every (a, b) E 8 X 8 , th ere is
a non-negative integer k such that

Semilattice decomposition of WE-m semigroups

Theorem 13.2 Every WE-m semigroup is a left and right Putcha semigroup.

Proof. Let 8 be a WE-m sernigroup. H a, b E 8 are arbitrary elements with
b E a81, that is, b = ay for some y E 8 1 then there is a positive integer t such
that

bm+t = (ay)m+t = amym(ay)t E a281.

Hence 8 is a left Putcha sernigroup. We can prove, in a sirnilar way, that 8 is
a right Putcha sernigroup. 0

Theorem 13.3 ([51]) Every WE-m semigroup is decomposable into a semilat
tice of WE-m archimedean semigroups.

Proof. By Theorem 13.2 and Corollary 2.2, it is obvious. o
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Theorem 13.4 ([51}) A semigroup is a O-simple WE-m semigroup ij and only
ij it is a completely simple E-m semigroup with a zero adjoined.

Proof. Let S be a O-simple WE-m semigroup. Then, by Theorem 13.3, it is
a semilattice of archimedean semigroups and every non-zero element of S is
in the same semilattice component K of S. If 0 was in K then S would be
a nil semigroup which is contradicts the assumption that S is Il-simple. Thus
S = KU {O} and K is a simple WE-m semigroup. By Theorem 13.2, K is
a left and right Putcha semigroup and so, by Theorem 2.3, it is completely
simple. Then, by Theorem 1.25, K is isomorphie with a Rees matrix semigroup
M(I,G,JjP) over a group G with the sandwich matrix P. Assume that P is
normalized by Pio,i = Pt.i« = e for all i E I, j E J and some io E I, jo E J ,
where e is the identity element of G. Then, for every gE G, i EI, j E J and
a positive integer k,

( ' ( )m+k-l ') (' ')m+k ((' ')(' '))m+k%,g Pi,lg ,J = %,g,J = %,g,1o %o,e,J

= (i,g,jo)m(io, e,j)m(i,g,j)k = (i,gm ,jo)(io, e,j)(i,g,j)k

( ' m ')(' ')k (' m ' ) ( ' ( )k-l ')= %,g ,J %,g,J = %,g ,J %,g Pi,lg ,J

( ' m ( )k-l ')= %,g Pi,ig pi,ig ,J

and so
( )m+k- l m ( )k-l9 pi,ig = 9 Pi,ig pi,ig ,

that is,
(gpi,d m = 9mpi ,i.

Then, letting 9 = e, it follows that

m-lp . . = e.),'

Then, for a positive integer t and every g, hE G, we get

( ' (h)m+t io) ( ' h ' )m+t (( ' ' )( ' h ' ))m+t%0, 9 ,]0 = %o,g ,Jo = %o,g,Jo to, ,Jo

= (io,g,jo)m(io, h,jo)m((io,g,jo)(io, h, jo))t

(io,gmhm,jo)(io, (gh)t ,jo) = (io,gmhm(gh)t,jo) ,

that is,

from which it follows that
(gh)m = gmh m.

Hence G is an E-m group and Pji-l = e for all i E I and j E J . Then, by
Theorem 12.15, K is an E-m semigroup.

As the converse statement is ohvious, the theorem is proved. 0

Corollary 13.1 A semigroup is a O-simple WE-2 semigroup ij and only ij it is
a rectangular abelian group with a zero adjoined.
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Proof. By Theorem 13.4 and Corollary 12.6, it is obvious. o

Theorem 13.5 ([51}) A reiraci ez tensioti of a WE-m semigroup by a WE-m
semigroup with zero is a WE-m semigroup.

Proof. By Definition 1.45 , a WE-m semigroup is a W-semigroup with W =
((ab)mH = ambm(ab)kh>o and W = ((ab)mH = (ab)kambmh>o. Hence our
assertion follows from Th~rem 1.38. - 0

Theorem 13.6 ([51)) A semigroup is a WE-m archimedean semigroup con
taining at least on e idempote nt eleme ni if and only if it is a retraci eztension
of a complet ely simple E-m semigroup by a nil semigroup.

Proof. If S is a WE-m archimedean semigroup containing at least one idem
potent element then it is a left and right Putcha semigroup from which we get
that S is a retract extension of a completely simple E-m semigroup by a nil
semigroup (see Theorem 2.4, Theorem 13.2 and Theorem 13.4). The converse
follows from Theorem 2.2 , Theorem 13.5 and the fact that an E-m semigroup
is also a WE-m semigroup. 0

Theorem 13.7 ([51}) S is an archimedean WE- 2 sem igroup con taining at least
on e idem pote n t element if and only if it is an id eal exi ension of th e direet produ et
K = I x G x J of a left zero semigroup I , an abelian group G and a right zero
semigroup J by a nil semigroup N with produet det ermined by three partial
homomorphisms

( )cfl : N* --t I, ( )w : N* --t G, ( )ep : N* --t J

in th e following mann er. If(7r ,a,jL) , (1] ,b,v) E I x G x J, s ,t E N* th en

(7r,a ,jL)s = (7r ,a((s)w, (s)ep)

s(7r,a,jL) = ((s)cfl, (s)wa,jL)

(7r, a, jL)(1], b,v) = (7r, ab,v)

st = st in N if st # 0 in N

st = ((s)cfl,(s)w(t)w , (t)ep) if st = 0 in N.

Proof. Let S be an archimedean WE-2 semigroup with idempotent elements.
Then , by Theorem 13.6 , S is a retract extension of a complet ely simple E-2
semigroup K by a nil semigroup N. By Corollary 12.6 , K is isomorphie to th e
direet product I x G x J of a left zero semigroup I , an abelian group G and a
right zero semigroup J. Let iI>( ) denote the retraet homomorphism of S onto
K. Then, for every sE N*, there are elements a E G, i E land j E J such that
iI>(s) = (i,a,j). Consequently iI> induces mappings

( )cfl : N* --t I , ( )w : N* --t G, ( )ep : N* --t J
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such that i = (s)4>, a = (s)w, (s)rp = i . that is,

«I>(s) = ((s)4> ,(s)w,(s)rp).

Since «I> is a homomorphism, it follows that an of 4>,w ,rp are partial homomor
phisms. It is a matter of checking case to see that the equations of the theorem
hold.

To prove the converse, assume that the semigroup S is an ideal extension of
K by N , the partial homomorphisms 4>,w,rp are given and the product in S is
defined by the equations of the theorem. Denote a mapping «1>( ) of S onto K
as

«I>(s) = s if sE K and ((s)4>,(s)w,(s)rp) if sE N*.

We show that «I> is a homomorphism. Let sand t be arbitrary elements of S.
Assume s, t E N*. Then

«I>(s)«I>(t) = ((.~)4>, (s)w(t)w, (t)rp) = «I>(st).

If sE K and t E N* then, with s = (-7f,aJl), we have

«I>(st) = st = (1r ,a,Jl)t = (rr,a(t)w,(t)rp) = (1r, a, Jl)«I>(t) = «I>(s)«I>(t).

Similarly, «I>(st) = «I>(s)«I>(t) in case sE N* and tE K. Assume s,t E K. Then

«I>(st) = st = «I>(s)«I>(t).

Consequently, «I> is a retract homomorphism of S onto K. Then, by Theorem
2.2 and Theorem 13.5, S is an archimedean WE-2 semigroup containing at least
one idempotent element. 0

Lemma 13.1 11S is a WE-2 semigroup then, [or every a ES,

Sa = {x ES: aixa i = ah [or some positive integers i,j,k}

is the least reflexive unitary subsemiqroup 01 S containing a.

Proof. Let S be a WE-2 semigroup and a E S be arbitrary. To show that Sa is
a subsemigroup of S, let x,y E Sa be arbitrary. Then there are positive integers
i, i .k, h, m, n such that

and

As S is a WE-2 semigroup, there is a positive integer t such that

(xai+myan+i)2+t = (xai+my)2a2(n+iJ(xai+myan+i)t.

We can suppose that
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for some positive int eger T . By Theorem 13.1,

2+t E WE(S).

Thus there is a positive integer s such that

Let p := k + h. Then

= a(Ht)i(x ai+ my)2 a2(n+i)(xai+myan+i)tas(p+i)

= a(l+t)iaixai (amyxai)(amyan)an+i( (aixai)( amyan))t aias (p+i)

= a(l+t)i+k+ myxai+h+n+p(t+s)+i(s+2).

Hence

that is , Sa is a subsemigroup of S.
We show that Sa is left unitary. Assume z , xy E Sa for some z , y E S. Then

there are positive integers i,j, k,m , n , h such that

and

Let T denote a positive integer which satisfies T ~ max{i - m ,j - h}. As S is
a WE-2 semigroup, there is a positive integer t such that

(ar+mxyan)Ht = (ar+mx)2(yan)2(ar+mxyan(

From this we get

a(Ht)(r+h) = (ar+h)Ht = (ar+mxyan)Ht

= (ar+mx)2(yan)2(ar+mxyan)t

= ar+mxar+mxyanyanat(r+h)

= ar+mxar+hyat(r+h)+n

= am+r-iaixaiar+h-iyat(r+k)+n

=a2r+m+h+k-i-iyat(r+h)+n.

Hence y E Sa. Consequently, Sa is a left unitary subsemigroup of S. We can
prove, in a similar way, that Sa is right unitary in S.
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We show that Sa is reflexive in S. Assurne xy E Sa for some x,y E S. As S
is a WE-2 semigroup, there is a positive integer k such that

As Sa is unitary in S, we have
yx E Sa.

Hence Sa is reflexive in S. It is clear that a E Sa. We show that Sa is the least
reflexive unitary subsemigroup of S which contains a. Assurne, in an indirect
way, that S has a reflexive unitary subsemigroup V such that a E V and V c Sa.
Then there is an element x E Sa - V such that

for some positive integers i,j,k. As V is unitary in S, we get x E V which is
impossible. Thus the lemma is proved. 0

Theorem 13.8 Every WE-2 archimedean semigroup without idempotent ele
m ent has a non-trivial group homomorphic image.

Proof. Let S be a WE-2 archimedean semigroup without idempotent element,
Let a E S be arbitrary. Then, by Lemma 13.1, Sa is a reflexive unitary sub
semigroup of Sand so, by Theorem 1.41, the principal right congruence RSa is
a group congruence on S. If s; f:. S then SIRsa is a non-trivial group homo
morphic image of S. Next, we can suppose that Sa = S. In this case, for every
xE S, there are positive intgeres i,j,k such that aixai = ak • Assurne that

also holds for some positive integers p, q, m. Then

from which we get
m - (p +q) = k - (i + j),

because S does not contains idempotent element. Thus the integer k - (i +j)
is well-determined by the element z , Let <p be the following mapping,

<p: x E S -t k - (i + j) ,

where k - (i +j) is the integer which is determined by x as above. Since Sa = S
then <p is defined on S, and it maps Sinto the additive semigroup of integers.
We show that <p is a homomorphism. Let z , y E S be arbitrary. Assurne

and
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for some positive integers i,j,k ,m,n,h. Let p = k + h. Then, by (*) of the
proof of Lemma 13.1,

(for some positive integers t and s). Since

(p + i)(2 + t + s) - ((1 + t)i + k + m + j + h + n + p(t + s) = i(s + 2)) =

k - (i + j) + k - (m + n),

we get
ep(yx) = ep(y) + ep(x).

Hence ep is a homomorphism of Sinto the additive semigroup of integers. It
is clear that ep(a) = 1. Thus ep(S) equals either the additive semigroup of all
integers or the additive semigroup of all non-negative integers or the additive
semigroup of all positive integers. Since all of these additive semigroups have
non-trivial group homomorphic Images, the theorem is proved. 0

Theorem 13.9 ([51J) A regular WE-m semigroup is a semilattice 0/ compl etely
simple E-m semigroups.

Proof. Let S be a regular WE-m semigroup. Then S is a semilattice of
archimedean WE-m semigroups. As S is regular, every semilattice component
of S contains an idempotent and so is a retract extension of completely sim
ple E-m semigroup by a nil semigroup. From this we can conclude that every
semilattice component of S is a completely simple E-m semigroup. 0

Theorem 13.10 ([52]) On a semigroup S , the /ollowing are equivalent.

(i) S is a regular WE-2 semigroup.

(ii) S is a regular E-2 semigroup.

(iii) S is an orthodox band 0/ abelian groups.

(iv) S is a spined product 0/ some band and a semilattice 0/ abelian groups.

(v) S is a regular exponential semigroup.

(vi) S is a regular WE-m semigroup [or alt positive integer m 2: 2.

Proof. (i) implies (ii): Let S be a regular WE-2 semigroup. Then, by Theorem
13.3 and Theorem 13.7, we can conclude that S is a semilattice Y ofrectangular
abelian groups Sa. = Ia. x Ga. x Ma. , where Ia. are left zero semigroups, Ga. are
abelian groups and Ma. are right zero semigroups, a E Y. By Theorem 1.27, S
is an orthogroup. By Theorem 1.28, for every pair (a,ß), a,ß E Ywith a 2: ß,
there exist a left representation ta. ,ß( ) of Sa. by transformations of Iß' a right
representation ( )Ta.,ß of Sa. by transformations of Mß and a homomorphism
( )tPa.,ß of Ga. into Gß such that the product in S is given as follows. Let
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A = (ia,acoll:a) E Sa and B = (jß,bß,Aß) E Sß be arbitrary elements of S. Let
, = aß (in Y), and let

be the given product of (i a, lI: a ) and (jß, Aß) in the band Es. Then

Since S is a WE-2 semigroup, there is a positive integer k such that

((i: aa, lI:a)(jß' bßAß) )2+k

= (i a, aa, lI:a)2(jß' bß, Aßf((ia , aa, lI:a)(jß' bß'Aß))k

((ia, aa, lI:a)(jß' bß' Aß))k(i a, aa, lI: a )2(jß' bß'Aß)2.

Since
(( i«, aa, lI:a)(jß' be, Aß))2+k

= ((ta ,-yA)v-y, aa4>a,-ybß4>ß,-Y' J-L-y(BTß ,-y ))2+k

= ((t a,-yA)v-y, (aa4>a ,-ybß4>ß,-y)2+k,J-L-y(BTß,-y))

and
= (i a, aa, lI: a )2(jß ' bß ' Aß)2 ((i a, aa, lI:a)(jß' bß, Aß))k

= (i a, a;, lI:a)(jß' b~ , Aß)((ia, aa, lI:a)(jß' bs, Aß))k

= ((ta,-yA2)v-y, a~4>a,-yb~4>ß"'" J-L-y(B2Tß ,-y))((ta ,-yA)v-y, aa4>a ,-ybß4>ß"'" J-L-y(BTß ,-y))k

= ((ta,-yA2 )v-y, a;4>a ,-yb~4>ß ,-Y( aa4>a,-ybß4>ß,-y)k ,J-L-y(BTß,-y)),

we have
ta ,-yA = t a,-yA

2.

We can prove, in a similar way, that

As
(AB)2 = ((ia,aa,lI:a)(jß,bß,Aß)f

= ((ta,-yA)v-y, aa4>a,-ybß4>ßm J-L-y(BTß ,-y))2

= ((ta,-yA)v-y, (aa4>a,-ybß4>ß,-y)2 ,J-L-y(BTß,-y))

and
A2B 2 = (i a, aa, lI: a )2(jß' bß'Aß)2

= (ia ,a;,lI:a)(jß,b~,Aß)

= ((t a,-yA2 )V-Y' a;4>a ,-yb~4>ß ,-Y' J-L-y(B
2Tß,-y)),
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we get (AB)2 = A2B2, because

CHAPTER 13. WE-m SEMIGROUPS

ta ,-yA = t a,-yA2
,

BTß,-y = B 2Tß ,-y ,

and G-y is an abelian group containing the elements aatPa ,-y and bßtPß ,-y. Hence
S is an E-2 regular semigroup and so (i) implies (ii).

Conditions (ii], (üi) , (iv) and (v) are equivalent by Theorem 12.21.
(v) implies (vi) and (vi) implies (i) in a trivial way. Thus the theorem is

~~. 0

Theorem 13.11 ([52)) A semigroup S whieh is an ideal extension 0/ a regular
semigroup K by a nil semigroup N is a WE-2 semigroup i/ and only i/ K is an
E-2 semigroup and the extension is retraet.

Proof. Let S be a WE-2 semigroup such that it is an ideal extension of a
regular semigroup K by a nil semigroup N. Then, by Theorem 13.10, K is an
E-2 regular semigroup. By Theorem 13.3 and Theorem 13.7, K is a semilattice
Y of reetangular abelian groups K a = I a X Ga X M a, (0 E Y). By Theorem
1.27, K is an orthogroup and, by Theorem 1.28, the produet in K is determined
by homomorphisms ( ).,pa,ß of Gß into Ga, left representations ta ,ß( ) of K a by
transformations of Iß and right representations ( )Ta,ßof K a by transformations
of Mß' 0 ~ ß, o,ß E Y. If A = (i a,9a,ma) E Sa and B = (iß,9ß,mß) E Sß
are arbitrary elements and 0 ~ ß then

and
BA = (iß,9ß(9a.,pa,ß),mß(ATa,ß))'

By the remark before Theorem 12.22, ta ,ß(A) does not depend on 9a. Let 8
denote the canonical homomorphism of Konto Y. Since K is weakly reduetive
then, it is isomorphie with the inner part of the translational hull O(S) and,
by Theorem 1.36, there is an extension ~'(+) of O(K) by N such that S is a
subsemigroup of ~'(+). Let e denote the identity of O(K). Then X defined by
X(x) = z + € (x E ~'(+)) is a retraet homomorphism of ~'(+) onto O(K). We
show that the restrietion of X to S is a retraet homomorphism of S onto K. Let
x be an arbitrary element in N* = N - {O}. Let X(x) = (A."p.,) E O(K). We
show that X(x) is an inner bitranslation of K. By the remark before Theorem
12.22 , A~ and p~ defined by A~(8(y)) = 8(A.,(y)) and (8(y))p~ = 8((y)p.,) ,
y E Kare idempotent homomorphisms of Y into itself such that A' = p', Then
A., = A~(Y) is a retraet ideal of Y. By Theorem 12.22,

(A."p.,) = ([ka(.) ,aa, (.)laDaEA" E II (?i a X Ga X IMa)'
aEA"

We note that , for all o,ß E A." 0 ~ ß ,
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kß 0 ta,ß(ia,ma) = ta,ß(ka(ia),ma),

ta,ß(ia,ma) 0 kß = ta,ß(ia,(ma)la),

Iß 0 Ta ,ß(ia, ma) = Ta ,ß(ka(ia) ,ma),

Ta ,ß(i" ,ma) 0 Iß = T",ß(i", (ma)la).

Moreover, for al.l a E Y - A., (ß = >.~(a)) and al.l (ia,ma) E Ja X M a, kß 0

ta,ß(ia,ma), ta,ß(i",ma)okß, IßoTa,ß(ia,ma), Ta ,ß(ia,m,,)oIß are al.l constant
functions. Thus we now how (>.."p.,) acts on K if we now how (>.."p.,) acts
on UßEAzKß. Since N is a nil semigroup, there is an integer n 2: 2 such that
xn E K and so xn E K a for some a E Y. Let xn = (lI",ga,l/a), tl« E Ja,
ga E Ga, V« E M a. We show that a E A., and K~ = {x,x2,... ,xn-1}UK" is
a subsemigroup of S. It is sufficient to show that xy,yx E K a for every y E K a.
Let y E K a be an arbitrary element. Then xy E K ß for some ß E Y. As the
homomorphism X leaves the elements of K fixed , we have

xy = X(xy) = X(x)y = (>.."p.,)y = >..,(y)

and so
ß = B(xy) = B(>'.,(y)) = >'~(B(y)) = >.~(a).

Thus ß E A.,. Since xny E K a and

then
a = B(xny) = B(>.:-l(xy)) = >'~(B(>.:-2(xy)) = ...

= (>.~t-l(B(xy)) = >'~(ß) = ß

and so xy E K a. We can prove, in a similar way, that yx E K a. Thus K~
is a subsemigroup and a E A.,. Let r be a positive integer such that 2r 2: n.
Since K~ is a subsemigroup, then x2r

E K a (and so (X(x))2
r

E K a). Then
(X(x))2

r
= (7l",U,lL) for some (7l",U,lL) E K a. Let y = (e,g,lI) E K a be arbitrary.

As S is a WE-2 semigroup, it is a WE-2r semigroup (see Theorem 13.1). Thus
there is a positive integer z such that

Since X is a homomorphism and leaves y fixed , we have

and so
(ka(e),(aag)2

r,1I)
= (ka(e),aag,1I)2

r
+ z

= ((X(x))2
r
(e,lr ,1I)(ka(e),aag,lIY
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= (7I" ,U,p)(e,lr ,77)(ka(e),(aag)"' ,77) = (7I",ul
r(a

ag)'",77)

from which we get ka(e) = 71" . We can prove, in a similar way, that (77)1 = p.
Hen ce ka and la are constant mappings. Then, for arbitrary (ia ,ca,ja) E K a,
we have

(77a ,gaCa ,ja) = (77a ,ga,va)(ia,ca,ja)

= xn(ia ,ca,ja) = X(xn)( ia ,ca,ja) = (X(x))n(ia ,ca,ja)

= (X(x) t -1 (X(x)( i a,Ca , ja)) = (X(X))n-l (( 71" , aa,p)( i a,ca,ja))

= (X(x))n-l(7I",aaca,ja) = (X(x))n-2(7I" ,aa ,P)(7I",aaca,ja)

= (X(x))n-2(7I" ,a;ca,ja) = . . . = ('/I",a~ Ca,ja)

from which we get 77a = 71" and ga = a~. We get, in a similar way that Va = p.
Thus

Let ß E A", be an arbitrary element. Then there is an element I E Y such that
A~h) = ß E A",. Since

= (A: ,p:)K-y = A:K-y ~ K ß,

then ß = al = aal = aß, that is, a 2: ß. Thus the homomorphism ( )'l/Ja,ß of
Gß into Ga, the left representation ta,ß( ) of K a by transformations of Iß and
the right representation ( )ra,ß of K a by transformations of Mß are defined. We
note that (aa)'l/Ja ,ß = aß. Let (i ,b,j) be an arbitrary element of Kß. Since S is
a WE-2 semigroup, there is a positive integer k such that

and so

that is
(kß(i), (aßb)2+k,j) = (kß 0 kß(i),a~b2(aßb)\j) .

Thus kß 0 kß = kß. We can prove, in a similar way, that Iß olß = Iß. Then

= (7I" ,a~ ,p)(i,b,j) = xn(i ,b,j) = x(xn)(i ,b,j)

= (x(x))n(i ,b,j) = (x(x))n-l(x(x)(i ,b,j))

= (x(x))n-l(kß(i),aßb,j) = .. .

= (kiJ(i) ,aßb,j) = (kß(i),aßb ,j)

from which we get
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Then
kß = ta,ß(7r,a~,JL) = ta,ß(7r,aa,JL).

We can prove, in a similar way, that

Then
X(:c)(i,b,j) = (kß(i),aßb,j) = ((ta,ß(:cn))i,aßb,j) =

((t a,ß(7r, a~, JL) )i, aßb,j) = ((ta ,ß(7r, aa, JL))i ,aßb,j)

= ((ta ,ß(7r, aa, JL) )i, (aa-rPa,ß )b, j) = (7r, aa, JL)(i, b,j).

We can prove, in a similar way, that

(i,b,j)x(:c) = (i,b,j)(7r,aa,JL).

Thus x(:c) aets on UßEAzKß as (7r,aa,JL) acts on UßEAzKß. Thus X(:c) can be
identify with the inner bitranslation of K corresponding to (7r, aa, JL), that is,
X(:c) E K. Consequently, the restrietion of X to 5 is a retraet homomorphism
of N onto K. Thus the first part of the theorem is proved. The converse follows
from Theorem 13.5. 0

Corollary 13.2 ([65J) A semigroup 5 which is an ideal eziensioti of a regular
semigroup K by a nilsemigroup N is an E-2 semigroup if and only if K and N
are E-2 semigroups and ihe extension is retract.

Proof. Let 5 be an E-2 semigroup which is an ideal extension of a regular
semigroup K by a nil semigroup N. It is clear that K and N are E-2 semigroups.
Since 5 is also a WE-2 semigroup, then, by Theorem 13.11, there is a retraet
homomorphism of 5 onto K. As a retraet extension of an E-2 semigroup by an
E-2 semigroup is also an E-2-semigroup, the converse statement is evident. 0

Theorem 13.12 ([51}) On a semigroup 5, ihe following are equiualent,

(i) 5 is an inverse WE-m semigroup,

(ii) 5 is a semilattice of E-m groups,

(iii) 5 is an inverse E-m semigroup.

Proof. Let 5 be an inverse WE-m semigroup. Then, by Theorem 13.9, 5 is
a semilattice of completely simple E-m semigroups. It is easy to see that the
semilattice components are inverse semigroups. As an inverse completely simple
semigroup is a group, 5 is a semilattice of E-m groups. Hence (i) implies (ii].
By Theorem 12.20, (üi) follows from (ü). It is obvious that (üi) implies (i). 0
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Subdireetly irreducible WE-2 semigroups

Theorem 13.13 ([53]) A semigroup 5 is a subdirectly irreducible WE- 2 semi
group with a globally idempot ent core if and only if it sat isfies one of the following
conditions.

(i) 5 ~ G or 5 ~ CO, where G is a non-trivial subgroup of a quasicyclic
p-group (p is a prime).

(ii) 5 is a non-trivial subdirectly irreducible band.

Proof. Let 5 be a subdirectly irreducible WE-2 semigroup with a globally
idempotent core K. First , assume that 5 has no zero element. Then K is simple.
By Corollary 13.1, K is a reetangular abelian group, that is, K = G x I x J,
where G is an abelian group, I is a left zero semigroup and J is a right zero
semigroup. By Corollary 1.4, we have either K = G or K = I or K = J.

Assume K = G. Then 5 is a homogroup and so, by Theorem 1.47, it is a
subdireetly irreducible abelian group, Then, by Theorem 3.14 ,5 is a non-trivial
subgroup of a quasicyclic p-group (p is a prime) and so (i) is satisfied.

Assume K = I , that is, K is a left zero semigroup. It can be easily verified
that

d = {(a,b) E 5 x 5: ai = bi for all i E I}

is a congruence on 5 such that

As I is a dense ideal of 5 , we get

d = ids.

Let i E I and s E 5 be arbitrary elements. As 5 is a WE-2 semigroup, there is
a positive integer k such that

and so

Thus

Hence

Thus 5 is a band and so (ü) is satisfied. We can prove, in a similar way, that 5
is a band if K is a right zero semigroup.

Next , assume that 5 has a zero element o. We can prove (as in the proof
of Theorem 9.18) that 5' = 5 - {O} is a subsemigroup of 5. If 15'1 = 1 then
5 is a two-element semilattice and so (ü) is satisfied. If 15'1 > 1 then 5' is a
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subdirectly irreducible WE-2 semigroup without zero. If S' contained a zero 0'
then I = {O,O'} would be an ideal of Sand we would have PInpS' = ids which
is a contradietion, because PI :f:. ids and PS' :f:. ids (here PI and PS' denote the
Rees congruence on S modulo the ideal I and S', respectively). Thus the core S'
is globally idempotent. If S' is non-trivial subgroup G of a quasicyclic p-group
(p is a prime) then S = GO and so (i) is satisfied. If S' is a band then (ü) is
satisfied. As the semigroups listed in the theorem are subdirect1y irreducible
WE-2 semigroups, the theorem is proved. 0

Corollary 13.3 A semigroup S is a subdireetly irreducible E-2 (exponential)
semigroup with a globally idempotent core if and only if it is satisfies one of the
following conditions.

(i) S ~ G or S ~ GO , where G is a non-trivial subgroup of a quasicyclic
p-group (p is a prime).

(ii) S is a non-trivial subdireetly irreducible band.

Proof. By Theorem 13.13, it is obvious. o

We remark that subdirectly irreducible bands are characterized in Theorem
1.48.

Theorem 13.14 A WE-2 (E-2, exponential) semigroup with a zero and a non
trivial annihilator is subdirectly irreducible if and only if it has a non-zero dis
junctive elemeni.

Proof. By Theorem 1.49, it is obvious. o



Chapter 14

Weaklyexponential
•semigroups

In the previous ehapter we dealt with semigroups in which, for a fixed integer
m ~ 2 and every elements a and b, there is a non-negative integer k sueh that
(ab)m+k = ambm(ab)k = (ab)kambm. In this ehapter we deal with semigroups
whieh satisfy this eondition for every integer m ~ 2. These semigroups are called
weakly exponential semigroups. It follows from results of the previous ehapter
that every weakly exponential semigroup is a semilattiee of wcakly exponential
arehimedean semigroups. A semigroup is a weakly exponential arehimedean
semigroup containing at least one idempotent element if and only if it is a re
traet extension of a reetangular abelian group by a nil semigroup. It is also
proved that every weakly exponential arehimedean semigroup without idempo
tent element has a non-trivial group homomorphie image. We prove that every
weakly exponential semigroup is a band of weakly exponential t-arehimedean
semigroups, As a eonsequenee of the previous chapter, a semigroup is a subdi
reetly irredueible weakly exponential semigroup with a globally idempotent eore
if and only if it is isomorphie to either G or GO or B, where G is a non-trivial
subgroup of a quasicyelie p-group (p is a prime) and B is a non-trivial subdi
reetly irredueible band. At the end of the ehapter, we determine the weakly
exponential ß-semigroups. We prove that a semigroup S is a weakly exponen
tial ß-semigroup if and only if one of the following satisfied. (1) S is isomorphie
to eithcr G or ao, whcre G is a non-trivial subgroup of a quasieyelie p-group.
(2) S is isomorphie to a two-e1ement semilattiee. (3) S is isomorphie to either
R or RO or R l , where R is a two-e1ement right zero semigroup. (4) S is iso
morphic to either L or LO or L l , where L is a two-e1ement left zero semigroup.
(5) S is a nil semigroup whose prineipal ideals form a ehain with respeet to
inclusion. (6) S is a weakly exponential Tl or a T2R or a T2L semigroup. We
note that it is have not proved yet that there are weakly exponential T2R and
T2L semigroups.
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Definition 14.1 A semigroup 8 is called a weakly exponential semigroup i/ it is
a WE-m semigroup [or every m ~ 2. With other words, [or every (a,b) E 8 x 8
and every integer m ~ 2, there is a non-negative integer k such that (ab)m+k =
ambm(ab)k = (ab)kamb m.

Theorem 14.1 Every weakly exponential semigroup is a left and right Putcha
senuqroup,

Proof. By Theorem 13.2, it is obvious. o

Theorem 14.2 (U9)) Every weakly exponential semigroup is a semilattice 0/
weakly exponential archimedean semigroups.

Proof. By Theorem 13.3, it is obvious. o

(ayxa) Hp = a2(yxa)2 (ayxa)p ,

(ayxa2)HB = a2(yxa2)2(ayxa2)B

Theorem 14.3 ([50}) Every weakly exponential semigroup is a band 0/ weakly
exponential t-archimedean semigroups.

Proof. Let S be a weakly exponential semigroup and a E S, x, Y E 8 1 be
arbitraryelements. By Theorem 1.7, it is suflicient to show that xay -t xa2y.

Since S is weakly exponential, there are positive integers n and m such that

and

Then
(xay)3+ n = x(ayx)Hnay = xa 2(yx)2(ayx)nay

= (xa2y)xyx(ayx)nay

and, similarly,

Let
i = max {3 + n, 3 + m}.

Then

Using the condition that S is weakly exponential, there are positive integers
p, s , k such that

and
(ayxa2(yxa)2 (ayxa)p ayx )B+k

= (ayxa2)B((yxa)2 (ayxa)P ayxt(ayxa2(yxa)2 (ayxa)P ayx)k.



Using the notations
w = a2(yxa2)2,

v = ayxa2(yxa)2 (ayxa)P ay,

u=wv,

there is a positive integer n such that

(ux)"+k+n = (w(vx))"+k+n = w"+k(vx)"+k(ux)n.

Thus
(xa2y)6+P = xa2yxa2y(xa2y)3+Pxa2y

= xa2yxa2yxa(ayxa )2+Payxaay

= xa2(yxa2)yxaa2(yxa) 2 (ayxa) Hpay

= xa2(yxa2)2ayx(ayxa)2+Pay

= xa2(yxa2)2ayxa2(yxa)2 (ayxa)p ay

= xwv = xu

and so
(xa2y)(6+p)(s+k+nH) = (xu)"+k+n+l

= x(ux)"+k+nu = xw"+k(vx)"+k(uxtu

= xw"+k(ayxa2(yxa)2 (ayxa)P ayx )"+k(ux )nu

= xw"+k(ayxa2)" ((yxa)2 (ayxa)P ayx)"(vx)k (ux )nu

= xw"+k-l a2(yxa2)2(ayxa2)" ((yxa)2 (ayxa)P ayx)" (vx)k (ux )nu

= xws+k- 1(ayxa2)2+" ((yxa)2 (ayxa)P ayx)" (vx )k( ux )nu

- -- ... -

= x(ayxa2)"+2("+k)((yxa)2 (ayxa)P ayx)" (vx )k(ux )nu

= (xay)xa2(ayxa2)"+2("+k)-1 ((yxa)2 (ayxa)P ayx)" (vx)k (ux )nu.

Thus
xaylr(xa2y)(6+p)(8+k+n+l).

We can prove, in a similar way, that

xaY/l(xa2y)(6+Q)(z+r+mH)

for some positive integers q, z, r, m. Let

j = max {(6 +p)(s + k + n + 1), (6 + q)(Z + r + m + I)}.

Then

Consequently,

Thus the theorem is proved.
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Theorem 14.4 (U9j) A semigroup is weakly exponential and O-simple if and
only if it is a rectangular abelian group with a zero adjoined.

Proof. Let S be a weakly exponential O-simple semigroup. Then S is a WE-2
semigroup and so, by Corollary 13.1, it is a reetangular abelian group with a
zero adjoined. The converse statement is obvious. 0

Theorem 14.5 (U9j) A retraet eziension of weakly expon ential semigroup by
a weakly exponential semigroup is also weakly exponential.

Proof. It is easy to see that a weakly exponential semigroup is a W-semigroup
(see Definition 1.45) with W = ((ab)m+k = ambm(ab)kh~o and W = ((ab)m+k =
(ab)kambm)k~O for every positive integer m ~ 2. Hence our assertion follows
from Theorem 1.38. 0

Theorem 14.6 (U9)) A semigroup is a weakly exponential archimedean semi
group containing at least one idempotent element if and only if it is a retract
extension of a reetangular abelian group by a nil semigroup.

Proof. Let S be a weakly exponential archimedean semigroup containing at
least one idempotent element. As S is a left and right Putcha semigroup, by
Theorem 2.4 and Theorem 14.4, it is a retraet extension of a reetangular abelian
group by a nil semigroup.

The converse follows from Theorem 2.2 and Theorem 14.5 . 0

Corollary 14.1 A semigroup is weakly exponential and regular if and only if it
is a regular exponential semigroup.

Proof. See Theorem 13.10. o

Theorem 14.7 (U9j) Every weakly exponential archimedean semigroup with
out idempotent element has a non-trivial group homomorphic image.

Proof. Since a weakly exponential semigroup is a WE-2 semigroup, the asser
tion follows from Theorem 13.8. 0

Subdirectly irreducible weakly exponential semigroups

Theorem 14.8 A semigroup S is a subdireetly irreducible weakly exponential
(exponential) semigroup with a globally idempotent core if and only if it satisfies
one of the following conditions.

(i) S ~ G or CO, where G is a non-trivial subgroup of a quasicyclic p-group ,
p rs a pnme.

(ii) S is a non-trivial subdirectly irreducible band.
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Proof. Let 5 be a subdirectly irreducible weakly exponential (exponential)
semigroup with a globally idempotent core. Then 5 is a WE-2 semigroup and
so, by Theorem 13.13, either (i) or (ii) is satified. As the semigroups in (i) and
(ii) are weakly exponential (exponential) semigroups with globally idempotent
core, the theorem is proved. 0

Theorem 14.9 A weakly exponential (exponential) semigroup with a zero and
a non-trivial annihilator is subdireetly irreducible if and only if it has a non-zero
disjunctive elements

Proof. By Theorem 1.49, it is obvious.

Weakly exponential ß-semigroups

o

Theorem 14.10 ([54J) A semigroup 5 is a weakly exponential 4-semigroup if
and only if one of the following satisfied.

(i) 5 ~ G or CO, where G is a non-trivial subgroup of a quasicyclic p-group
(p is a prime).

(ii) 5 ~ F, where F is a two-element semilattice.

(iii) 5 ~ R or Jl!l or R l
, where R is a two-element right zero semigroup.

(iv) 5 ~ L or LO or LI , where L is a two-element left zero semigroup.

(v) 5 is a nil semigroup whose principal ideale form a chain with respeet to
inclusion.

(vi) 5 is a weakly exponential Tl or a T2R or a T2L semigroup.

Proof. Let 5 be a weakly exponential ß-semigroup. Then, by Theorem 14.2,
it is a semilattice of archimedean weakly exponential semigroups. By Remark
1.2, 5 is either archimedean or a disjoint union 5 = 50 U 51 of an ideal 50 and
a subsemigroup 51 of 5 which are archimedean and weakly exponential.

First, assume that 5 is archimedean. H 5 has a zero element then it is a
nil semigroup. By Theorem 1.56, the principal ideals of 5 form achain with
respect to inclusion. Hence (v) is satisfied.

In the next, we consider the case when 5 has no zero element. H 5 is
simple then, by Theorem 14.4, it is a reetangular abelian group, that is, a direct
product of a left zero semigroup L, a right zero semigroup R and an abelian
group G. Then we have either 5 = L or 5 = R or 5 = G. In the first case, by
Theorem 1.61, 5 is a two-element left zero semigroup and so (iv) is satisfied.
In the second case, by Theorem 1.61, 5 is a two-element right zero semigroup
and so (iii) is satisfied. In the third case, by Theorem 3.22, 5 is a non-trivial
subgroup of a quasicyclic p-group (p is a prime) and so (i) is satisfied.

Consider the case when 5 is not simple (and 5 has no zero element). Then,
by Theorem 14.7 and Theorem 1.52, 5 has an idempotent element. By Theorem
14.6, 5 is a retract extension of a reetangular abelian group K (IKI > 1) bya
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nil semigroup N. Let ~ denote the congruence on S determined by the retraet
homomorphism. Then

~npK = ids,

where PK denotes the Rees congruence of S defined by the ideal K of S. As S
is a ß-semigroup and IKI > 1, we have

~ = ids·

Then S = K which contradicts the assumption for S.
Next , consider the case when S is a disjoint union S = So US1 of an ideal So

and a subsemigroup S1 of S, where So and S1 are archimedean. By Theorem
1.51 and Remark 1.1, S1 is an archimedean weakly exponential ß-semigroup.
If S1 is a nil semigroup then, by Theorem 1.57, IS11 = 1. Thus S1 is either a
two-element left zero semigroup L or a two-element right zero semigroup R or
a subgroup Gof a quasicyclic p-group (p is a prime).

If ISo/ = 1 then either S = LO or S = HO or S = GO (if IGI = 1 then S is a
two-element semilattice).

Next , we can suppose that ISol > 1. Recall that So is a weakly exponential
archimedean semigroup. By Theorem 1.47 and Theorem 1.52, So has an idem
potent element. By Theorem 14.6, So is a retraet extension of a reetangular
abelian group K = L x R x G (L is a left zero semigroup, R is a right zero
semigroup, G is an abelian group) by a nil semigroup, By Theorem 1.54, K has
no non-trivial group homomorphic images. Hence K = L x R. As K 2 = K,
by Theorem 1.14, K is an ideal of S. Consider the case when IKI > 1. By
Corollary 1.3, K = L or K = R. Assume that K = L. It is easy to see that

er = {(a, b) E S x S: ax = bx for all x E L}

is a congruence on S such that

As L is a dense ideal, it follows that

er = ids .

Let x E L and cES be arbitrary elements. Then there is a positive integer k
such that

which means that

Then

Consequently, S is a band and So = L. By Theorem 1.61, S = SJ and So is a
two-element left zero semigroup. We get , in a similar way, that So = K and S
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is a band in that case when K is a right zero semigroup and so, by Theorem
1.61, S = S~ and So is a two-element right zero semigroup.

Next, consider the case when IKI = 1. Then So is a (non-trivial) nil semi
group.

Ir ISll = 1 then S is a weakly exponential Tl semigroup. Ir SI is a two
element left zero semigroup then S is a weakly exponential T2L semigroup. Ir
SI is a two-element right zero semigroup then S is a weakly exponential T2L
semigroup.

Ir SI was a non-trivial subgroup G of a quasicyclic p-group (p is a prime)
then, by Theorem 1.59, So would be trivial which contradiets the assumption
that ISol > 1. Thus the first part of the theorem is proved. As the semi
groups listed in the theorem are weakly exponential ~-semigroups,the proof is
complete. 0

Corollary 14.2 ([l07}) A semigroup S is an exponential ~-semigroup i/ and
only i/ one 0/ the /ollowing satisfied.

(i) S ~ G or GO, where G is a non-trivial subgroup 0/ a quasicyclic p-group.

(ii) S ~ F, where F is a two-element semilattice.

(iii) S ~ R or Rü or R l , where R is a two-element right zero semigroup.

(iv) S ~ L or LO or LI, where L is a two-element left zero semigroup.

(v) S is an exponential nil semigroup whose principal ideals are chain ordered
by inclusion.

(vi) S is an exponential Tl or a T2R or a T2L semigroup.

Proof. Since an exponential semigroup is weakly exponential then, by Theorem
14.10, it is obvious. 0

Theorem 14 .11 ([54}) S is a weakly exponential Tl sem igroup i/ and only i/ it
is a semilattice 0/ a non-trivial nil ~-semigroup So and a one-element semigroup
SI = {e} such that SOSI ~ So and SleSl = S.

Proof. Ir S is a weakly exponential Tl semigroup then, by Theorem 1.58, So
is a non-trivial nil ~-semigroup and Sl eSl = S.

Conversely, let S be a semilattice of a non-trivial nil ~-semigroup So and
a one-element semigroup SI = {e} such that SOSI ~ So and si-s: = S. Let
a and b be arbitrary elements of S , and let n be a positive integer. We may
assume

{a,b}:f; {e}.

Then
ab E So.

Since So is a nil semigroup, there is a positive integer k such that

(ab)k = o.
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Then
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(abt+k = 0 = anbn(ab)k = (ab)kanb n.

Thus S is weakly exponential. By Theorem 1.58, S is also a A-semigroup. D

Theorem 14.12 ([l07)) A semigroup S is an exponential Tl semigroup i/ and
only i/ S is a semilattice 0/an ideal N 0/S which is a non-trivial exponential nil
A-semigroup and a one-element semigroup P = {e} such that ea, ae E N1 eNl
[or every a E N and, [or each a E N , either ea = a or ae = a or ea2 = a2 = o.

We note that the weakly exponential and exponential T2R and T2L semi
groups are characterized in [54] and [107], hut the authors were not ahle to
construct such semigroups.



Chapter 15

(m, n)-commutative
•semigroups

In the last two chapters we deal with the (m, n)-commutative and the n (2 )

permutable semigroups, respectively. A semigroup is called an (m,n)-commu
tative semigroup if it sarisfies the identity ( Xl . ..Xm)(Yl'''Yn) = (Yl •••Yn)(Xl ••• Xm)

(m and n are positive integers). For a fixed integer n 2: 2, a semigroup S is called
an n (2)-permutable semigroup if, for any n-tuple (Xl ,X2 , ""Xn) ofelements of
S , there is a positive integer t with 1 ~ t ~ n -1 such that XIX2 ••• XtXt+!"'Xn =
Xt+! "'XnXl ••• Xt. First we deal with the (m, n )-commutative semigroups, because
some results about them are necessary in the examinations of n(2)-permutable
ones. In this chapter the (m, n)-commutative semigroups are examined. In
the first part of the chapter we determine all couples (m, n) of positive inte
gers m and n for which a semigroup is (m, n)-commutative. Since an (m, n)
commutative semigroup S is (m' , n')-commutative for every m' 2: m and n' 2: n , it
is sufficient to know the function fs(n) = min{m: S is (m,n) - com mutative}.
As every (m,n)-commutative semigroup is (l ,m + n)-commutative, fs is de
fined for all positive integers. We define a special funetion , the permutation
function , and show that the functions fs are exact ly the permutation functions.
In the second part of the chapter, we show that every (m, n )-commutative semi
group is an E-k semigroup for some integer k 2: 2. We also show that every
(1,2)-commutative semigroup is exponential. In the third part of the chapter ,
we deal with the semilattice decomposition of (m, n )-commutative semigroups.
Every (m, n )-commutative semigroup is a semilattice of archimedean (m, n)
commutative semigroups. It is shown that a semigroup is (m, n)-commutative
and archimedean containing at least one idempotent element if and only ifit is an
ideal extension of a commutative group by an (m, n )-commutative nil semigroup.
We show that every (m,n)-commutative archimedean semigroup without idem
potent has a non-trivial group homomorphic image. We prove that a semigroup
is (m, n )-commutative and regular if and only if it is a commutative Clifford
semigroup. We also show that a semigroup which is an ideal extension of a reg-
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ular semigroup K by a nil semigroup N is (m, n )-eommutative if and only if K
is a eommutative Clifford semigroup and N is (m , n )-eommutative. In the forth
part of the chapter, we deal with the subdireet1y irreducible (m ,n )-eommutative
semigroups. A semigroup is a subdireetly irreducible (m, n)-eommutative semi
group with a globally idempotent eore if and only if it is isomorphie to either
G or ao or F, where G is a non-trivial subgroup of a quasicyelic p-group (p
is a prime) and F is a two-element semilattiee. An (m, n )-eommutative semi
group with a zero and a non-trivial annihilator is subdireet1y irreducible if and
only if it has a non-zero disjunetive element. Moreover, we show that a subdi
reetly irreducible (m, n )-eommutative semigroup with a trivial annihilator and
a nilpotent eore is eommutative. In the last part of the chapter, the (m, n)
eommutative Ä-semigroups are detcrmined. We show that a semigroup is an
(m, n )-eommutative Ä-semigroup if and only if one of the following eonditions
is satisfied. (1) S is isomorphie to G or ao, wherc G is a non-trivial subgroup
of a quasieyelie p-group (p is a prime). (2) S is isomorphie to N or N 1 , whcre
N is an (m, n )-eommutative nil semigroup whose principal ideals form achain
with respeet to indusion.

Definition 15.1 For positive integers m and n, a semigroup S ss called an
(m ,n )-commutative semigroup i/ it satisfies the identity

We note that if a semigroup is (m, n )-eommutative for some m and n then
it is (m*, n*)-eommutative for all m* ::::: m and n* ::::: n. Moreovcr, a semigroup
is (m, n)-eommutative if and only if it is (n, m )-eommutative.

Lemma 15.1 ([1]) // S is an (m,n)-commutative semigroup then it is (1,m+
n )-commutative.

Proof. Let Xl, X2, • •• , X m, Y1, Y2 , ••• , Yn, Z be arbitrary elements of an (m, n) 
eommutative semigroup S. It is clear that S is (m + 1, n )-eommutative and
(n + 1,m)-eommutative. Thus

Z(X1X2 ••• X mY1Y2 " ' Yn ) = (ZX 1 X2 •• • X m)(Y1Y2 " ' Yn )

= (Y1Y2 • • 'Yn)(Z X1 X2' • • X m) = (Y1Y2' "YnZ)(X1 X2' •• X m)

= (X1X2 ••• X m)(Y1Y2'" Ynz) = (X1 X2 •• • XmY1Y2'" Yn)z,

whieh means that S is (1, m + n)-eommutative. D

Theorem 15.1 A finitely generated periodic (m, n )-commutative semigroup is
finite.

Proof. By Theorem 1.1, it is obvious. D
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Permutation funetions and (m ,n )-commutativity of semigroups

In this section, for an arbitrary semigroup S, we determine all couples (m, n)
of positive integers m and n for which the semigroup S is (m , n )-commutative.
In our investigation a special type of functions mapping the set of all positive
integers N+ into itself plays an important role, These functions are called
permutation functions.

Definition 15.2 A /unetion / : N+ -t N + with Dom/ = N+ is called a
permutation /unetion i/ it satisfies all 0/ th e /ollowing Jour conditions:

(i) /(n) = 1 [or all n > /(1) ,

(ii) n + /(n) = /(1) or n + /(n) = /(1) + 1 [or all 1 ::; n ::; /(1),

(iii) I/ n + /(n) = m + /(m) = /(1) and m < /(n) [or some 1 < n, m < /(1)
th en /(n + m) = /(n) - m,

(iv) I/ n + /(n) = /(1) th en /(/(n» = n .

Remark 15.1 From (i i) it follows that /(/(1» = 1.

Remark 15.2 If n + /(n) = m + /(m) = /(1) and m < /(n) then, by (iii) ,
n+m+/(n+m) =f(1).

Lemma 15.2 ([60J) I/ / is apermutation /unetion then, [or every n,t E N+,
conditions n+/(n) = f(1) andtn::; f(n) togetherimply f(tn) = f(n)-(t-1)n
and tn + f(tn) = f(1) .

Proof. Let f be apermutation function. Consider positive integers n and t
such that n + f(n) = f(1) and tn ::; f(n). Then

1 < n < f(1).

We can suppose that t > 1. Then

n < f(n).

Using (iii) for m = n, we get

f(2n) = f(n) - n

and so
2n + f(2n) = 2n + f(n) - n = n + f(n) = f(1).

If t = 2 then the lemma is proved. If t > 2 then

2n < f(n).

Using (iii) for m = 2n, we have

f(3n) = f(n) - 2n
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and
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3n + 1(3n) = 1(1).

Continuouing this procedure, we get

(t - 1)n < I(n)

and
(t - 1)n + I((t - 1)n) = 1(1).

Using (iii) for m = (t - 1)n, we get

I(tn) = I(n) - (t - 1)n

and so
tn + I(tn) = 1(1).

o

Lemma 15.3 ([60]) 111 is a permutat ion lunction then it is monotone decreas
ing and, in the case f(1) > 1, 1(2) < 1(1) and f(/(1) - 1) = 2.

Proof. Let 1 be apermutation funetion. To show that 1 is monotone de
creasing, we can suppose that 1(1) > 1. Let n be an arbitrary positive integer
with n < f(1). Then, by (ii), f(n) = f(1) - n or f(n) = f(1) - n + 1 and
f(n + 1) = f(1) - n - 1 or f(n + 1) = 1(1) - n. Comparing f(n) and f(n + 1),
we can conclude that f(n) :2: f(n +1). As f(n) = 1 for all n :2: 1(1) (see (i) and
Remark 15.1), f is monotone decreasing.

To prove the second assertion of the lemma, assume f(1) > 1. By (ii) ,

2 + f(2) :::; 1(1) + 1

from which it follows that

f(2) :::; f(1) - 1 < f(1).

Using again (ii),
f(1) - 1 + f(/(1) - 1) = f(1)

or
f(1) - 1 + f(/(1) - 1) = 1(1) + 1.

In the first case
f(/(1) -1) = 1

and, by (iv) ,
f(/(/(1) -1)) = 1(1) - 1,

that is,
f(1) = f(1) - 1
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which is impossible. So

f(l) - 1 + f(J(l) - 1) = f(l) + 1

which means that
f(J(l) - 1) = 2.

o

Lemma 15.4 ([60]) If f is apermutation function then, for every n ,m E N+ ,
conditions n + f(n) = m + f(m) = f(l) and m > f(n) imply f(m - f(n)) =
f(m) + f(n) .

Proof. Let f be apermutation funetion. Assurne n + f(n) = m + f(m) = f(l)
and m > f(n) for some n,m E N+. Then

1 < n , m < f(l).

By (iv) ,
f(J(n)) = n

and
f(J(m)) = m.

Thus
f(n) < f(J(m)).

Applying (iii) for f(m ) and f(n) , we have

f(J(m) + f(n)) = f(J(m)) - f(n) = m - f(n).

As

f(m) + f(n) + f(J(m) + f(n)) = f(l) ,

(iv) implies
f(J(J(m) + f(n))) = f(m) + f(n)

and so
f(m - f(n )) = f(J(J(m) + f(n))) = f(m) + f(n).

Thus the lemma is proved.

For all couples (n ,m) (n,m E N+), let P(n .m) denote the power

n
P(n ,m) = P(l ,n+m-l ) '

where P (l ,n+m-l ) is the permutation of {1, 2, ... , n + m} defined by

o

(
1 2 .

P(l ,n+m-l ) = 2 3 .
n+m-1

n+m
n+m)

1 .
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Let 1 be a permutation function and let Pid denote the identical permutation
of {1,2, ... ,j(I)}. One can check that

is a cyclic subgroup of the symmetrical group S1(1) of degree I( 1) and the order
of CI is 1(1). If 1(1) > 1 then CI is generated by the permutation P(I,f(I)-I)'
For I, define the following sets:

PI = {P(n,/(n»: n + I(n) = 1(1)} U {Pid}

and
AI = {n E N+ : n + I(n) = 1(1)}.

It is c1ear that PI is a subset of Cf, and 1PI I> 1 if and only if AI i= 0.

Theorem 15.2 ([60J) 11 1 is apermutation lunction then PI is a eyclie sub
group 01 the symmetrie group S f(l)' 11 I PI I> 1 then PI is generated by the
permutation P(a,f(a» where a is the minimal element 01 AI such that it is a
divisor 01 all nE Af and 1(1).

Proof. Let 1 be apermutation function. We can suppose that I Pf I> 1.
Consider arbitrary elements P(n,f(n» and P(m,f(m» of P], Then

n + I(n) = m + I(m) = 1(1).

It can be verified that

{

P(m-f(n) ,f(I)-m+f(n», if m > I(n);
P(n ,f(n»P(m,f(m» = Pid, if m = I(n);

P(n+m,f(n)-m) , if m < I(n).

If m > I(n) then, by Lemma 15.4,

1(1) - m + I(n) = I(m) + I(n) = I(m - I(n))

and so
m - I(n) + I(m - I(n)) = 1(1).

Thus

P(n,f(n»P(m,f(m» = P(m-f(n) ,f(m-f(n» E Pf'

If m < I(n) then, by (iii) and Remark 15.2,

I(n) - m = I(n + m)

and
n + m + I(n + m) = 1(1)

from which it follows that

P(n,f(n»P(m,f(m» = P(n+m ,f(n+m» E Pf'
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Thus Pf is closed under the operation of the permutations.
If P(n,/(n» E Pf then

n + f(n) = f(1)

and, by (iv) ,
f(f(n)) = n

whieh implies
P(f(n),n) E P],

As
P(n,f(n»P(f(n) ,n) = Pid,

P(J(n) ,n) is the inverse of P(n,f(n» in P], Thus P] is a subgroup of the symmetrie
group Sf(1) .

It is clear that Cf is isomorphie to the group Zk ofintegers modulo k = f(1),
under addition. As Pf is a subgroup of Ct» Af U {O} is a subgroup of Zk. Then,
denoting the least element of AI by a, Af U {O} is generated by a, that is, AI

eonsists of elements ta, where t E N+ and 1 ::; t ::; f~). It is clear that a is a
divisor of f(1) . Using Lemma 15.2, it ean be easily verified that PI is generated
by P(a,/(a»' Thus the theorem is proved. 0

Corollary 15.1 ([60]) 11 1 is apermutation [unction such that Af i 0 then
AI = {ta: tE N+, 1::; t::; f~a)} and IPf 1= f~a) + 1 [or a divisor a 01/(1)
with 1 < a < 1(1).

Corollar.y 15.2 ([60]) 111 is apermutation [unction. such that 1(1) is a prime
then Af = 0.

Corollary 15.3 ([60}) 111 is apermutation [unction. then , [or all positive inte
gers n, m and their greatest common divisor d, the condition m ~ 1(n) implies
n+m-d~f(d).

Proof. Let f be apermutation funetion. Consider positive integers n and m
such that m ~ I(n). Let d denote the greatest common divisor of n and m. If
d ~ 1(1) then I(d) = 1 and so n + m - d ~ f(d). Assume d < 1(1). Then

1(1) ::; d + I(d) ::; 1(1) + 1.

As m ~ I(n), we have
n+m~/(1) .

If n + m > 1(1) then

n + m - d ~ f(1) - d + 1 ~ I(d).

If n + m = 1(1) then, from m ~ f(n) , we get

n+f(n) ::;n+m=/(1)
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whieh implies

and

Then
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n + f(n) = f(1)

m = f(n).

n,m E Af.

By Theorem 15.2, a = min.A] is a eommon divisor of n and m. Evidently,
d E Af . Thus

n + m - d = f(1) - d = f(d)

and so the eorollary is proved. o
Let k ~ 1 be an arbitrary integer. Let P be a cyclic subgroup of the

symmetrie group Sk of degree k sueh that if I P I> 1 then P is generated
by apermutation P(a. ,k-a.), where a is a divisor of k with 1 < a < k. Define a
function f;' : N+ -t N+ by the following way:

(i)* f;'(n) = 1 for an n ~ k,

(ii)* f;'(n) = k - n if 1 P I> 1, n < k and n = at for some t E N+,

(iii)* f;'(n) = k - n + 1 if either 1 P I> 1, n < k and n 1= at for an t E N+ or
IP 1= 1 and n < k.

Remark 15.3 From (iii)* it follows that f;'(1) = k and, supposing 1P I> 1, a
is a divisor of f;'(1). From (ii)* it follows that f;'(a) = k - a if IP I> l.

Remark 15.4 If n + f;'(n) = f;'(1) then (I P I> 1 and) a is a divisor of n,
beeause n + fp(n) = f;'(1) = k implies (by (ii)*) that n = at for some t E N+.

Theorem 15.3 ([60J) A funetion f is apermutation funetion if and only if
f = f;' [or some funetion f;' consiructed as above.

Proof. Let k ~ 1 be an integer and let P be a eyelie subgroup of thc symmetrie
group Sk as above. We show that f;' is apermutation funetion. We ean eonsider
only that ease when P is generated by apermutation P(a. ,k-a.), where a is a
divisor of k with 1 < a < k. (If IP 1= 1 then the proof is trivial.)

Condition (i) follows from eondition (i)* and Remark 15.3, and eondition
(ii) is an immediate eonsequenee of eonditions (ii)* and (iii)*.

To prove (iii), let n and m be positive integers with 1 < n ,m < f;'(1) ,
n + f;'(n) = m + f;'(m) = f;'(1) and m < f;'(n). Then, by Remark 15.4 ,

n = al and m = aj for some positive integers l,j ~ fPda.). As m < f;'(n) , we
get

n + m < n + f;'(n) = f;'(1) = k.

Thus

f;'(n) - m = f;'(1) - n - m = f;'(1) - (n + m) = f;'(n + m).
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So (iii) is satisfied.
To show (iv) , let n be a positive integer with n + fp(n) = fp(l). Then

n = la for some positive integer Z :S f;'~a). As k = fp(l) and n = la, we get
that ais a divisor of fp(n) and fp(n) < fp(l) = k. Then, by (ii)*, we have

fp(fp(n)) = k - fp(n) = fp(l) - fp(n) = n.

Thus (iv) is satisfied. Consequently fp is apermutation funetion.
Conversely, let f be an arbitrary permutation funetion. Then, by Theorem

15.2, Pf is a cyclic subgroup of Sf(1) such that either IPfl = 1 or Pf is genetared
by the permutation P(a,/(a)), where a = min{Af } and a is a divisor of f(l) with
1 < a < f(l). Consider the function f p, defined by (i)*, (ii)* and (iii)* under

choosing k = f(l) . We show that f = f p, . Let n be an arbitrary positive
integer. If n ;::: f(l) = k then

f(n) = fp, (n) = 1.

Assume n < f(l). If I(n) = f(l) - n then I Pf I> 1 and a is a divisor of n.
Thus

fp, (n) = f(l) - n

and so
f(n) = fp, (n) .

If f(n) = f(l) - n + 1 then either I Pf I> 1 and a is not a divisor of n or
IPf 1= 1. Thus

fp,(n) = f(l) - n + 1

and so
f(n) = fp, (n).

Consequently,
f = fp,

and the theorem is proved. o

Corollary 15.4 ([60}) 11 f is apermutation [unciion then I = Ipt' 11 P is a
eyclie permutation group 01 asymmetrie group Sk (k ;::: 1 is an integer) sueh
that 1P 1= 1 or P is generated by apermutation P(a ,k-a) (a is a divisor 01 k
with 1 < a < k) then Pf;' = P .

Proof. The first assertion is proved in the last part of the proof of Theorem
15.3. To prove the second assertion, let P be a cyclic subgroup of asymmetrie
group Sk satisfying the condition of the corollary. If IPI = 1 then Af;' = 0
and so Pf;' = P. Consider the case when P is generated by apermutation
P(a ,k-a), where a is a divisor of k with 1 < a < k. Then, by Theorem 15.3,
I p is apermutation function such that the conditions n < fp(l) and a is a
divisor of n together hold if and only if n E A f;.. By Theorem 15.2, Pf;' is a
cyclic group which is generated by the permutation P(a'/;'(a» , because a is the
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minimal element of Af;' , As Ip(a) = k - a (see Remark 15.3), we get Pf;' = P.
o

Remark 15.5 For an arbitrary permutation function 1,1 Cf 1=1Pf 11 Cf: Pf I,
where 1Cf : Pf 1denotes the index of Pf in Cf. By Corollary 1,

{
1, if Af = 0;

1 Pf 1= 1 + f(a) if A ...J. 0
a , f;- ,

where a = min.A]: As a+ I(a) = 1(1) , we get a(1 + f~a») = 1(1) and a =1 Cf :
Pf I· By these equations we introdu ce the following notions and notations.

Definition 15.3 By the degree 01 apermutation [unction 1 we shall mean the
positive integer 1(1). I/ Af = 0 then 1(1) is also said to be the index 0/ I. I/
Af ::J 0 then the index 0/ a permutation function 1 is defined by a = minA] :
The order 0/Pf will be called the order 0/apermutation function t. The degree,
the index and the order 0/1 will be denoted by dj, if and 0j, respeetively.

By Definition 15.3 and Remark 15.5, the following lemma can be proved
easily.

Lemma 15.5 ([60J) For an arbitrary permutation function I, the /ollowing
equations hold: if =1 Cf : Pf land df = of if·

For an arbitrary semigroup S, let /s : N+ --+ N+ denote the function
whose domain is

Domls = {n E N+: (3m E N+) S is (n,m) - commutative}

and, for all n E Domjg ;

Is(n) = min{m E N+: S is (n,m) - commutative}.

Remark 15.6 If we know the function Is then we know all couples (m, n) of
positive integers m and n for which the semigroup S is (m, n )-commutative. In
the next we describe Is for all semigroups S .

Lemma 15.6 ([60J) For every semigroup S , Domls = 0 or Dom/s = N+.

Proof. Let S be an arbitrary semigroup with Domls ::J 0. Then S is (m,n)
commutative for some m,n E N+ . By Lemma 15.1, S is (1,m+n)-commutative
which implies that S is (k, m + n)-commutative for all k E N+. So Domls =
N+ . 0

Theorem 15.4 ([60J) A /unction 1 is apermutation [unciion i/ and only i/
1 = Is [or some semigroup S with Dom/s = N+ .
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Proof. Let S be a semigroup such that Damls = N+. We show that Is is a
permutation function.

To prove (i), consider a positive integer n such that n > Is(I) . As S is
(1,1s (1))-commutative, it is also (1, n )-commutative and so (n , 1)-commutative.
Thus Is(n) = 1.

To prove (ii) , let n be an arbitrary positive integer with 1 :S n :S Is(I). As
S is (1, Is(I))-commutative, it is (n, Is(l) - n + 1)-commutative from which we
get Is(n) :S Is(I)-n+l , that is, n+ Is(n) :S Is(I)+1. From the condition that
S is (n,ls(n))-commutative it follows, by Lemma 15.1, that S is (l,n+ Is(n))
commutative. Thus Is(l) :S n+ Is(n). This and n+ Is(n) :S Is(l) +1 together
imply that n + Is(n) = Is(l) or n + Is(n) = Is(l) + 1. Thus (ii) is satisfied.

To prove (iii), consider two positive integers n and m with 1 < n,m < 1(1)
such that n + Is(n) = m + Is(m) = Is(l) and m < Is(n). As S is (n,ls(n))
commutative and (m,ls(m))-commutative, it follows that S is (n + m, Is(n)
m)-commutative. So ist» + m) :S Is(n) - m. Thus

n + m + Lst» + m) :S n + m + Is(n) - m:S n + Is(n) = Is(I).

Evidently, n + m < Is(I). Applying (ii) for n + m, we get

n + m + Is(n + m) ~ Is(I).

This and n + m + Is(n + m) :S Is(l) together imply that

n + m + Is(n + m) = Is(I).

So
Is(n + m) = Is(l) - n - m = Is(n) - m.

Thus (iii) is satisfied.
To prove (iv), let n be an arbitrary positive integer with n + Is(n) = Is(I).

As S is (n ,ls(n))-commutative, we get

IsUs(n)) :S n.

Let IsUs(n)) be denoted by k. Then k :S n. Assurne k < n. As S is
(k,ls(k))-commutative, it is (n,ls(k))-commutative. So Is(n) :S Is(k). As
S is (k,ls(n))-commutative, we get Is(k) :S Is(n). So Is(k) = Is(n) whieh
implies

k + Is(k) < n + Is(k) = n + Is(n) = Is(I).

This is impossible (see (ii)). Thus k = n and so

IsUs(n)) = n.

Thus (iv) is satisfied and the first part of the theorem is proved.
Converse1y, let 1 be apermutation funetion. By Theorem 15.2, P, is a

subgroup of the symmetrie group S'(1)' Let X be an arbitrary set with lXI ~
1(1). Consider the free semigroup Fx over X Let

1= {w E:Fx: l(w) ~ 1(1) + I},
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where l(w) denotes the length of w. We define a relation 0: on Fx in the following
way: (Wl,W2) E 0: for WllW2 E Fx Hf W1 = X1 X2·· ,xJ(l), W2 = Y1Y2· · ' Y f ( l )

(Xi , Yj EX; i ,j = 1,2, . . . , f(l» and there is apermutation P E Pf such that

Y1Y2 • •• YJ(l) = X p(1)Xp(2) • •• Xp(f(l))

in Fx- With the help of 0: , we define a relation ß by

ß = {(Wt, W2) E Fx X Fx : W1 = W2 or W1,W2 EI or (Wr,W2) E o:}.

As PJ is a group, ß is an equivalence relation. As I is an ideal of Fx , ß is
compatible. So ß is a congruence on Fx - We shall denote the ß-class of Fx
containing the word W by [wJ. Let S be the factor semigroup of Fx modulo ß.
We show that fs = f. First we show that fs(l) = f(l). By the construction,
S is (l,f(l»-commutative. So fs(l) ~ f(l) . Assume fs(l) < f(l). Then
1 + fs(l) < 1 + f(l). If 1 + fs(l) < f(l) then S is not (l,fs(l»-commutativc
(for example (abfs(l ), bfs(l)a) ~ ß for arbitrary a and b of X with a:f b) which
is impossible. If 1+fs(l) = f(l) then fs(l) = f(l) -1 and so S is (1, f(l) -1)
commutative. Let Xl, :1:2, ••• , X J(l) be pair-wise distinct elements of X . Then

that is,
(X1 X2 ",XJ(1),X2 X3 • •• XJ(l)Xt) E ß,

Then !PJI > 1 and there is apermutation P(z,](z» in Pf such that

X2 X3 •• • x f(1)X1 = Xp( z ,/ (.»(l) •• • x p(z , / (z »)(f( l » = Xz+l ••• X f (1)X1 • •• X z

in Fx- Then z = 1 and so f(l) = z+ f(z) = 1 + f(l) which is a contradiction.
Consequently, fs(l) = f(l) .

If n 2: f(l) = fs(l) then f(n) = fs(n) = 1. Let n be an arbitrary positive
integer with n < f(l). Assume n + f(n) = f(l). Then P(n,/( n» E P], So S is
(n ,f(n» -commutative which implies that fs(n) ~ f(n) . If fs(n) < f(n) then
n+ fs(n) < n+ f(n) = f(l) = fs(l) which is a contradiction. So f(n) = fs(n).
Consider the case when n + f(n) = f(l) +1. Then S is (n, f(n) )-commutative.
Thus fs(n) ~ f(n) . Assume fs(n) < f(n) . Then n + fs(n) < n + f(n) =
f(l) + 1 = fs(l) + 1 and so n + fs(n) = fs(l) = f(l). Evidently, S is
(n'!s(n» -commutative. Let Xl , X2, •• • , X n , Xn+1, • •• , X f(l) be pair-wise distinct
elements of X. Then

that is,
(XlX2 ••• X n X n +l • •• X f (lb Xn+1 • • • X f(1)X1 ••• X n) E ß·

Then IPf I> 1 and there is apermutation P(z,](z» E P] such that

Xn+l •• • x J(1)X1 •• , X n = Xp( ' ,/ (. »(l) • • • x p(. ,/ (z » (f( l » = Xz+l • • • X f (1)X1 ' . ' X z

in Fx. Then z = n and so f(l) = z + f(z) = n + f(n) = f(l) + 1 which is
a contradiction. So f(n) = fs(n). Consequently, f = fs and the theorem is
~~. 0
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Corollary 15.5 ([1},[60}) A semigroup is (m , n )-commutative if and only if it
is (d, m +n - d)-commutative, where d is the greatest common divisor of m and
n .

Proof. Let S be an (m,n)-commutative semigroup and d the greatest common
divisor of m and n. Then, by Lemma 15.6, Domfs = N+ . By Theorem 15.4,
fs is apermutation funetion. Evidently, n ~ fs(m). So, by Corollary 15.3,
m + n - d ~ fs( d). Thus S is (d, m + n - d)-commutative. As the proof of the
converse statement is trivial, the corollary is proved. 0

Corollary 15.6 ([1),[60}) 1f S is an (m,n)-commutative semigroup such that
m, n are relatively primes then S is (k , m +n - k)-commutative for all 1 ::; k <
m+n.

Proof. Let S be an (m,n)-commutative semigroup such that m and n are
relatively primes. Then, by Corollary 15.5, S is (1, m+n-1)-commutative from
which it follows that S is (k, m + n - k )-commutative for all 1 ::; k < m + n. 0

Corollary 15.7 ([1),[60}) 1f S is an (m,n)-commutative semigroup such that
m + n is a prime then S is (k, m + n - k)-commutative for all 1 ::; k < m + n .

Lemma 15.7 ([61)) 1f Domfs = N+ for a semigroup S then S is (k,p-k+1)
commutative for all integers p ~ fs(1) and k = 1,2, . .. ,p.

Proof. Let S be a semigroup such that Domfs = N+. Then S is (1,fs(1))
commutative. Let p ~ fs(1) be arbitrary. Then S is (1,p)-commutative from
which it follows that S is (k,p - k + 1)-commutative for every k = 1,2, .. . ,po 0

Connection of(m,n)-commutative semigroups and E-k semigroups

Next , we prove that every (m, n )-commutative semigroup is an E - k semi
group for some k.

Theorem 15.5 ([61)) 1f Domfs = N+ for a semigroup S then S is an E - m
semigroup for all m ~ 1:}!, where q is the least odd number satisfying q > fs(1) .

Proof. Let S be a semigroup such that Domfs = N+. Let q be the least
odd number satisfying q > fs(1) and let m ~ 1:}! be an arbitrary integer.

Then there is an odd number p ~ q such that m = ~. As p - 1 ~ fs(1),
Lemma 15.7 implies that S is (k,p-k)-commutative for every k = 1,2, ... , p - l.
Then S is (1,2m - 2)-commutative and (2,2m - 3)-commutative. Using again
Lemma 15.7, S is (k,p - k + 1)-commutative for every k = 1,2, ... ,p and so S
is (1,2m -1)-commutative and (2, 2m - 2)-commutative. Then, for arbitrary
a,b E S, we get

(ab)m = ((ab)m-la)b = (a(ab)m-l)b = a2(ba)m-2b2

= (ba)m-2b2a2 = b((ab)m-3 ab2a2 ) = b(a2(ab)m-3 ab2 )
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= b(a3(ba)m-4bab2 ) = a3(ba)m-3b3 = . . . = ambm

which means that S is an E - m semigroup. o

Lemma 15.8 ([61]) I/ S is an (m, n)-commutative semigroup such that m + n
is a prime then /8(1) < m + n.

Proof By Corollary 15.7, it is obvious. o
As the (1, 1)-commutative semigroups are commutative, in the next theorem

we consider only such (m, n )-commutative semigroups where m +n ~ 3.

Theorem 15.6 ([61]) I/ S is an (m, n)-commutative semigroup with m+n ~ 3
then it is an E - k semigroup [or all k ~ ~, where q is the least odd number
sat is/ying q > m + n. Especially, i/ m + n is a prime then q = m + n.

Proof Let S be an (m, n )-commutative semigroup with m + n ~ 3. Then, by
Lemma 15.1, it is (1,m + n)-commutative which implies that /8(1) ::; m + n.
Let p be an arbitrary odd number with p > m + n . Then p > /8(1) and so,
by Theorem 15.5, S is an E - k semigroup, where k = ~. Consequently 8 is
an E - k semigroup for all k ~ ~, where q is the least odd number satisfying
q > m+n.

Consider the case when m+n ~ 3 is a prime. By Lemma 15.8, /8(1) < m+n.
As m +n is an odd number, Theorem 15.5 implies that 8 is an E - k semigroup
for all k ~ ~ where q = m + n. Thus the theorem is proved. 0

We note that, by Theorem 15.6, if 8 is an (m, n)-commutative semigroup for
some m and n then it is an E - k semigroup for some k , The converse is not true.
For example, a non trivial right zero semigroup is an E - k semigroup for all
k, but there is no positive integers m and n such that it is (m, n )-commutative.
(We note that the idempotent elements of an (m, n )-commutative semigroup
must be central.)

Corollary 15.8 ([36],[61]) Every (1,2)-commutaive semigroup is an ezponen
tial semigroup.

Proof Let 8 be an (1,2)-commutative semigroup. Then, by Theorem 15.6,
8 is an E - k semigroup for all k ~ 2 which means that 8 is an exponential
semigroup. 0

Semilattice decomposition of (m, n )-commutative semigroups

Theorem 15.7 Every (m, n )-commutative semigroup is a left and right Puicha
setmqroup,

Proof. Let 8 be an (m, n )-commutative semigroup and a, b be arbitrary ele
ments of 8 with b E a81 , that is b = ax for some z E 8 1 . As

bm+n+2 = (ax)m+n+2 = (ax)m+l(ax)n+l
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= a(xa)mxa(xa)nx

= a((xa)mx)(a(xat)x

= a(a(xa)n)((xa)mx)x E a2S1,

we get that S is a left Puteha semigroup. We ean prove, in a similar way, that
every (m ,n )-eommutative semigroup is a right Puteha semigroup. D

Theorem 15.8 ([56]) Every (m, n )-commutative semigroup is a semilattice 0/
archimedean (m, n )-commutative semigroups.

Proof. By Theorem 15.7 and Corollary 2.2, it is obvious. D

Theorem 15.9 ([56]) A semigroup is O-simple and (m, n)-commutative i/ and
only i/ it is a commutative group with a zero adjoined.

Proof. Let S be a O-simple (m, n )-eommutative semigroup. By Theorem 15.8, S
is a semilattiee of (m , n )-eommutative arehimedean semigroups. As S1aS 1 = S
for all non-zero elements a of S , the non-zero elements of S are in the same
semilattiee eomponent A of S. The zero 0 of S is not in A. If 0 was in A,
then S would be a nil semigroup and this would eontradiet the assumption that
S is Il-simple. Consequently, S = AO and A is a simple (m ,n)-eommutative
semigroup. As A is a left and right Puteha semigroup, it is eompletely simple
(see Theorem 2.3). Then, by Theorem 1.25 , Ais isomorphie to a Rees matrix
semigroup M(I,G,JjP) over a group G with the sandwich matrix P. By
Theorem 1.24, we may assume that Pis normalized, that is, Pio,i = Pi,io = e for
some io EI and jo E J and for all i E I and jE J (here e denotes the identity
element of G). Then, for arbitrary elements i E I and jE J , we get

(i , e, jo) = (i , e, j )(io, e, j )m(io, e,jot

= (io, e,jo)n(i , e,j)(io, e,j)m = (io, e, j ).

So i = io and i = jo for all i E land j E J. Thus A is isomorphie to G. As A
is (m ,n )-eommutative, for all a,b E A, we get

ab = em-1aen-1b = en-1bem-1a = ba,

So A is a eommutative group. Thus the first part of the theorem is proved.
As the eonverse statement is obvious, the theorem is proved. D

Theorem 15.10 ([56]) A semigroup is (m ,n)-commutative archimedean and
has an idempotent element i/ and only i/ it is an ideal extension 0/ a commutative
group by an (m, n )-commutative nil semigroup.

Proof. Let S be an (m,n)-eommutative arehimedean semigroup with an idem
potent element [ , By Theorem 2.2, S is an ideal extension of the simple
semigroup G = S/S by the nil semigroup Q = S/G. As G is also (m,n)
eommutative, by Theorem 15.9, it is a eommutative group. It is c1ear that Q is
(m, n )-eommutative.
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Conversely, let S be a semigroup su ch that S is an ideal extension of a
commutative group G by an (m, n )-commutative nil semigroup Q. Then, by
Theorem 2.2, S is an archimedean semigroup with an idempot ent element . Since
an ideal extension of a group (by a semigroup with zero) is a retract extension
and the (m,n)-commutative semigroups form a variety then , by Theorem 1.40 ,
S is (m, n)-commuta tive. 0

Lemma 15.9 ([61]) A semigroup S is regular and satisfies apermutation iden
tity

Sl S2 • •• Sn = S"(1 )S"(2 ) • •• S ,,(n)

for som e 0' E Sn (n ~ 2) with 0'(1) =I 1, O'(n) =I n if and only if S JS a
eommutative Clifford semigroup.

Proof. Let S be a regular semigroup which satisfies apermutation identity
mentioned in the lemma. Then, by Theorem 2 of [81], there is a positive integer
k such that S satisfies the permutation identity

Si S 2 •• • sI = Sa( 1) S a(2) ••• Sa( l)

for every I ~ k and every er E SI. From this it follows that the idempotent
elements of S are central. Then S is a Clifford semigroup. By Theorem 1.21, S
is a strong semilattice of it s subgroups. It is easy to see that these subgroups
are commuta tive and so S is a commutative Clifford semigroup. As the converse
sta tement is evident, the lemma is proved. 0

Corollary 15.9 ([61]) A semigroup is regular and (m, n)-eommutative for som e
m and n if and only if it is a eomm utati ve Clifford semigroup.

Proof. By Lemma 15.9, it is trivial. o

Definition 15.4 For an in teger n ~ 2, let ~n be a non-empty subsei of per
mutations of the symme trie group Sn of all permutations of {I , 2, . . . , n} . W e
shall say that a semigroup S has th e permutation property Pn with respeci to
~n if, for every n-tuple (Si , S2, • • • , Sn) of elem enis of S , th ere is a non-identity
permutation 0' in ~n such that

Definition 15.5 Ifr is a subclass of the class of all regular semigroups then a
subsei ~n of th e symmetr ie group Sn is ealled a r -subsei of Sn if every regular
semigroup having the permutation propert y Pn with respeci to ~n belongs to T',

Let CC denote the class of all commuta tive Clifford semigroups. Next we
deal with CC-subsets of Sn' First we prove the following lemma.

Lemma 15.10 Every ideal extension of a Clifford semigroup by a nil semigroup
is a retraet eziension.
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Proof. Let S be a semigroup which is an ideal ext ension of a Clifford semigroup
K by a nil semigroup N. Let e be an arbitrary idempotent element of K. Then,
for every s E S , we have

es = e(es) = (es)e = e(se ) = (se)e = se.

By Theorem 1.21 , K is a semilattice Y of groups G, (i E Y). Let 7J denote the
corresponding semilattice congruence on K. Since N = S / K is a nil semigroup
then , for every a E S , there is a least positive integer n such that an E Gi for
some i E Y. H edenotes the identity element of G; then

from which we get ea = ae E Gi. Then, for every integer m 2: n, we get

Consequently, for every a ES, there is a subgroup G; of K which contains all
powers of a belonging to K. Let t/>(a) = ae. Then t/> is a well-defined mapping
of S onto K. It is clear that t/> leaves the elements of K fixed . We show that t/>
is a homomorphism, First of all , we note that if J is an idempotent element of
K then, for arbitrary x,y E S , we have

Jxy = J(Jx)y = (Jx)(Jy) 7J (Jy)(Jx) = (Jy)Jx = J(Jy)x = Jyx.

Let a,b E S be arbitrary elements with ar E Gi, b" E Gj, (ab)t E Gk for
some positive integers r,s ,t and elements i,j,k E Y. We can suppose that
t 2: max{r,s}. Let e, J and g denote the identity element of Gi, Gj and
Gk, respeetively. As (ab)t = g(ab)t 7J gatbt E Gijk , we have ijk = k, because
(ab)t E Gk. From this we get g = eJg. As eJ(ab)t 7J (ea)t(Jb)t E Gij , we have
ijk = i j, because eJ (ab)t E Gijk. From this we get ei s = e] , Consequently,
e] = g. Thus

t/>(a)t/>(b) = (ae)(bf) = ae(bf) = ab]e = abg = t/>(ab).

Hence t/> is a retract homomorphism of S onto K. o

Theorem 15.11 ([61]) Let I:n be a CC-subs et 0/ the symmetrie group Sn' As
sume that a semigroup S is an ideal ext ension 0/ a regular semigroup K by a
nil semiqroup Q. Th en S has the permutation property Pn with respeet to I:n i/
and only i/ K is a eommutative CliJford semigroup and Q has the permutation
praperty Pn with respect to I:n .

Proof. Assume that S has the permutation property Pn with respeet to I:n •

Then K and Q have the same property. As I: n is a CC-subset of Sn, K is a
commutative Clifford semigroup. Thus the first part of the theorem is proved.

Conversely, assume that K is a commutative Clifford semigroup and Q has
the permutation property Pn with respeet to I:n • By Lemma 15.20 , there is a
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retraet homomorphism c/J of S onto K. Let :1:1,:1:2 , ••• ,:l:n be arbitrary elements
of S.

If :1:1:1:2 ••• :l:n t/:. K then :1:1, :1:2, ••• ,:l:n t/:. K and so, using the assumption that
Q has the permutation property Pn with respeet to :En , there is a non-identity
permutation a E :En such that

in Q and so in S.
If :1:1:1:2 ••• :l:n E K and :1:1,:1:2, ••• ,:l:n t/:. K then, using again the assumption

that Q has the permutation property Pn with respeet to :En ,

in Q for some non-identity a E :En • Thus, in S,

= :1:0'(1):1:0'(2) • •• :l:O'(n).

because K is commutative and :1:1:1:2 ••• :l:n, :1:0'(1):1:0'(2) " .:l:O'(n) E K are fixed
under c/J.

If :l:1:1:2 ••• :l:n E K and :l:j E K for some j = 1,2, ... , n then, for all o E :En ,

we get

:1:1:1:2 •• ·:l:n = c/J(:l:1:1:2 ••• :l:n) = c/J(:l:dc/J(:l:2) ••• c/J(:l:n)

= c/J(:l:O'(1»)c/J(:l: O'(2»)'" c/J(:l:O'(n») = c/J(:l:O'(1):l: O'(2) • • • :l:O'(n»)

= :1:0'(1):1:0'(2) ••• :l:O'(n)'

Consequently S has the permutation property Pn with respeet to :En • Thus the
theorem is proved. 0

Corollary 15.10 ([61}) Let the semigroup S be an ideal extension 0/ a regular
semigroup K by a nil semigroup Q. Then S is (m,n)-commutative if and only
i/ K is a commutative Clifford semigroup and Q is (m,n)-commutative.

Proof. A semigroup is (m, n )-commutative if and only if it has the permutation
property Pm+n with respeet to :Em +n = {Pm,n}, where Pm,n = P!:m+n-1 is
defined after Lemma 15.4. By Corollary 15.9, {Pm,n} is a CC-subset. Thus the
assertion follows from Theorem 15.11. 0

Theorem 15.12 ([56)) An (m, n)-commutative archimedean semigroup with
out idempotent element has a non-trivial group homomorphic image.
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Proof. Let S be an (m, n)-commutative archimedean semigroup without idem
potent element, and let a be an arbitrary element of S. We show that

Sa = {x ES: atxar = a8 for some positive integers t,r,s}

is a reflexive unitary subsemigroup of Sand Sa is minimal among reflexive
unitary subsemigroups of S containing the element a.

Let x,y E Sa be arbitrary. Then there are positive integers t, T, S , i, j, k
such that

and
aiyai = ak

•

We may assume that t,T,i ,j 2: max{m,n} . Then

and so
xy E Sa'

Thus Sa is a subsemigroup of S.
Assume z , xb E Sa for some x, bE S. Then there are positive integers t, T ,

S, i, j and k such that

and

We may assume that t,T 2: max{m,n} . Then

Let p be a positive integer such that p 2: max{i, T + t} . Then

and so

So

that is Sa is left unitary in S.
We can prove, in a similar way, that Sa is right unitary in S . So Sa is an

unitary subsemigroup of S.
To prove the reflexivity of Sa, assume xy E Sa for some z , y E S. Then

for some positive integers t, T , S 2: max{m, n}. As S is (m, n )-commutative,
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from which we get

So
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that is, Sa. is reflexive in S .
Let U be a reflexive unitary subsemigroup of S such that U contains a. If x

is an arbitrary element of Sa. then

for some positive integers t, T, s, As U is unitary in Sand at , a" E U, we hav e

xE U.

Thus
Sa.~U.

So Sa. is the minimal reflexive unitary subsemigroup of S eontaining the element
a.

If Sa. -I- S for some a E S then, by Theorem 1.41, the principal right eongru
enee on S determined by Sa. is a (non-trivial) group eongruenee.

If Sa. = S for all elements a of S then, by (**), it can be proved (as in the
proof of Theorem 13.8) that there is a homomorphism of S onto the additive
semigroup of either the int egers or the non-negative integers or the posi tive
integers. These semigroups have non-trivial group homomorphie images. Thus
the theorem is proved. 0

Subdirectly irreducible (m,n)-commutative semigroups

Theorem 15.13 ([56)) S is a subdirectly irredueible (m, n)-eommutative sem i
group with a globally idempotent eore i/ and only i/ it satisfies one 0/ the /ollowing
eonditions.

(i) S is isomorphie to either G or ao, where G is a non-trivial subgroup 0/ a
quasieyclie p-group (p is a prime).

(ii) S is a two-element semilattiee.

Proof. Let S be a subdireetly irreducible (m , n)-eommutative semigroup with
a globally idempotent eore K.

Consider the case when S has no zero element. Then K is simple and
(m ,n)-eommutative. By Theorem 15.9, K is a eommutative group. So S is a
homogroup without zero whieh implies, by Theorem 1.47 , that S is a commu
tative group. Thus, by Theorem 3.14 , S is isomorphie to a non-trivial subgroup
of a quasieyelie p-group (p is a prime).
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Consider ease when S has a zero element, We ean prove, as in Theorem 9.18 ,
that S* = S - {O} is a subsemigroup of S. If IS* 1= 1, then S is a two-element
semilattiee. If I S* I> 1, then S* has no zero element. Thus S* is a subdireetly
irreducible (m ,n )-eommutative semigroup with globally idempotent eore and
so it is isomorphie to a non-trivial subgroup G of a quasieyelie p-group, p is a
prime. Consequently S is isomorphie to ao.

As the semigroups listed in the theorem are subdireetly irredueible (m ,n)
eommutative semigroups with globally idempotent eore , the theorem is proved.

o

Theorem 15.14 ([56}) An (m , n )-commutative semigroup with a zero and a
non-trivial annihilator is subdirectly irreducible i/ and only i/ it has a non-zero
disjunctive elemeni.

Proof. By Theorem 1.44, it is obvoius. o

Theorem 15.15 ([56J) // S is a subdirectly irreducible (m, n )-commutative
semigroup with a triv ial annihilator nAsl = 1) and a nilpotent core ihen S
is commutative.

Proof. Let S be a subdireetly irredueible (m ,n )-eommutative semigroup such
that 1 As 1= 1 and the eore of S is nilpotent. Define the following subsets of S:

R = {r ES : Kr = {On

and
L = {I ES: IK = {On.

We show that R = L. Let r ERbe arbitrary. Assurne, in an indireet way, that
r ~ L. Then rK = rK U Kr U KrK is a non-trivial ideal of S. So K ~ rK ,
that is K = rK. So K = rtK for all positive integers t. Using the (m,n)
eommutativity of S and that r E R,

K = rm+n-1K = rmrn-1 K = rn-1 K rm = {O}

which is a eontradietion. So r E L, that is, R ~ L. We can prove, in a similar
way, that L ~ R. So R = L.

Let B = S - R. As IAsl = 1, B =I- 0. We show that B is a subsemigroup
of S. Assurne, in an indireet way, that there are elements a, bEB sueh that
ab ~ B. As bEB,

KbUbK = KbUbKUKbK = K.

Using the indireet assumption ab E R,

aK = a(bK U Kb) = abK U aKb = aKb

and so
aK = aKbm+n-1 = a(Kbm-1 )bn = abnKbm- 1 = {O}



244 CHAPTER 15. (m,n)-COMMUTATIVE SEMIGROUPS

which contradiets the assumption a E B. So Bis a subsemigroup of S.
Let k1 be an arbitrary non-zero element of K . Then

So k1 = ek1 or k1 = kd or k1 = gk 1h for some e,f,g,h E B.
If k1 = gk 1h , g,h E B then gmnklhmn = k1 and so k1 = klhmngmn , because

S is (m, n )-commutative. Thus we may consider only the first two cases .
Assume k1 = ek1 for some e E B. We note that k1 = etk1 for all positive

integers t. Let

Z = {a ES: eta = a for some positive integer t}.

It is evident that Z is a non-trivial right ideal of S. We show that Z is a two
sided ideal. Let a E Z, sES be arbitrary elements. Then eta = a for some
positive integer t. Then eita = a for all positive integers i, Choose i and j such
that it ,jt 2: m, n . Then

Thus sa E Z and so Z is a (non-trivial) two-sided ideal of S. As K is the core
of S, K ~ Z. Consequently, for all k E K, there is a positive integer j such that
ei k = k, Define a relation 0: on S as folIows:

0: = {(a, b) E S x S : ei a = ei b for some positive integer j}.

It can be easily verified that 0: is a right congruence. We show that 0: is also
left compatible. Let z , a, b be arbitrary elements of S with (a, b) E 0:. Then
ei a = ei b for some positive integer j. Then era = erb for all positive integers
r 2: j. Let r be a positive integer with r 2: max{j, m}. Then

which means that (xa , xb) E 0: . Thus 0: is a congruence on S .
Let k1 and k2 be arbitrary elements of K such that (k 1,k2) E 0:. Then

ei k1 = ei k2 for some positive integer j and so etk1 = etk2 for all positive
integers t 2: i- As it was proved above, there are positive integers i 1 and i 2

such that eil k1 = k1 and ei2k2 = k2. Let t be a positive integer such that t 2: j
and t = il i2h, where h is a positive integer. Then k1 = etk

1 = etk2 = k2 and
so the restrietion of 0: to K is the equality relation on K. As S is subdirectly
irreducible, 0: is the equality relation on S.

As ee2 = e2e (that is, (e,e2) E 0:) , we get e2 = e. As es = emens = ensem =
ese (that is, (s , se) E 0:) for all sES, we get s = se and so e is a right identity
element of S . As s = se = semen = ensem = ese = es for all sES, e is a
left identity element of S. Then, for all a,b E S, ab = aemenb = enbaem = ba.
Consequently S is a commutative semigroup.
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In case k l = ki] , lEB we can prove, in a similar way, that S is commuta-
tive. Thus the theorem is proved. 0

(m ,n )-commutative ß-semigroups

Theorem 15.16 ([56)) A semigroup is an (m ,n)-eommutative ß-semigroup il
and only if one of the following eonditions is satisfied.

(i) S is isomorphie to G or ao, where G is a non-trivial a subgroup of a
quasieyclie p-group (p is a prime).

(ii) S is isomorphie io N or NI , where N is an (m ,n)-eommutative nil semi
group whose prineipal ideale form a ehain with respeet to inclusion,

Proof. Let S be an (m, n )-corrunutative ß-semigroup. Then, by Remark 1.2,
S is either semilattice indecomposable or a semilattice of two semilattice inde
composable subsemigroups SI and So of S (SOSI ~ So). First , assume that S
is semilattice indecomposable. Then, by Theorem 15.8, S is archimedean. Ir S
has a zero element then S is a nil semigroup and so, by Theorem 1.56, (ü) is
sa tisfied . Assume that S has no zero element. Ir S is simple then, by Theorem
15.9, S is a non-trivial eommutative group. Then, by Theorem 3.22, S is iso
morphie to a non-trivial subgroup of a quasicyclic p-group (p is a prime) and so
(i) is satisfied.
Consider the case when S has a proper two-sided ideal (and does not eontain
zero element). Then, by Theorem 15.12 and Theorem 1.52, S has an idempotent
element. By Theorem 15.10, S is an ideal extension of a commutative group G
byan (m,n)-corrunutative nil semigroup. By Theorem 1.52, IGI = 1 or G= S
which contradiets the assumption for S.

Let us suppose that S is an (m , n )-commutative semilattice decomposable
ß-semigroup, that is , S is a semilattice of two archimedean (m ,n )-eommutative
semigroups So and SI , SOSI ~ So. By Theorem 1.52, the Rees faetor semigroup
SJ = S/So is a ß -semigroup. By Remark 1.1, SI is a ß-semigroup. As SI
is archimedean and (m , n )-commutative, it is either a non-trivial subgroup of
a quasieyclic p-group (p is a prime) or an (m, n )-commutative nil semigroup
whose principal ideals form achain with respeet to inc1usion. By Theorem
1.57, /SI/ = 1 if SI is a nil semigroup. Hence SI may be only a subgroup of a
quasicyclic p-group (p is a prime). Ir ISol = 1 then S = Sr ; in case ISll > 1 (i)
is satisfied, in case ISI / = 1 S is a two element semilattice and so (ü) is satisfied.

Assume ISol > 1. By Theorem 15.12 and Theorem 1.52, So has an idempo
tent element. Then, by Theorem 15.10, So is an ideal extension of a group G
byan (m,n)-corrunutative nil semigroup. By Theorem 1.52, I G 1= 1 and so So
is an (m,n)-commutative nil semigroup. Then, by Theorem 1.59, 1St! = 1. Let
SI = { e}. Then, for all a ES,
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So
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S = SeS U eS U Se = eS = Se,

that is e is a two-sided identity element of S . Consequently S is isomorphie
to SJ, where So is an (m, n )-eommutative nil semigroup whose principal ideals
form a ehain with respect to inclusion. In this case (ii) is satisfied. Thus the
first part of the theorem is proved. The eonverse is obvious. 0



Chapter 16

n(2)-permutable semigroups

In this chapter we deal with the n(2)-permutable semigroups. It is proved that
every n(2)-permutable semigroup is (1,2n - 4) commutative. Denoting the as
sert ion "Ir S is an arbitrary n (2)-p ermutable semigroup then there exist positive
integers r and t with r + t = m such that S is (r,t)-commutative." by PTn,n,
consider rp(n) = min{m;PTn,n is true} . It is evident that rp(2) = 2. We show
that rp(3) = 3, rp(4) = 5 and 2n - 4::; rp(n) ::; 2n - 3 for n 2: 5. We deal with
the semilattice decompositons of n (2)-permutable semigroups. We show that ev
ery n (2)-permutable semigroup is a semilattice of n (2)-permutable archimedean
semigroups. It is proved that a semigroup is O-simple and n (2)-permutable if
and only if it is a commutative group with a zero adjoined. Moreover, a semi
group is archimedean and n (2)-permutable containing at least one idempotent
elem ent if and only if it is an ideal extension of a commutative group by an
n (2)-permutable nil semigroup. We prove that a semigroup is regular and n (2)
permutable if and only if it is a commutative Clifford semigroup. Finally, it is
shown that a semigroup which is an ideal extension of a regular semigroup K by
a nil semigroup N is n (2)-p ermutable if and only if K is a commutative Clifford
semigroup and N is n (2tpermutable. At the end of the chapter we formulate
some theorems about subdirectly irreducible n(2)-permutable semigroups and
n(2)-permutable ß-semigroups.

Definition 16.1 For a fix ed integ er n 2: 2, a semigroup S is called an n(2 )
permutable semigroup if, for any n-tuple (Xl ,X2 , ... , Xn ) of elements of S , th ere
is a positiv e integer t with 1 ::; t ::; n - 1 such that

Theorem 16.1 Every finitely gen erat ed periodic n (2 )-permutable sem igroup is
fin it e.

Proof. By Theorem 1.1, it is obvious.

247
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Lemma 16.1 ([58]) An n(2}-permutable semigroup is (n + 1h2 }-permutable.

.P r o of Let S be an n(2}-permutable semigroup and Y, Xl, ... X n E S be arbi
trary elements. Then there is a positive integer 2 2: t 2: n - 1 such that

which means that S is (n + 1)(2}-permutable. 0

For an integer n 2: 2, let 0'1 denote the permutation of {I, 2, ... , n} defined
by

( ") { i + 1,0'1 1 = 1,
if i = 1,2, ... , n - 1
if i = n.

For k = 1,2, ... n - 1, let O'k = O'f. Denote O'id the identity permutation of
{I, 2, ... , n}. It is easy to see that

Gn = {O'k: k = 1,2, ... ,n-1} U {O'id}

is a subgroup of the group of all permutations of {I, 2, ... , n}.
It is clear that a semigroup S is n(2}-permutable if and only if, for any n-tuple

(Xl, X2,"" Xn ) of elements of S , there is an element O'k E Gn such that

(1)

Moreover, (1) is satisfied for all elements Xl,X2"" ,Xn ofa semigroup S and a
fixed O'k ofGn Hf S is (k , n-k)-commutative. Thus every (k, n -k)-commutative
semigroup (1 ::; k < n) is n(2}-permutable. Lemma 16.1 shows that the converse
statement is not true if n 2: 4.

Lemma 16.2 ([58)) For every integer n 2: 4, there is a semigroup which is
n(2}-permutable but not (k ,n - k)-commutative for alt positive integers k < n .

Proof. Consider a two-element set X = {Xl, X2} and the free semigroup :Fx
over X. Let n 2: 4 be an arbitrary integer. Consider the following subsets of
:Fx:

A { i n-i n-i n " 1 2 1i = xl X2 ; X2 Xl' z = , , ..., n - ,

and
B = {w E :Fx : l(w) 2: n, w rt UAi } ,

where l(w) denotes the length of the word w.
Define an equivalence relation a on :FX by

It can be easily verified that a is a congruence on :FX •

Let (Wl,W2, ... ,wn ) be an arbitrary n-tuple of elements of Fx- To prove
that S = :FX / a is n(2}-permutable, we must show that there is apermutation
O'k E G« such that



249

(W l W2 • • ,Wn ,W"h(1 )W"h (2 ) " ,W"h (n ») E a.

If I(WlW2 • •• w n ) = n , then Wj E X for all j = 1,2, ... , n. In this case we have
two subcases.

If Wl W2 • •• Wn E A i for some i = 1, . . . , n - 1 then

w";(l )W"i (2 ) ••• W" i (n ) E Ai

or

which means that

(WlW2 •• ,Wn,W"h(l )W"h(2 )" ,w"h(n ») E a

for k = i or k = n - i .
If WlW2 • •• W n (j. Ai for all i = 1,2, . .. , n - 1 then

WlW2. "Wn E B.

Assume w"dl )w"h (2 ) ", w " h( n) (j. B for all k = 1,2 , . .. , n - 1. Then

a = W"1 (1 )w"d2 ) " , w " l(n) E Ai

for some i = 1,2, ... , n - 1. We may suppose tha t a = x~ x~-i (in case a =
x~-ix~ the proof is similar) . As n 2:: 4, there is an integer j from {1, 2, ... , n -1}
such that j =I i, j =I n - 1 (so UjUl =I Uid) and

b = W"j"1(1 )W"j"d2)" ,w"j"l(n ) (j. Ai.

As a and b must contain Xl the same times, we get b ~ Ar for all r = 1,2, . .. ,n
I. So bEB which is a contradiction. Thus

and so

(WlW2 •• ,wn ,w"h (1)W"h(2 )" ,w"h (n») E a

for some k = 1,2, ... , n - 1.
Thus it has been proved that in all cases

(WlW2 •• ,wn ,W"h(1 )W"h(2 )" ,w"h(n ») E a

for some Uk E Gn • Consequ ently S is n (2)-p ermutable.
Let k < n be a positive integer. As

(x~+lx~-k-l ,XlX~-k-lxn ~ a

or
(

k-l n - k+ l n - k k - l ) d:
x l X 2 'X2 Xl X 2 'F a ,

S is not (k , n - k )-commutative. Thus the lemma is proved . o
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Lemma 16.3 ([58}) A semigroup is 3(2)-permutable iff it is (1 ,2)-commutative
(or (2,1)-commutative).

Proof. It is clear that (1,2)-commutativity and (2,1 )-commutativity are equiv
alent , and (1,2)-commutativity implies 3(2)-permutability. Assume that S is a
3(2)-permutable semigroup. Then, for arbitrary elements a, b, c ES,

abe = bca or cab

and
bca = cab or abc

from which we can condude that

abc = bca.

Thus S is (1,2)-commutative. o

Remark 16.1 From Lemma 16.2, it follows that , for every integer n ?: 4, there
is a semigroup which is not (t , r )-commutative for all t and T with t + T :::; n.

We have the following question: "Does n (2) -permutability (n ?: 4) of a
semigroup S imply (t ,T)-commutativity (for some t and T) of S?"

This and other related problems are examined in the next section.

On (T, t)-commutativity of n (2)-permutable semigroups

Theorem 16.2 ([28)) If a semigroup is n (2 )-permutable then it is (1 ,2n - 4)
commutative.

Proof. Let S be an n(2)-permutable semigroup. For every integer 1 :::; k :::; n -1 ,
let

As S is n(2)-permutable,
S n Un-Irp= k=l.Lk.

Consider the elements Xl , •• • , X 2n - 3 of S and

P2 n-3 = X 2n - 3 X I ••• X 2n-4 '

Let
1= {i E {I , 2, ... , 2n - 3}: PI = Pi}'
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We prove that 1112 n - 1. Let A C {2, , 2n - 3} such that lAI = n - 1.
Assume A = {i1, ... i n- d and 2 :::; i 1 < i 2 < in-I:::; 2n - 3. Then

As S is n(2)-permutable,

Thus
1 n A # 0.

Assume that {1, ... , 2n - 3} - 1 has a subset B such that IBI = n - 1. Then it
can be proved (as above for A) that

InB#0

which is a contradiction. Hence

1112 n-1.

We can prove, in a similar way, that , for arbitrary k E {2, .. . , 2n - 3} , we have
IJkl 2 n - 1, where

Jk = {j E {1, ... , 2n - 3}: Pk = Pi}'

Thus 1nJ k # 0for every k E {2, .. . , 2n - 3}. Consequently, PI = P2 = ... P2n-3
and so the theorem is proved. 0

Denoting the assertion " If S is an arbitrary n (2)-p ermutable semigroup then
there exist r and t in N+ with r + t = m such that S is (r , t )-commutative." by
Pm,n (m, nE N+, n 22), consider

tp(n) = min{m E N+;Pm,n is true}.

It is evident that tp(2) = 2 and, by Lemma 16.3, tp(3) = 3. By Theorem 16.2,
tp(n) :::; 2n - 3 if n 24 and so tp(4) = 5 (see also Lemma 16.2). The problem is:
find tp(n) for n 2 5. It is evident that tp(n) 2 n (see Lemma 16.2).

We show that 2n - 4 :::; tp(n) :::; 2n - 3 for n 2 5.

For a product SI S2 ... Sn of elements Si (i = 1,2 , ... , n) of a semigroup S let
Pi = Si'" sns1 ... si-1 and I p i = {j E {1, 2, . . . ,n}; Pi = Pi}' We note that So
denotes the identity element of SI.

The following lemma plays an important role in our investigation.

Lemma 16.4 ([3}) If S is an n(2)-permutable semigroup then, for every non
negative integer k and PI = SlS2' " Sn+k E s-:», the cardinality of Ip 1 is at
least k + 2.
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Proof. By induction for k. Let IIp ,1deno te the cardinality of Ip,' If k = 0 then
IIp,1 2 2 for every PI E s», because S is n (2)-permutable. Assume that IIp,12
k +2 for some nonnegative int eger k and every PI E sn+k. Let S I , S2, ... , Sn+k+l
be arbit rary elements of S . As S is an n( 2)-pe rmutable semigroup, by Lemma
16.1, S is also (n+k +1)(2)-permutable. Hence there is an index i E {2, ... ,n+
k + 1} such that PI = Pi Consider the product q = Sl S2' " (Si-l Si)'" Sn+k+l E
s-». By the as sumption,

o

Construction 16.1 Let Fx be the fr ee sem igroup (with ou.t the empty word)
over the set X = {a ,b} . I/ w E Fx then l(w) denoies the length 0/w. Let n be
a fixed integer with n 2 4. For an arbitrary non-negative integer i , consider the
subseis An,i ' B n,i Cn,i , D n,i 0/ Fx defined as [ollouis, Let

Bn,o = {an-(2g- l )ba2g-2 ; 9 = 1,2, [(n; 1)]} ,

Cn,o = { an- 2hba2h-l; h = 1,2, [i]},
D n,o = {w E Fx : l(w) = n} - (A n,o U B n,o U Cn,o) ,

and, [or i 2 1, let
A { n+i}n,i = a ,

B n,i = aBn,i-l U Cn,i-l a,

c-; = aCn,i-l U B n,i-la,

Dn,i = {w E Fx; l(w) = n + i} - (An ,i U Bn,i U Cn ,d

~x ] denotes the integer part 0/ x ) . It is evident that ih ese subseis are pairwise
disjoint. Consider the relation On,k (k is a non-negative integer) defined by

30 ::; i ,j,t, ::; k (Wl,W2 E B n,i or Wl,W2 E Cn,i or Wl,W2 E D n,t)}.

It is easy to see that 0n,k is conqruence on Fx- Let Sn,k = FX / On,k'

Theorem 16.3 ([3J) Th e [acior semigroup Sn,k is n (2 )-permutable i/ and only
i/ k ::; n - 4.
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Proof. Assume that S n,k is n (2)-pe rmutable. As the lenght of the elements of
B n,k and Cn ,k is n + k , bo th of B n,k and Cn,k have at least k + 2 elem ents (see
Lemma 16.4). Hen ce IBn ,k U Cn,kl ~ 2k+4. On the other hand IBn,k U Cn,kl =
n + k . Therefore , 2k + 4 ~ n + k from wich we get k ~ n - 4.

Conversely, as sume that k ~ n - 4. Let SI , S2, ... , Sn E Sn ,k be arbitrary el
ements. Consider words qi E Fx such that Kn,k(q;) = Si (i = 1,2, ... , n) , where
Kn,k denotes the canonical homomomorhism of:Fx onto S n,k' If l(qlq2 ' " qn ) >
n + k then (ql q2 . . . qn, q2'" qnqI) E lln ,k and so SIS2 . .. Sn = S2 .. . SnSl'
Assume l(qi q2 .. •qn) ~ n+k. Then there is an integer i E {O, 1, ... , k} such that
1(qlq2"'qn) = n +i. Ifqlq2,,·qn E Dn,i then (qlq2 "'qn , q2···qnqI) E ll n,k
and so SI S2 ... Sn = S2'" SnSl . Assume ql q2 . , . qn E B n,i. Then there is an
index j E {1, 2, ... , n} such that the word qj contains the letter b as a factor
(and so ql , q2, . . · , qj-l , qj+l , .·. qn do not contain b). Assume that 1(qlq2 qt)
and l(qr'" qn) are odd numbers for all tE {1, 2, ... j -1} and rE {j +1, , n}.
If j = 1 then l(qn) is odd and l(qr) r = 2,3, . . . , n - 1 is even. Hence

This is a contradict ion . In case j = n we can get a contradict ion, in a similar
way. Assume i rt. {l ,n}. Then l(qI) and l (qn) are odd and l(qr) is even for
every r = 2,3, ... j - 1,j + 1, .. . , n - 1. Therefore,

which is a contradiction. Consequently, l (ql q2 ... qt} or l(qr ... qn) is even for
some t E {1 ,2, j -1} and rE {j + 1, ... ,n} . Thus qt+l"'qnql" 'qt E B n,i
or qr . . . qnql qr- l E Bn,i and so

for some tE {1 ,2, ... j -1} and r E {j + 1, ... ,n}. We get a similar result in
case ql q2 . . . qn E Cn ,i' If ql q2 ... qn E A n,i then SI S2 . . . Sn = S2 .. . SnSl. Thus
S n,k is n(2)-permutable. 0

Corollary 16.1 ([3]) Th e sem igroup s., (4 ~ n , 0 ~ k ~ n-4) is (l,n+k)
com m utative, but not (1,n + k - l)- commutative.

Proof. It is clear that S n,k is (l ,n + k)-commutative. As B n,k n Cn ,k = 0, the
semigroup Sn ,k is not (l ,n + k -l)-commutative. 0

Definition 16.2 By th e degree 0/n (2)-permutability 0/ a sem igroup S we shall
mea n an integer p(S) ~ 2 suc h that S is p(S)(2)-permutable but not (p(S)-l hw
permutable.

By Lemma 15.1 , every (r, t )-commutative semigroup is (1, r + t) -commuta
tive. Thus we can define the degree 0/ commuta tivit y of a semigroup S as an
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integer c(S) E N+ such that S is (l ,c(S))-commutative but not (l,c(S) -1)
commutative. We note that c(S) = fs(l), where fs was definedin Chapter 15
(fs is apermutation function).

Next we deal with the connection between p(S) and c(S) for an arbitrary
semigroup.

Theorem 16.4 ([3}) For every integers n and c with n ~ 3 and n - 1 ~ c ~
2n - 4, there is a semigroup S such that p(S) = n and c(S) = c.

Proof. By Lemma 16.3, a semigroup is 3(2)-permutable if and only if it is
(1,2)-commutative. Assurne n ~ 4. It is evident that every (1, t)-commutative
semigroup is (t+1)(2)-permutable. From this it follows that c(S) < p(S) implies
c(S) = p( S) - 1. For the factor semigroup S = :Fx / ß constructed in the proof
ofTheorem 15.4, p(S) = f(l) and c(S) = f(l) -1 and f(l) may be any positive
integer n. Therefore, we can suppose that n ~ c ~ 2n - 4. Then, for the
semigroup Sn,c-n defined above, p(S) = n and c(S) = c, 0

Theorem 16.5 ([3}) For every integers n and m with n ~ 5 and 2 ~ m <
2n - 4, there is a semigroup which is n(2)-permutable bui not (r , t)-commutativ e
for all rand t such that r + t = m.

Proof. Let n be an arbitrary integer with n ~ 5. Ir m is an integer with
2 ~ m ~ n then the assertion is true (see Lemma 16.2). Assurne that n <
m < 2n - 4 for some integer m. Then n ~ 6. Let k be a positive integer
such that m = n + k - 1. Clearly, 2 ~ k ~ n - 4. Consider the semigroup
Sn,k defined in the Construction. By Theorem 16.3, Sn ,k is n(2)-permutable.
Assurne that Sn,k is (r, t)-commutative for some positive integers rand t with
r + t = m = n + k - 1. Ir r is odd then an+k-2b, an+k-r-2bar E B n,k-l.
Therefore, the parity of n + k - 2 and n + k - r - 2 must be the same. But
this is impossible. Ir r is even then an+k-1b, an+k-rba2ar-l E Bn,k and so the
parity of n + k - 1 and n + k - r must be the same. This is also impossible.
Consequently Sn ,k is not (r,t)-commutative for all rand t with r + t = m. 0

Corollary 16.2 ([3)) For every integer n ~ 5, 2n - 4 ~ r,o(n) ~ 2n - 3.

Proof. By Theorem 16.5, if 'Pm,n is true for some positive integers m and n with
n ~ 5 then m ~ 2n - 4. Thus r,o(n) ~ 2n - 4. This and the fact r,o(n) ~ 2n - 3
(see Theorem 16.2) together imply our assertion. 0

The following lemma is an addendum to the problem of finding the exact
value of r,o(n).

Lemma 16.5 ([3}) If an n(2)-permutable semigroup is (r, t)-commutative for
some n, rand t with r + t = 2n - 4 then it is (r ', t')-commutative for some even
r' and t' with r' + t ' = 2n - 4.
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Proof. Assume that S is a semigroup such that it is n (2)-permutable and (T, t)
commutative for some integers n , T and t with n :::: 4, T + t = 2n - 4. We
can suppose that S is not (1,2n - 5)-commutative. In the opposite case S is
(2,2n - 6)-commutative. Let d denote the greatest common divisor of t and T.

By Corollary 15.5, S is (d, 2n - 4 - d)-commutative and so it is (hd, 2n - 4 - hd)
commutative for every h = 1,2, ... , 2nd- 4 - 1. We can suppose that d > 2. As
S is not (1,2n - 5)-commutative, there are elements 81 ,82, ... 82n-4 of S such
that

By Lemma 16.4, IIpll, IIp21 :::: n - 2. As I P l n I P2 = 0, IIpll = IIp 2 1 = n - 2. For
i=O,l, ... d-l,let

Ji = {(h - l)d +i + 1;
2n-4

h = 1,2""'-d-}'

It is easy to see that Ji contained in either IPl or IP2 for every i = 0,1, ... d-1.
Moreover

ut~J J, = {1,2, ... , 2n - 4}.

Therefore, n - 2 = 2(n;2) 9 for some positive integer g. From this it follows that

d = 2g. Thus T and t are even. 0

We note that, from Lemma 16.5, it follows that if a semigroup S is n(2)
permutable and (T, t )-commutative such that n - 2 is a prime, n :::: 4 and T+t =
2n - 4 then S is (2,2n - 6)-commutative.

Semilattice decomposition of n(2)-permutable semigroups

Lemma 16.6 ([58)) /f S is an n(2)-permutable semigroup then (xy)n = (yx)n
for all x,y ES.

Proof. Let S be a semigroup and x,y be arbitrary elements of S. Then, for
every positive integer n,

(xyt = x(yx)n-l y.

If S is n(2)-permutable then there is an integer t with °:::; t :::; n - 1 such that

and so

o

Theorem 16.6 ([58)) Ev ery n(2)-permutable semigroup t8 decomposable as a
semilattice of n(2)-permutable archimedean semiqroups.
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Proof. By Lemma 16.6, every n(2)-permutable semigroup is weakly commuta
tive and so, by Theorem 4.3, it is a semilattice of archimedean semigroups. It
is clear that the archimedean components are n(2)-permutable. 0

Theorem 16.7 ([58J) A semigroup is O-simple and n(2) -permutable i/ and only
i/ it is a commutative group with a zero adjoined.

Proof. Let 8 be a O-simple n(2)-permutable semigroup. By Theorem 16.2, S
is (1,2n - 4)-commutative. Then, by Theorem 15.9, it is a commutative group
with a zero adjoined. 0

Theorem 16.8 ([58)) A semigroup is an n(2)-permutable archimedean semi
group with an idempotent element i/ and only i/ it is an ideal extension 0/ a
commutative group by an n(2)-permutable nil semigroup.

Proof. Let 8 be an archimedean n(2)-permutable semigroup with an idem
potent element. Since 8 is (1,2n - 4)-commutative then, by Theorem 15.10,
it is an ideal extension of a commutative group G by a nil semigroup Q. We
show that Q is n(2)-permutable. Let al, a2, , an be arbitrary elements of Q.
We can suppose that ai #- 0 for all i = 1, , n. Then ai E (8 - G). As 8 is
n(2)-permutable, there is an integer t (1 ~ t ~ n - 1) such that

in 8 and so

in also Q. SO Q is n(2)-permutable. Thus the first part of the theorem is proved.
Converscly, assume that the semigroup 8 is an ideal extension of a commu

tative group G by an n(2)-permutable nil semigroup Q. By Theorem 2.2, S is
archimeden and contains an idempotent. It is easy to see that 4>: s 1-+ es (e is
the identity of G) is a retract homomorphism of 8 onto G. To show that 8 is
n(2)-permutable, consider arbitrary elements SI,S2, ••• ,Sn of 8. There are two
cases.
In case SIS2"'Sn t/: K, SIS2"'Sn #- 0 in Q and so there is an integer t with
1 ~ t ~ n - 1 such that

in Q and so in 8.
In case SI S2 ."Sn E K, SI S2 ."Sn = 0 in Q. Ir there is an index i such that Si E K,
then

Su(I)Su(2)".Su(n) E K

for all permutations U of {I , 2, ... , n} and so
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If Si rt K for all index i then S i -I- 0 in Q (for all i ) and so

in Q for some t with 1 ::; t ::; n - 1. As SlS2...Sn E K , we get (in S) that

SlS2···sn = t/J(SlS2".Sn) = t/J(St}t/J(S2) ...t/J(sn) =

t/J(St+t} ...t/J(S n)t/J(Sl) ...t/J(St) = t/J(St+l ...SnSl...St) = St+l···SnSl···St·

So S is n(2)-permutable. Thus the theorem is proved. o

Lemma 16.7 ([61J) A sem igroup is regular and n(2)-permutable for some n if
and only if it is a eommutative CliJJord semigroup.

Proof. Since an n(2)-permutable semigroup is (1, 2n - 4)-commutative then, by
Corollary 15.9, our statement is obvious. 0

Corollary 16.3 ([61J) Let the semigroup S be an ideal extension of a regular
semigroup K by a nil semigroup Q. Th en S is n (2 )-permutable if and only if K
is a eommutative CliJJord semigroup and Q is n (2 )-permutable.

Proof. A semigroup is n (2)-permutable if and only if it has the permutation
property Pn with respect to ~n = Gn, where Gn is defined after Lemma 16.1.
By Lemma 16.7, Gn is ace subset. Thus our assertion follows from Theorem
15.11. 0

Subdireetly irreducible n(2)-permutahle semigroups

Theorem 16.9 S is a subdireetly irredueible n(2)-permutable semigroup with a
globally idempotent eore if and only if it satisfies one of the following eonditions.

(i) S is isomorphie to either G or GO , where G is a non-trivial subgroup of a
quasieyclie p-group (p is a prime).

(ii) S is a two-element semilattiee.

Proof. By Theorem 16.2 and Theorem 15.13, it is obvious. o

Theorem 16.10 An n (2 )-permutable semigroup with a zero and a non-trivial
annihilator is subdireetly irredueible if and only if it has a non-zero disjunetive
eleme nt.

Proof. By Theorem 1.44, it is obvoius. o

Theorem 16.11 If S is a subdireetly irredueible n (2 )-permutable semigroup
with a trivial annihilator nAsl = 1) and a nilpot ent eore then S is eommu
tative.
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Proof. By Theorem 16.2 and Theorem 15.15, it is obvious.

n(2)-permutable ~-semigroups

o

Theorem 16.12 A semigroup is an n(2)-permutable ~-semigroup if and only
if one of the following eonditions is satisfied.

(i) S is isomorphie to G or CO, where G is a non-trivial a subgroup of a
quasieyclie p-group (p is a prime).

(ii) S is isomorphie to N or NI, where N is an n(2)-permutable nil semigroup
whose prineipal ideals form a ehain with respeet to inclusion.

Proof. By Theorem 16.2 and Theorem 15.16, it is obvious. o
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