Calculus 1 - Exercises 7

The derivative

1. Using the definition, calculate the derivatives of the following functions at x_0 .

a)
$$f(x) = \sqrt{6x+1}$$
, $x_0 = 4$

b)
$$f(x) = \frac{1}{\sqrt{2}}$$
, $x_0 = 1$

a)
$$f(x) = \sqrt{6x+1}$$
, $x_0 = 4$
b) $f(x) = \frac{1}{\sqrt{2x+7}}$, $x_0 = 1$
c) $f(x) = \frac{1}{\sqrt{2x+7}}$, $x_0 = -1$
d) $f(x) = \frac{1}{x-5}$, $x_0 = 6$

d)
$$f(x) = \frac{1}{x-5}$$
, $x_0 = 6$

2.* Prove that $(\cos x)' = -\sin x, x \in \mathbb{R}$

3. Find the equation of the tangent line at the point x_0 for the following functions.

a)
$$f(x) = x^3 + 4$$
, $x_0 = 1$

a)
$$f(x) = x^3 + 4$$
, $x_0 = 1$ b) $f(x) = 3x^2 - x$, $x_0 = 2$

4. Find the parameters a and b such that the following functions are differentiable for all real numbers x.

a)
$$f(x) = \begin{cases} \frac{1}{3x-1}, & \text{ha } x \ge 1 \\ ax+b, & \text{ha } x < 1 \end{cases}$$

a)
$$f(x) =\begin{cases} \frac{1}{3x-1}, & \text{ha } x \ge 1 \\ ax+b, & \text{ha } x < 1 \end{cases}$$
 b) $f(x) =\begin{cases} \frac{a}{x^2+1}, & \text{ha } x \ge 1 \\ bx^4+1, & \text{ha } x < 1 \end{cases}$

5. Calculate the derivatives of the following functions.

a)
$$f(x) = x^7 + \frac{1}{x^{111}}$$
 b) $f(x) = x^{-7} \cdot \sqrt[5]{x}$ c) $f(x) = (1 + x^2) e^x$ d) $f(x) = x^3 \sin x$

b)
$$f(x) = x^{-7} \cdot \sqrt[5]{x}$$

c)
$$f(x) = (1 + x^2) e^x$$

d)
$$f(x) = x^3 \sin x$$

e)
$$f(x) = x \sin x \cos x$$

f)
$$f(x) = \operatorname{tg} x$$

g)
$$f(x) = \operatorname{ctg} x$$

e)
$$f(x) = x \sin x \cos x$$
 f) $f(x) = \lg x$ g) $f(x) = \operatorname{ctg} x$ h) $f(x) = \frac{x^2 - 3x}{x^4 + 1}$

$$i) f(x) = \frac{\cos x}{x^3}$$

$$j) f(x) = \frac{\sin x}{x + \cos x}$$

i)
$$f(x) = \frac{\cos x}{x^3}$$
 j) $f(x) = \frac{\sin x}{x + \cos x}$ k) $f(x) = \frac{x^2 + 2x - 1}{x^7 + 2x + 1}$ l) $f(x) = \operatorname{sgn} x$

$$l) f(x) = \operatorname{sgn} x$$

6. Calculate the derivatives of the following functions.

a)
$$f(x) = (1 + x^2)^x$$

b)
$$f(x) = (x^3 - 3x + 8)$$

c)
$$f(x) = \sqrt{1 + x^6}$$

a)
$$f(x) = (1 + x^2)^4$$
 b) $f(x) = (x^3 - 3x + 8)^7$ c) $f(x) = \sqrt{1 + x^6}$ d) $f(x) = \frac{x^2 + 1}{\sqrt{1 + 2x^2}}$
e) $f(x) = \sin(x^2)$ f) $f(x) = (\sin x)^3$ g) $f(x) = \sin^3(x^2)$ h) $f(x) = \cos^2(2x + 3)$
i) $f(x) = x e^{3x} - e^{-x^2}$ j) $f(x) = \sqrt{1 + e^{3x}}$ k) $f(x) = (\cos^3(x) + 3)^5$ l) $f(x) = 2^x$
m) $f(x) = \ln x + \log_3 x$ n) $f(x) = \ln(x^2 + 1)$ o) $f(x) = x^x$ p) $f(x) = (\sin x)^{\cos x}$

e)
$$f(x) = \sin(x^2)$$

$$f) f(x) = (\sin x)^3$$

g)
$$f(x) = \sin^3(x^2)$$

h)
$$f(x) = \cos^2(2x + 3)$$

i)
$$f(x) = x e^{3x} - e^{-x}$$

$$j) f(x) = \sqrt{1 + e^{3x}}$$

k)
$$f(x) = (\cos^3(x) + 3)^5$$

$$l) f(x) = 2^x$$

$$m) f(x) = \ln x + \log_3 x$$

$$n) f(x) = \ln(x^2 + 1)$$

o)
$$f(x) = x^{x}$$

$$p) f(x) = (\sin x)^{\cos x}$$

7. Let $f(x) = \sqrt[3]{x}$. Prove that f'(0) does not exist.

8. Let $f(x) = \sqrt[3]{x} \cdot \sin(\sqrt[3]{x^2})$. Calculate f'(x). At x = 0 use the definition.

9.* Let $f(x) = |x-1| \cdot \sin(2x-2)$. Calculate f'(x).

Additional exercises:

https://math.bme.hu/~nagyi/calc1/calc1-differentiation.pdf