Calculus 1 - Exercises 9

Analysing graphs of functions

1. Let $f(x) = \ln(x^2 + 2x + 2)$.

Find those intervals on which

- a) f is monotonic increasing or decreasing
- b) *f* is convex or concave.
- 2. Let $f(x) = 2x^6 15x^5 + 20x^4$

Find those intervals on which the function is convex or concave.

Where does it have inflection points?

3. Let $f(x) = x e^{-x^2}$

Find those intervals on which the function is convex or concave.

Where does it have inflection points?

Additional exercises

https://math.bme.hu/~nagyi/calc1/calc1-functions.pdf

Practice exercises for the 2nd midterm test, pages 6-7:

https://math.bme.hu/~nagyi/calc1/calculus1-practice2.pdf

Results

1. Let $f(x) = \ln(x^2 + 2x + 2)$.

Find those intervals on which

- a) f is monotonic increasing or decreasing
- b) *f* is convex or concave.

Solution.

$$f(x) = \ln(x^2 + 2x + 2) = \ln((x+1)^2 + 1) \implies D_f = \mathbb{R}$$

$$f'(x) = \frac{2x+2}{x^2+2x+2}$$

 \implies f is monotonic decreasing on $(-\infty, -1)$ and monotonic increasing on $(-1, \infty)$.

$$f''(x) = \frac{2(x^2 + 2x + 2) - (2x + 2)(2x + 2)}{(x^2 + 2x + 2)^2} = \frac{-2x(x + 2)}{(x^2 + 2x + 2)^2}$$

 \implies f is convex on (-2, 0) and concave on (- ∞ , -2) and on (0, ∞).

2. Let
$$f(x) = 2x^6 - 15x^5 + 20x^4$$

Find those intervals on which the function is convex or concave.

Where does it have inflection points?

Solution.

$$f'(x) = 12 x^5 - 75 x^4 + 80 x^3$$

$$f''(x) = 60 x^4 - 300 x^3 + 240 x^2 = \underbrace{60 x^2}_{\geq 0} \underbrace{(x^2 - 5x + 4)}_{(x-1)(x-4)}$$

3. Let $f(x) = x e^{-x^2}$

Find those intervals on which the function is convex or concave.

Where does it have inflection points?

Solution.

$$f'(x) = e^{-x^2} + x e^{-x^2} (-2x) = e^{-x^2} - 2x^2 e^{-x^2}$$

$$f''(x) = e^{-x^2} (-2x) - 4x e^{-x^2} - 2x^2 e^{-x^2} (-2x) = e^{-x^2} (4x^3 - 6x) = e^{-x^2} 2x (2x^2 - 3)$$