Calculus 1 - Exercises 8

Elementary functions and their inverses

- 1. Calculate the following limits:
- a) $\lim_{x\to 0} \frac{\arctan x}{x} = ?$
- b) $\lim_{x \to 3+0} \arctan \frac{1}{3-x} = ? \lim_{x \to 3-0} \arctan \frac{1}{3-x} = ? \lim_{x \to \infty} \arctan \frac{1}{3-x} = ?$ c) $\lim_{x \to 0} x \arctan \frac{1}{x} = ?$
- d) $\lim_{x\to 0} \arctan \frac{x^2 3x}{3x 9} = ?$
- e) $\lim_{x\to\infty} \arctan \frac{x^2-1}{2x+2} = ?$
- 2. Find the types of discontinuities of the following functions:
- a) $f(x) = \operatorname{arctg}\left(\frac{1}{x}\right)$ b) $f(x) = x \cdot \operatorname{arctg}\left(\frac{1}{x}\right)$ c) $f(x) = (x-2) \cdot \operatorname{arctg}\left(\frac{1}{x^2 3x + 2}\right)$
- 3. (See the lecture)

Let
$$f(x) = \begin{cases} x \arctan\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ a, & \text{if } x = 0 \end{cases}$$
 and $g(x) = \begin{cases} x^2 \arctan\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ b, & \text{if } x = 0 \end{cases}$

- a) Find the values of the parameters a and b such that f and g are continuous at x = 0.
- b) Using the definition, find f'(0) and g'(0).
- 5. Calculate the derivatives of the following functions:

a)
$$f(x) = \arcsin\left(\sqrt{1-x^2}\right)$$

a)
$$f(x) = \arcsin\left(\sqrt{1-x^2}\right)$$

b) $f(x) = \arccos\left(\frac{1}{1+x^2}\right)$
c) $f(x) = \arctan\left(\frac{1}{x^2}\right)$
d) $f(x) = \frac{\sinh(x^3)}{\cosh^3(x)}$
e) $f(x) = \arcsinh(6x+5)\ln(2+3x)$
f) $f(x) = \ln(x^2+1) \cdot \operatorname{arcosh}\left(\sqrt{x}\right)$

c)
$$f(x) = \arctan\left(\frac{1}{x^2}\right)$$

d)
$$f(x) = \frac{\sinh(x^3)}{\cosh^3(x)}$$

e)
$$f(x) = arsinh(6x + 5) ln(2 + 3x)$$

f)
$$f(x) = \ln(x^2 + 1) \cdot \operatorname{arcosh}(\sqrt{x})$$

6. Calculate the following limits:

a)
$$\lim_{x \to \infty} \frac{\sinh(2x-5)}{\cosh(1-2x)}$$

b)
$$\lim_{x \to -\infty} \frac{\sinh(2x-5)}{\cosh(8-2x)}$$
 c) $\lim_{x \to \infty} \tanh(2x)$

c)
$$\lim_{x \to \infty} \tanh(2x)$$

7. Calculate the derivatives of the following functions:

a)
$$f(x) = (\sin x)^{\cos x}$$

b)
$$g(x) = (1 + x^4)^{2x}$$

L'Hospital's rule

8. Calculate the following limits:

a)
$$\lim_{x \to 0} \frac{\arctan 2x^3}{\cosh 5x^3} = ?$$
 e) $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = ?$

b)
$$\lim_{x \to 0} \frac{\arcsin 3 x^2}{\operatorname{tg}^2 x} = ?$$
 f) $\lim_{x \to +0} x^{\operatorname{tg} x} = ?$

c)
$$\lim_{x \to \infty} x^2 e^{-5x} = ?$$
 g) $\lim_{x \to -\infty} \frac{e^{8x} - 2e^{-3x}}{e^{5x} + e^{-3x}} = ?$

d)
$$\lim_{x \to +0} \sqrt{x} \ln x^7 = ?$$
 h) $\lim_{x \to \infty} \frac{\sinh(3x - 2)}{\cosh(3x + 4)} = ?$

Some solutions

Exercise 1 (chapter 4.4, page 65 of the pdf),

Exercise 8 (chapter 4.5, page 72 of the pdf):

https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf

Exercise 2:

- a) jump discontinuity at x = 0
- b) removable discontinuity at x = 0
- c) removable discontinuity at x = 2 and jump discontinuity at x = 1