Abstract to GTG 2017, Budapest

Groups and Topological Groups 2017, Budapest

February 34 (Friday & Saturday)

On fixed point free projective groups

Dedicated to the Memory of Professor Karl STRAMBACH

Emil MOLNÁR

Budapest University of Technology and Economics, Institute of Mathematics,

Department of Geometry

The motivation of this talk is related with the classification of the homogeneous simply connected maximal 3-geometries (so-called Thurston geometries, E^3 , S^3 , H^3 , $S^2 \times R$, $H^2 \times R$, $\sim SL_2R$, Nil, Sol). The author found in [1] (see also the more popular [2], [3] with co-author colleagues, also some more details as well) a unified projective interpretation for them – in the sense of Felix Klein's Erlangen Program: Namely, each **S** of the above space geometries and its isometry group IsomS can be considered as a subspace of the projective 3-sphere: S **R PS**³, where a special maximal group G = IsomS \boxtimes CollPS³ of collineations acts, leaving the above subspace S invariant.

Vice-versa, we can start with the projective geometry, namely with the classification of CollPS³ through linear transforms of dual pairs of real 4-vector spaces (V^4 , V_4 , R, ~) = PS³ (up to positive real multiplicative equivalence ~) by the Jordan normal forms.

First we look for a 3-parameter space of translations as fixed point groups, simply transitive on a 3-subspace. For instance, think of the classical Euclidean geometry \mathbf{E}^3 where the 4×4 matrix group describes the translation that carries the origin (1 0 0 0) into (1 x y z) in the Cartesian homogeneous coordinate system E_0 , E_1 , E_2 , E_3 . This group is simply transitive on points and fixed point free on the affine 3-subspace $A^3 = P^3 \setminus e^0$, where P^3 is obtained from PS³ by the identification of opposite points, as usual, e^0 is the ideal plane described by the linear form e^0 from the dual basis (e^0 , e^1 , e^2 , e^3) in V_4 to the vector basis (e_0 , e_1 , e_2 , e_3) in V^4 , i.e. $e_i e^j = \mathbf{e}/$ (the Kronecker symbol). That means, we get the Cartesian coordinate tetrahedron (simplex),

where \mathbf{e}_0 describes the origin E_0 , incident to the side planes e^1 , e^2 , e^3 by the corresponding forms. The ideal plane e^0 is opposite to the origin, and contains the ideal points E_1 , E_2 , E_3 of the x, y, z axes, respectively. Then we extend this translation group with all projective collineations leaving invariant a projective polarity (or scalar product) of signature (+, +, +, 0), all with linear transforms, as usual. Now think of the "optimal" generalizations of this, as made in the papers [1] – [6] for the above Thurston geometries.

Our intention is to investigate the other possible projective transforms, not considered yet earlier, for 3-parameter transitive translations, the possible invariant projective polarities, the possible invariant Riemann metrics, etc. We hope that we get further geometries, or interesting problems at least, in this manner.

References:

[1] E. Molnár: The projective interpretation of the eight 3-dimensional homogeneous geometries. *Beiträge Alg. Geom. (Contr. Alg. Geom.)*, Vol. **38** (1997), No. 2, 261-288.

[2] E. Molnár – J. Szirmai: Symmetries in the 8 homogeneous 3-geometries. *Symmetry: Culture and Science,* Vol. **21,** No.**1-3,** 87-117, 2010.

[3] E. Molnár – I. Prok – J. Szirmai: The Euclidean visualization and projective modelling the 8 Thurston geometries. *Studies of the University of Žilina, Mathematical Series* Vol. **27/1** (2015), 35–62. Visegrad Fund, small grant 11420082).

[4] E. Molnár - J. Szirmai: Classification of Sol lattices. *Geom Dedicata* (2012)
161:251–275.
DOI 10.1007/s10711-012-9705-5

[5] E. Molnár – B. Szilágyi: Translation curves and their spheres in homogeneous Geometries. *Publ. Math. Debrecen* **78/2** (2011), 327–346. DOI: 10.5486/PMD.2011.4720

[6] E. Molnár – J. Szirmai – A. Yu. Vesnin: Geodesic and translation ball packings generated by prismatic tessellations of the universal cover of SL2(R). *Results. Math. Online First* c_2016 Springer International Publishing DOI 10.1007/s00025-016-0542-y