Calculus 1 - 03

Number sequences, part 1.

The concept and properties of sequences

Definition: A number sequence is a function $f : \mathbb{N} \rightarrow \mathbb{R}$ defined on the set of natural numbers. Usual notation: $f(n) = a_n$ is the *n*th term of the sequence. The notation of the sequence is (a_n) or a_n , $n = 1, 2, ...$.

Remark: The function f : { k , k + 1, k + 2, ...} \rightarrow R is also a sequence where k = 0, 1, 2,

Examples

Monotonicity

Examples: Strictly monotonically decreasing: **1)** $a_n = \frac{1}{n}$, **7)** $a_n = \frac{1}{2^n}$ Strictly monotonically increasing: **4)** $a_n = n^2$, **5)** $a_n = \frac{n}{n+1}$

The other sequences are not monotonic.

Boundedness

Definition: The sequence (a_n) is

- bounded below, if there exists $A \in \mathbb{R}$ such that for all $n \in \mathbb{N}$: $A \le a_n$.
- bounded above, if there exists $B \in \mathbb{R}$ such that for all $n \in \mathbb{N}$: $a_n \leq B$.
- bounded, if there exist $A \in \mathbb{R}$ and $B \in \mathbb{R}$ such that for all $n \in \mathbb{N}$: $A \le a_n \le B$.

Examples: Bounded sequences: **1**)
$$
a_n = \frac{1}{n}
$$
, **2**) $a_n = \frac{(-1)^n}{n}$, **3**) $a_n(-1)^n$, **5**) $a_n = \frac{n}{n+1}$,
6) $a_n = (-1)^n \frac{n}{n+1}$, **7**) $a_n = \frac{1}{2^n}$, **9**) $a_n = \sin(n)$

Convergent sequences

Definition: A sequence $(a_n): \mathbb{N} \longrightarrow \mathbb{R}$ is **convergent**, and it tends to the limit $A \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists a threshold index $N(\varepsilon) \in \mathbb{N}$ such that for all $n > N(\varepsilon)$, $|a_n - A| < \varepsilon$. **Notation:** $\lim a_n = A$ or $a_n \stackrel{n \to \infty}{\longrightarrow} A$. *n*∞ If a sequence if not convergent then it is **divergent**.

Remark: It is equivalent with the definition that for all $\varepsilon > 0$, the sequence has only finitely many terms outside of the interval $(A – ε, A + ε)$. (And the sequence has infinitely many terms in the interval.)

Examples for convergent sequences: **1**)
$$
a_n = \frac{1}{n}
$$
, **2**) $a_n = \frac{(-1)^n}{n}$, **5**) $a_n = \frac{n}{n+1}$, **7**) $a_n = \frac{1}{2^n}$

Exercises

1) Using the definition of the limit, show that
a)
$$
\lim_{n \to \infty} \frac{1}{n} = 0
$$
 b) $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$.

Solution. Let $\varepsilon > 0$ be fixed. In both cases $|a_n - A| = \frac{1}{n}$ $\langle \varepsilon \Longleftrightarrow n \rangle$ 1 ε so with the choice $N(\varepsilon) \geq |$ 1 ε the definition holds. For example, if ε = 0.001, then *N* = 1000 (or *N* = 1500 or *N* = 2000 etc.) is a suitable threshold index.

2) Using the definition of the limit, show that lim *n*∞ 6 + *n* $5.1 - n$ $=-1$

Solution. Let $\varepsilon > 0$ be fixed. Then $|a_n - A| = \left| \frac{6+n}{5.1-n} \right|$ $-(-1)$ = $\frac{11.1}{5.1-n}$ $\int_0^{\text{if}} \frac{n^{5}}{2} \frac{11.1}{n-5.1}$ $\langle \varepsilon \rangle \rightarrow$ $n > 5.1 +$ 11.1 ε , so $N(\varepsilon)$ ≥ $|5.1 +$ 11.1 $\frac{1}{\varepsilon}$.

3) Using the definition of the limit, show that lim *n*∞ $n^2 - 1$ $2 n^5 + 5 n + 8$ $= 0$

Solution. Let $\varepsilon > 0$ be fixed. Then $|a_n - A| = \left| \frac{n^2 - 1}{2n^5 + 5n + 8} \right| = \frac{n^2 - 1}{2n^5 + 5n + 8}$ $< \varepsilon$.

This equation cannot be solved for *n*. However, it is not necessary to find the least possible threshold index, it is enough to show that a threshold index exists. So for the solution we use the transitive property of the inequalities, for example in the following way:

$$
|a_n - A| = \left| \frac{n^2 - 1}{2n^5 + 5n + 8} \right| = \frac{n^2 - 1}{2n^5 + 5n + 8} < \frac{n^2 - 0}{2n^5 + 0 + 0} < \frac{1}{2n^3} < \varepsilon \iff n > \sqrt[3]{\frac{1}{2\varepsilon}}, \text{ so}
$$

$$
N(\varepsilon) \ge \left[\sqrt[3]{\frac{1}{2\varepsilon}} \right].
$$

Here we estimated the fraction from above in such a way that we increased the numerator and decreased the denominator.

4) Using the definition of the limit, show that lim *n*∞ 8 *n*⁴ + 3 *n* + 20 $\frac{1}{2 n^4 - n^2 + 5}$ = 4.

Solution. Let
$$
\varepsilon > 0
$$
 be fixed. Then $\|a_n - A\| = \left|\frac{8n^4 + 3n + 20}{2n^4 - n^2 + 5} - 4\right| = \left|\frac{4n^2 + 3n}{2n^4 - n^2 + 5}\right| =$
= $\frac{4n^2 + 3n}{2n^4 - n^2 + 5} < \frac{4n^2 + 3n^2}{2n^4 - n^4 + 0} = \frac{7}{n^2} < \varepsilon \iff n > \sqrt{\frac{7}{\varepsilon}}$, so $N(\varepsilon) \ge \left[\sqrt{\frac{7}{\varepsilon}}\right]$.

Divergent sequences

If a sequence if not convergent then it is **divergent**.

Example: Show that $a_n = (-1)^n$ is divergent.

```
Solution. Since the terms of the sequence are -1, 1, -1, 1, ... then the possible limits are only
           1 and -1. We show that A = 1 is not the limit.
           For example for \varepsilon = 1, the interval (A - \varepsilon, A + \varepsilon) = (0, 2) contains infinitely many terms
           (the terms a_{2n}), however, there are infinitely many terms outside of this interval
           (the terms a_{2n-1}). It means that there is no suitable threshold index N(\varepsilon) for \varepsilon = 1, so
           A = 1 is not the limit. Similarly, A = -1 is not the limit either, so the sequence is divergent.
```

```
Definition: The sequence (a_n): \mathbb{N} \longrightarrow \mathbb{R} tends to +\infty if for all P > 0 there exists a threshold index
                   N(P) \in \mathbb{N} such that for all n > N(P), q_n > P.
Notation: \lim_{n \to \infty} a_n = +\infty or a_n \stackrel{n \to \infty}{\longrightarrow} +\infty.
```
Definition: The sequence (a_n) : ℕ → ℝ tends to $-\infty$ if for all *M* < 0 there exists a threshold index $N(M) \in \mathbb{N}$ such that for all $n > N(M)$, $a_n < M$.

Notation: $\lim_{n \to \infty} a_n = -\infty$ or $a_n \stackrel{n \to \infty}{\longrightarrow} -\infty$.

Remark: $\lim_{n \to \infty} a_n = -\infty$ if and only if $\lim_{n \to \infty} (-a_n) = +\infty$.

Exercises

5) Let $a_n = 2n^3 + 3n + 5$. Show that $\lim_{n \to \infty} a_n = \infty$.

Solution. Let *P* > 0 be fixed. Then $a_n = 2n^3 + 3n + 5 > 2n^3 > P \iff n > \frac{3}{2}\left(\frac{P}{a}\right)$ 2 $\left[\frac{3}{2}\right]$, so $N(P) \geq \left[\frac{3}{2}\right]$ – 2 $3 -$.

For example, if $P = 10^6$ then $N(P) = 80$ is a suitable threshold index.

6) Let $a_n = \frac{6 - n^2}{2 + n}$. Show that $\lim_{n\to\infty} a_n = -\infty$.

Solution. We have to show that $a_n = \frac{6 - n^2}{2 + n}$ < *M* (< 0) if *n* > *N*(*M*). It is equivalent with the following condition: $-a_n = \frac{n^2 - 6}{n + 2}$ > -*M* (> 0) if *n* > *N*(*M*). The exercise can be simplified with an estimation since we do not need to find the least possible threshold index: $n^2 - 6$ *n* +2 > $\frac{n^2 - \frac{n^2}{2}}{n + 2n} = \frac{n}{6}$ $> -M \implies n > -6M$

In the estimation we used that $\frac{n^2}{2}$ > 6 if *n* ≥ 4. Therefore, *N*(*M*) ≥ max {4, [−6 *M*]} is a suitable

threshold index.

Examples

Using the above definitions, the following statements can easily be proved:

2

Theorems about the limit

Theorem (uniqueness of the limit): If $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} a_n = B$ then $A = B$.

Proof. We assume indirectly that $A \neq B$, for example $A < B$. Let $\varepsilon = \frac{B - A}{A}$ 3 > 0 .

Since $a_n \rightarrow A$ and $a_n \rightarrow B$ then there exist threshold indexes $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that

3

- if $n > N_1$ then $A \varepsilon < a_n < A + \varepsilon$ and
- \bullet if $n > N_2$ then $B \varepsilon < a_n < B + \varepsilon$.

But in this case if $n > \max\{N_1, N_2\}$ then $a_n < A + \varepsilon < B - \varepsilon < a_n$. This is a contradiction, so $A = B$.

Theorem: If (a_n) is convergent, then it is bounded.

Proof. 1) Let $A = \lim_{n \to \infty} a_n$. Then for $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that if $n > N$ then

- $A \varepsilon < a_n < A + \varepsilon$.
- 2) It means that the set $\{a_1, a_2, ..., a_N\}$ is finite, so the smallest element of $\{A \varepsilon, a_1, ..., a_N\}$ is a lower bound and the largest element of $\{a_1, ..., a_N, A + \varepsilon\}$ is an upper bound of the set $\{a_n : n \in \mathbb{N}\}.$
- 3) Therefore for all *n* we have min $\{A \varepsilon, a_1, ..., a_N\} \le a_n \le \max\{a_1, ..., a_N, A + \varepsilon\}.$

Remark. Boundedness is a necessary but not sufficient condition for the convergence of a sequence. The converse of the statement is false, for example $a_n = (-1)^n$ is bounded but not convergent.

Solution. The sequence is divergent, since it is not bounded. If $a_{2m} = 2 \cdot 2m + 1 = 4m + 1 \le k \forall m \in \mathbb{N}$ then it contradicts the Archimedian axiom.

Operations with convergent sequences

Theorem 1. If $a_n \stackrel{n\to\infty}{\longrightarrow} A \in \mathbb{R}$ and $b_n \stackrel{n\to\infty}{\longrightarrow} B \in \mathbb{R}$ then $a_n + b_n \stackrel{n\to\infty}{\longrightarrow} A + B$. (Sum Rule)

Proof. Let $\varepsilon > 0$ be fixed. Since $a_n \stackrel{n\to\infty}{\longrightarrow} A$ and $b_n \stackrel{n\to\infty}{\longrightarrow} B$, then for $\frac{\varepsilon}{\gamma}$ – there exists *N*₁ ∈ **N** and *N*₂ ∈ **N** such
2

that

\n- if
$$
n > N_1
$$
, then $|a_n - A| < \frac{\varepsilon}{2}$ and
\n- if $n > N_2$, then $|b_n - B| < \frac{\varepsilon}{2}$.
\n- Thus, if $n > N = \max\{N_1, N_2\}$ then $|(a_n + b_n) - (A + B)| \leq |a_n - A| + |b_n - B| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.
\n

Here we used the triangle inequality: $|a + b| \le |a| + |b|$.

Theorem 2. If $a_n \stackrel{n\to\infty}{\longrightarrow} A \in \mathbb{R}$ and $c \in \mathbb{R}$ then $c a_n \stackrel{n\to\infty}{\longrightarrow} c$ *A*. (Constant Multiple Rule)

Proof. Let $\varepsilon > 0$ be fixed.

(i) If *c* = 0 then the statement is trivial.

(ii) If c ≠ 0 then because of the convergence of a_n , for $-\frac{\varepsilon}{2}$ *c* there exists $N \in \mathbb{N}$ such that

if
$$
n > N
$$
 then $\left| a_n - A \right| < \frac{\varepsilon}{|c|}$. Thus, if $n > N$ then
\n $\left| c a_n - c A \right| = \left| c (a_n - A) \right| = \left| c \right| \cdot \left| a_n - A \right| < \left| c \right| \cdot \frac{\varepsilon}{|c|} = \varepsilon$.

Here we used that $|ab| = |a| |b|$.

Consequence. (i) If
$$
a_n \xrightarrow{n \to \infty} A \in \mathbb{R}
$$
 then $-a_n \xrightarrow{n \to \infty} -A$. (Here $c = -1$.)
\n(ii) If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $b_n \xrightarrow{n \to \infty} B \in \mathbb{R}$ then
\n $a_n - b_n = a_n + (-b_n) \xrightarrow{n \to \infty} A + (-B) = A - B$. (Difference Rule)

Theorem 3. (i) If $a_n \stackrel{n\to\infty}{\longrightarrow} 0$ and $b_n \stackrel{n\to\infty}{\longrightarrow} 0$ then $a_n b_n \stackrel{n\to\infty}{\longrightarrow} 0$. (ii) If $a_n \stackrel{n\to\infty}{\longrightarrow} A \in \mathbb{R}$ and $b_n \stackrel{n\to\infty}{\longrightarrow} B \in \mathbb{R}$ then $a_n b_n \stackrel{n\to\infty}{\longrightarrow} AB$. (Product Rule)

Proof. Let $\varepsilon > 0$ be fixed.

(i) Since
$$
a_n \stackrel{n \to \infty}{\longrightarrow} 0
$$
 and $b_n \stackrel{n \to \infty}{\longrightarrow} 0$, then
\n• for $\frac{\varepsilon}{2}$ there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $|a_n - 0| < \frac{\varepsilon}{2}$ and
\n• for 2 there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $|b_n - 0| < 2$.
\nThus, if $n > N = \max\{N_1, N_2\}$ then $|a_n b_n - 0| = |a_n| \cdot |b_n| < \frac{\varepsilon}{2} \cdot 2 = \varepsilon$.

(ii) It is obvious that if $c_n \equiv A$ for all $n \in \mathbb{N}$ (constant sequence) then $c_n \stackrel{n \to \infty}{\longrightarrow} A$. Thus $a_n - A \xrightarrow{n \to \infty} A - A = 0$ and $b_n - B \xrightarrow{n \to \infty} B - B = 0$. Applying part (i) we get that $(a_n - A)(b_n - B) \xrightarrow{n \to \infty} 0$, that is, $a_n b_n - A b_n - B a_n + A B \stackrel{n \to \infty}{\longrightarrow} 0.$ Then $a_n b_n = (a_n b_n - A b_n - B a_n + A B) + (A b_n + B a_n - A B) \stackrel{n \to \infty}{\longrightarrow} 0 + (A B + A B - A B) = A B.$

Theorem 4. If $a_n \stackrel{n\to\infty}{\longrightarrow} 0$ and (b_n) is bounded then $a_n b_n \stackrel{n\to\infty}{\longrightarrow} 0$.

Proof. Let
$$
\varepsilon > 0
$$
 be fixed.

Since (b_n) is bounded then there exists $K > 0$ such that $|b_n| < K$ for all $n \in \mathbb{N}$. Since $a_n \stackrel{n\to\infty}{\longrightarrow} 0$ then for $\frac{\varepsilon}{n}$ $\frac{\varepsilon}{K}$ there exists *N* ∈ **N** such that if *n* > *N* then | $a_n - 0$ | = $| a_n | < \frac{\varepsilon}{K}$ *K* . Thus, if $n > N$ then $|a_n b_n - 0| = |a_n| \cdot |b_n| < \frac{\varepsilon}{N}$ *K* $\cdot K = \varepsilon$.

Theorem 5. If $a_n \stackrel{n\to\infty}{\longrightarrow} A \in \mathbb{R}$ then $|a_n| \stackrel{n\to\infty}{\longrightarrow} |A|$.

Proof. $| \cdot | a_n | - |A| | \le |a_n - A | < \varepsilon$ if $n > N(\varepsilon)$.

Remark. The converse of the statement is not true.

For example, $a_n = (-1)^n$ is divergent but $|a_n| = 1^n = 1 \rightarrow 1$. However, the following statement is true: $| a_n | \stackrel{n\to\infty}{\longrightarrow} 0 \implies a_n \stackrel{n\to\infty}{\longrightarrow} 0$. Since $|a_n| - 0 = |a_n| = |a_n - 0| < \varepsilon$ if $n > N(\varepsilon)$.

K

Theorem 6. (i) If
$$
b_n \xrightarrow{n \to \infty} B \neq 0
$$
 then $\frac{1}{b_n} \xrightarrow{n \to \infty} \frac{1}{B}$.
\n(ii) If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $b_n \xrightarrow{n \to \infty} B \neq 0$ then $\frac{a_n}{b_n} \xrightarrow{n \to \infty} \frac{A}{B}$. (Quotient Rule)

Proof. (i) First, by the convergence of (b_n) and by Theorem 5, $|b_n| \stackrel{n\to\infty}{\longrightarrow} |B| \neq 0$ and thus there exists $N_1 = N_1$ *B*

there exists
$$
N_1 = N_1 \left(\frac{1}{2} \right) \in \mathbb{N}
$$
 such that if $n > N_1$ then
\n
$$
\left| \left| b_n \right| - \left| B \right| \right| \le \frac{|B|}{2} \iff \left| B \right| - \frac{|B|}{2} < \left| b_n \right| < \left| B \right| + \frac{|B|}{2}.
$$
\nThen $| b_n | > \frac{|B|}{2}$ for all $n > N_1$.

2 Second, for a fixed $\varepsilon > 0$ there exists $N_2 = N_2$ $B \mid^2 \varepsilon$ 2 ∈ N such that $B \mid^2 \varepsilon$

if $n > N_2$ then $|b_n - B|$ < $\frac{1}{2}$. Therefore, if $n > N = \max\{N_1, N_2\}$ then

$$
\left|\frac{1}{b_n} - \frac{1}{B}\right| = \left|\frac{B-b_n}{B \cdot b_n}\right| = \frac{\left|B-b_n\right|}{\left|B\right| \cdot \left|b_n\right|} < \frac{1}{\left|B\right| \cdot \frac{\left|B\right|}{2}} \cdot \frac{\left|B\right|^2 \varepsilon}{2} = \varepsilon.
$$

(ii) By Theorem 3 and Theorem 6, part (i): $\frac{a_n}{a_n}$ *bn* $= a_n$. 1 *bn n*→∞

→ *A*· $\frac{1}{B} = \frac{A}{B}$

Remark. By induction it can be proved that Theorem 1 and Theorem 3 can be generalized to the sum and product of **finitely many** convergent sequences. However, they are not true for infinitely many terms, as the following examples show.

Example. $\lim_{n\to\infty} \left(1 + \right)$ 1 *n* 10^{10} = 1 or $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)$ 1 *n* k ^k = 1, where k ∈ \mathbb{N}^+ is a fixed constant, independent of *n*. However, lim (1 + 1 *n n* ≠ 1^{*n*} = 1. Later we will see that $\lim_{n\to\infty}$ 1 + 1 *n n* = *e*. **Example.** $a_n = \frac{1}{n^2} + \frac{2}{n^2} + ...$ 500 *n*2 $\rightarrow 0 + 0 + ... + 0 = 0$

> The number of the terms is 500 which is independent of *n* and thus applying Theorem 1 finitely many times, the correct result is 0.

Example.
$$
b_n = \frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n}{n^2} \to 0 + 0 + ... + 0 = 0
$$
 is a WRONG SOLUTION!

Since
$$
b_1 = \frac{1}{1^2}
$$
, $b_2 = \frac{1}{2^2} + \frac{2}{2^2}$, $b_3 = \frac{1}{3^2} + \frac{2}{3^2} + \frac{3}{3^2}$, $b_4 = \frac{1}{4^2} + \frac{2}{4^2} + \frac{3}{4^2} + \frac{4}{4^2}$, ...,

then it can be seen that the number of the terms depends on *n*, so b_n is not the sum of finitely many sequences and thus Theorem 1 cannot be generalized to this case. The correct solution is:

$$
b_n = \frac{1 + 2 + \dots + n}{n^2} = \frac{(1 + n) \cdot \frac{n}{2}}{n^2} = \frac{1 + n}{2n} = \frac{\frac{1}{n} + 1}{2} \longrightarrow \frac{0 + 1}{2} = \frac{1}{2}
$$

Example.
$$
a_n = \frac{8n^2 - n + 3}{n^2 + 9} = \frac{n^2}{n^2} \cdot \frac{8 - \frac{1}{n} + \frac{3}{n^2}}{1 + \frac{9}{n^2}} \longrightarrow 1 \cdot \frac{8 - 0 + 0}{1 + 0} = 8
$$

Example. Calculate the limit of $a_n = \left(\frac{2n+1}{3-n}\right)$ 3 · $3 n^2 + 2 n$ $\frac{1}{2 + 6 n^2}$.

Solution. $a_n = \left(\frac{2n}{n}\right)$ 3 · $1 + \frac{1}{2n}$ $1 - \frac{3}{n}$ 3 · $3 n²$ $\frac{1}{6 n^2}$. $1 + \frac{2}{3n}$ $1 + \frac{1}{3n^2}$ $\rightarrow -8.1^3.1$ 2 $\cdot 1 = -4$

Here the product rule is used for the power.

Example. Calculate the limit of
$$
a_n = \frac{n^2 - 5}{2n^3 + 6n} \cdot \sin(n^4 + 5n + 8)
$$
.

Solution. $a_n \rightarrow 0$, since $b_n = \frac{n^2 - 5}{2}$ 2 *n*³ + 6 *n* $=\frac{n^2}{n^2}$ $\frac{1}{2 n^3}$. $1 - \frac{5}{n^2}$ $1 + \frac{3}{n^2}$ \rightarrow 0·1 and $c_n = \sin(n^4 + 5 n + 8)$ is bounded.

Example.
$$
a_n = \frac{2^{2n} + \cos(n^2)}{4^{n+1} - 5} = \frac{4^n}{4^n} \cdot \frac{1 + (\frac{1}{4})^n \cdot \cos(n^2)}{4 - 5 \cdot (\frac{1}{4})^n} \longrightarrow \frac{1 + 0}{4 - 0} = \frac{1}{4}
$$

Theorem 7. If $a_n \ge 0$ and $a_n \stackrel{n\to\infty}{\longrightarrow} A \ge 0$ then $\sqrt{a_n} \stackrel{n\to\infty}{\longrightarrow} \sqrt{A}$.

Proof. Let $\varepsilon > 0$ be fixed.

(i) If $a_n \stackrel{n\to\infty}{\longrightarrow} A = 0$ then there exists $N_1 = N_1(\varepsilon^2) \in \mathbb{N}$ such that if $n > N_1$ then $|a_n - 0| = a_n < \varepsilon^2$. Therefore, if $n > N_1$ then $\left| \sqrt{a_n} - 0 \right| = \sqrt{a_n} < \varepsilon$.

(ii) If $a_n \stackrel{n\to\infty}{\longrightarrow} A > 0$ then there exists $N_2 = N_2 \left(\varepsilon \sqrt{A} \right) \in \mathbb{N}$ such that if $n > N_2$ then $|a_n - A| < \varepsilon \sqrt{A}$. Therefore, if $n > N_2$ then

$$
\left|\sqrt{a_n}-\sqrt{A}\right|=\left|\frac{a_n-A}{\sqrt{a_n}+\sqrt{A}}\right|=\frac{|a_n-A|}{\sqrt{a_n}+\sqrt{A}}\leq\frac{|a_n-A|}{0+\sqrt{A}}<\frac{\varepsilon\sqrt{A}}{\sqrt{A}}=\varepsilon.
$$

Remark. If $a_n \stackrel{n\to\infty}{\longrightarrow} A \ge 0$ then $\sqrt[k]{a_n} \stackrel{n\to\infty}{\longrightarrow} \sqrt[k]{A}$ for all $k \in \mathbb{N}^+$.

It can be proved by using the following identity: $a^k-b^k=(a-b)(a^{k-1}+a^{k-2}b+...+a b^{k-1}+b^{k-1}).$

Example. Calculate the limit of $a_n = \sqrt{4n^2 + 5n - 1} - \sqrt{4n^2 + n + 3}$ (it has the form $\infty - \infty$)

Solution.
$$
a_n = \alpha - \beta = \frac{(\alpha - \beta)(\alpha + \beta)}{\alpha + \beta} = \frac{(4n^2 + 5n - 1) - (4n^2 + n + 3)}{\sqrt{4n^2 + 5n - 1} + \sqrt{4n^2 + n + 3}} = \frac{4n}{\sqrt{4n^2 + 5n - 1} + \sqrt{4n^2 + n + 3}} = \frac{4n}{\sqrt{4n^2}} \frac{1 - \frac{1}{n}}{\sqrt{1 + \frac{5}{4n} - \frac{1}{4n^2}} + \sqrt{1 + \frac{1}{4n} + \frac{3}{4n^2}}} \rightarrow 2 \cdot \frac{1 - 0}{\sqrt{1 + 0 - 0} + \sqrt{1 + 0 + 0}} = 1.
$$

Additional theorems about the limit

Theorem. If $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$ then 1 *an* $\stackrel{n\to\infty}{\longrightarrow}$ 0.

Proof. Let $\varepsilon > 0$ be fixed. Since $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$, then for $P = \frac{1}{2}$ ε there exists $N \in \mathbb{N}$ such that if $n > N$ then $a_n >$ 1 ε > 0 , so 1 *an* $- 0 \rvert = \frac{1}{1}$ *an* $< \varepsilon$.

Question: Is it true that if $a_n \overset{n\to\infty}{\longrightarrow}$ 0 then $\overset{1}{-}$ *an* ^{*n→∞*}
→∞?

Answer: No, for example, if
$$
a_n = -\frac{2}{n} \rightarrow 0
$$
 then $\frac{1}{a_n} = -\frac{n}{2} \rightarrow -\infty$.
Or, if $a_n = \left(-\frac{1}{2}\right)^n \rightarrow 0$ then for $b_n = \frac{1}{a_n} = (-2)^n$, $b_{2k} \rightarrow \infty$ and $b_{2k} \rightarrow -\infty$, so $\lim_{n \to \infty} \frac{1}{a_n} \neq \infty$.
However, the following statements hold.

Theorem. a) If
$$
a_n > 0
$$
 and $a_n \stackrel{n \to \infty}{\longrightarrow} 0$ then $\frac{1}{a_n} \stackrel{n \to \infty}{\longrightarrow} \infty$. Notation: $\frac{1}{0+} \longrightarrow +\infty$.
\nb) If $a_n < 0$ and $a_n \stackrel{n \to \infty}{\longrightarrow} 0$ then $\frac{1}{a_n} \stackrel{n \to \infty}{\longrightarrow} -\infty$. Notation: $\frac{1}{0-} \longrightarrow -\infty$.
\nc) If $a_n \stackrel{n \to \infty}{\longrightarrow} 0$ then $\frac{1}{|a_n|} \stackrel{n \to \infty}{\longrightarrow} \infty$.

Proof. a) Let $P > 0$ be fixed. Since $0 < a_n \stackrel{n\to\infty}{\longrightarrow} 0$, then for $\varepsilon = \frac{1}{2}$ *P* there exists $N \in \mathbb{N}$ such that if $n > N$ then $a_n = |a_n - 0|$ 1 *P* , so 1 *an* > *P*. b), c): homework.

Theorem. If $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$ and $b_n \ge a_n$ for $n > N$, then $b_n \longrightarrow \infty$.

Proof. Let *P* > 0 be fixed. Since $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $a_n > P$. So if $n > \max\{N, N_1\}$ then $b_n > P$.

Consequence. Suppose that $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$, $b_n \stackrel{n\to\infty}{\longrightarrow} c$ > 0 and $|d_n| \leq K$ for all $n > \in \mathbb{N}$. Then

a)
$$
a_n + b_n \xrightarrow{n \to \infty} \infty
$$

b) $a_n \cdot b_n \xrightarrow{n \to \infty} \infty$
c) $c_n \cdot a_n \xrightarrow{n \to \infty} \infty$
d) $a_n + d_n \xrightarrow{n \to \infty} \infty$

- **Proof.** a) Since $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_n \geq 0$ for $n > N$. Then $a_n + b_n \ge b_n \xrightarrow{n \to \infty} \infty$, so $a_n + b_n \xrightarrow{n \to \infty} \infty$.
	- b) Since $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$ and $b_n \stackrel{n\to\infty}{\longrightarrow} \infty$, it may be assumed that there exists *N* ∈ **N** such that $a_n \ge 1$ and $b_n \geq 0$ for $n > N$. Then $a_n \cdot b_n \geq b_n \xrightarrow{n \to \infty} \infty$, so $a_n \cdot b_n \xrightarrow{n \to \infty} \infty$.
		- c) Let $P > 0$ be fixed.

• Since $c_n \stackrel{n\to\infty}{\longrightarrow} c > 0$ then there exists $N_1 = N_1$ *c* $\begin{bmatrix} - \\ 2 \end{bmatrix}$ $\in \mathbb{N}$ such that c_n > *c* – if *n* > N₁.
2 • Since $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$ then there exists $N_2 = N_2$ 2 *P* $\binom{n}{c}$ ∈ **N** such that a_n > 2 *P c* if *n* > *N*2. So if *n* > max {*N*1, *N*2} then *cn* ·*an* > 2 *P c* · *c* 2 = *P*.

d) Let $P > 0$ be fixed. $a_n + d_n \ge a_n - K > P$ if and only if $a_n > K + P$. Since $a_n \stackrel{n\to\infty}{\longrightarrow} \infty$ then for $K + P$ there exists $N \in \mathbb{N}$ such that $a_n > K + P$ if $n > N$. Then for *n* > *N*, a_n + d_n > *P* also holds, so a_n + $d_n \stackrel{n \to \infty}{\longrightarrow} \infty$.

Example. $a_n = 5n^2 + 2^n \cdot n - (-1)^n \stackrel{n \to \infty}{\longrightarrow} \infty$.

Remark. The above statements can be denoted in the following way:

 $a) \infty + \infty \longrightarrow \infty$ b) $\infty \cdot \infty \longrightarrow \infty$ c) $c \cdot \infty \longrightarrow \infty$ (where $c > 0$) d) ∞ + bounded $\longrightarrow \infty$.

Similar statements can be proved, for example,

$$
\frac{0}{\infty} \to 0, \frac{\text{bounded}}{\infty} \to 0, \frac{\infty}{+0} \to \infty, \frac{\infty}{-0} \to -\infty.
$$

The meaning of $\frac{0}{\infty} \to 0$ is that if $a_n \xrightarrow{n \to \infty} 0$ and $b_n \xrightarrow{n \to \infty} \infty$ then $\frac{a_n}{b_n} \to 0$.

Undefined forms: [∞] - [∞], 0·∞, [∞] ∞ , 0 0 , 1^∞ , ∞^0 , 0^0

Examples for undefined forms:

1) Limit of the form ∞ - ∞:

 $a_n = n^2$, $b_n = n$, $a_n - b_n = n^2 - n \to \infty$ $a_n = n$, $b_n = n$, $a_n - b_n = n - n = 0 \rightarrow 0$ $a_n = n$, $b_n = n^2$, $a_n - b_n = n - n^2 \rightarrow -\infty$

2) Limit of the form 0·∞:

1 *n* $\cdot n^2 = n \rightarrow \infty,$ 1 *n* $\cdot n = 1 \rightarrow 1,$ $\frac{1}{n^2} \cdot n = \frac{1}{n}$ $\rightarrow 0, \quad \frac{(-1)^n}{n}$ $\frac{1}{n}$ ·*n* = (-1)^{*n*} (it doesn't have a limit)

3) Limit of the form [∞] ∞ : $\frac{n}{n^2} = \frac{1}{n}$ $\rightarrow 0,$ $\frac{n^2}{n} = n \rightarrow \infty, \qquad \frac{n^2}{n^2} = 1 \rightarrow 1$

4) Limit of the form 0 0 : 1 *n* 1 *n*2 $= n \rightarrow \infty$, 1 *n*2 1 *n* $=$ $\frac{1}{1}$ *n* $\rightarrow 0,$ 1 *n* 1 *n* $= 1 \rightarrow 1,$ $(-1)^n \frac{1}{n}$ *n* 1 *n*2 $= (-1)^n \cdot n$ (it doesn't have a limit)

Such statements are summarized in the following tables where $\bar{R} = R \cup \{ \infty, -\infty \}$ denotes the extended set of real numbers. The meaning of ∣. ∣ is that lim
™→∞ *an bn* = ∞.

Addition: Subtraction:

Multiplication: Division:

Exercises

1) Calculate the limit of
$$
a_n = \frac{3n^5 + n^2 - n}{n^3 + 3}
$$
.
\n**Solution.** $a_n = \frac{3n^5 + n^2 - n}{n^3 + 3} > \frac{3n^5 + 0 - n^5}{n^3 + 3n^3} = \frac{n^2}{2} \longrightarrow \infty \implies a_n \longrightarrow \infty$
\nor:
\n $a_n = \frac{3n^5 + n^2 - n}{n^3 + 3} \ge \frac{n^5}{n^3} \cdot \frac{3 + \frac{1}{n^3} - \frac{1}{n^4}}{1 + \frac{3}{n^3}} \longrightarrow \infty$,
\nsince $b_n = \frac{n^5}{n^3} = n^2 \longrightarrow \infty$ and $c_n = \frac{3 + \frac{1}{n^3} - \frac{1}{n^4}}{1 + \frac{3}{n^3}} \longrightarrow \frac{3 + 0 - 0}{1 + 0} = 3 > 0$.

2) Calculate the limit of $a_n = \frac{3^{2n}}{n}$ $4^n + 3^{n+1}$.

Solution.
$$
a_n = \frac{3^{2n}}{4^n + 3^{n+1}} = \left(\frac{9}{4}\right)^n \cdot \frac{1}{1 + 3 \cdot \left(\frac{3}{4}\right)^n} > \left(\frac{9}{4}\right)^n \cdot \frac{1}{1 + 3 \cdot 1} \to \infty \implies a_n \to \infty
$$

or:

$$
a_n = a_n = \frac{3^{2n}}{4^n + 3^{n+1}} = \left(\frac{9}{4}\right)^n \cdot \frac{1}{1 + 3 \cdot \left(\frac{3}{4}\right)^n} \longrightarrow \infty,
$$

since
$$
b_n = \left(\frac{9}{4}\right)^n \to \infty
$$
 and $c_n = \frac{1}{1+3\cdot\left(\frac{3}{4}\right)^n} \to \frac{1}{1+3\cdot 0} = 1 > 0$.

3) Calculate the limit of
$$
a_n = \frac{2^{2n} + (-3)^{n-1}}{5^{n+2} + 7^{n+1}}
$$
.

Solution.
$$
a_n = \frac{2^{2n} + (-3)^{n-1}}{5^{n+2} + 7^{n+1}} = \frac{4^n - \frac{1}{3} \cdot (-3)^n}{25 \cdot 5^n + 7 \cdot 7^n} = \left(\frac{4}{7}\right)^n \cdot \frac{1 - \frac{1}{3} \cdot (-\frac{3}{4})^n}{25 \cdot (\frac{5}{7})^n + 7} \longrightarrow 0 \cdot \frac{1 - 0}{0 + 7} = 0.
$$

Here we used that $a^n \rightarrow 0$ if $|a| < 1$.