Calculus 1 - 06

Limits of real functions

Definitions

A **function** $f: A \longrightarrow B$ is a mapping that assigns exactly one element of B to every element from A.

The set A is called the **domain** of f (notation: D_f or Dom(f)) and

the set $f(A) = \{f(x) : x \in A\}$ is called the **range** of f (notation: R_f or Ran(f)).

A function $f: A \longrightarrow B$ is **one-to one** or **injective** if for all $x, y \in A$: $(f(x) = f(y) \implies x = y)$.

A function $f: A \longrightarrow B$ is **onto** or **surjective** if f(A) = B.

A function f is **bijective** if it is injective and surjective.

The function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is

- even, if $\forall x \in D_f$, $-x \in D_f$ and f(x) = f(-x) (for example, $f(x) = x^2$ or $f(x) = \cos x$)
- odd, if $\forall x \in D_f$, $-x \in D_f$ and f(-x) = -f(x) (for example, $f(x) = x^3$ or $f(x) = \sin x$)
- monotonically increasing if $\forall x, y \in D_f \ (x < y \implies f(x) \le f(y))$
- monotonically decreasing if $\forall x, y \in D_f \ (x < y \implies f(x) \ge f(y))$
- strictly monotonically increasing if $\forall x, y \in D_f \ (x < y \implies f(x) < f(y))$ (for example, $f(x) = \sqrt{x}$, $f(x) = x^3$)
- strictly monotonically decreasing if $\forall x, y \in D_f \ (x < y \implies f(x) > f(y))$
- periodic with period p > 0 if $\forall x \in D_f$, $x + p \in D_f$ and f(x) = f(x + p) (for example, $f(x) = \sin x$)

Limit point

Definition. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then x is a **limit point** or **accumulation point** of A,

if every interval (x-r,x+r), that is, every neighbourhood of x contains a point in A that is distinct from x. (For all r>0: $(x-r,x+r)\setminus\{x\})\cap A\neq\emptyset$)

Or: every neighbourhood of x contains infinitely many points of A.

The set of limit points of A is denoted by A'.

Examples:

- A = [0, 2) $\implies A' = [0, 2]$
- $A = (1, 2) \cup (2, 3) \implies A' = [1, 3]$
- $\bullet \ A = \mathbb{R} \setminus \{0\} \qquad \Longrightarrow \quad A' = \mathbb{R}$

Limit at a finite point

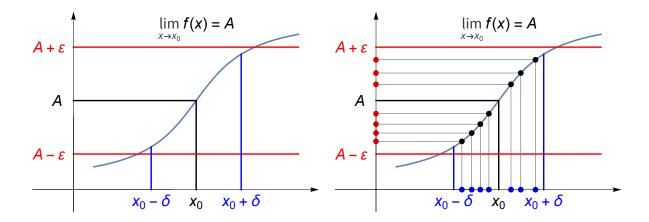
Definition. The limit of the function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ at the point $x_0 \in \mathbb{R}$ is $A \in \mathbb{R}$ if

- (1) x_0 is a limit point of D_f $(x \in D_f')$
- (2) for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that

if
$$x \in D_f$$
 and $0 < |x - x_0| < \delta(\varepsilon)$ then $|f(x) - A| < \varepsilon$

Notation: $\lim_{x \to x_0} f(x) = A$

Remark: $0 < |x - x_0| < \delta$ means that $x_0 - \delta < x < x_0$ or $x_0 < x < x_0 + \delta$.



One-sided limits:

Notation. The
$$\begin{cases} \text{right hand limit} \\ \text{left hand limit} \end{cases} \text{ of } f \text{ at } x_0 \text{ is denoted as } \begin{cases} \lim_{x \to x_0+} f(x) = \lim_{x \to x_0+0} f(x) = f(x_0+0) \\ \lim_{x \to x_0-} f(x) = \lim_{x \to x_0-0} f(x) = f(x_0-0) \end{cases}$$

Definition. Suppose
$$x_0 \in \mathbb{R}$$
 is a limit point of $\begin{cases} D_f \cap [x_0, \infty) \\ D_f \cap (-\infty, x_0] \end{cases}$. Then

$$\begin{cases} \lim_{x \to x_{0^{+}}} f(x) = A \\ \lim_{x \to x_{0^{-}}} f(x) = A \end{cases}$$
 if for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in D_f$ and

$$\begin{cases} x_0 < x < x_0 + \delta(\varepsilon) \\ x_0 - \delta(\varepsilon) < x < x_0 \\ \text{then } |f(x) - A| < \varepsilon. \end{cases}$$

Consequence. If x_0 is a limit point of D_f then $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0+} f(x)$ and $\lim_{x\to x_0-} f(x)$ exist

and
$$\lim_{x\to x_0^+} f(x) = \lim_{x\to x_0^-} f(x)$$
.

Definition. Let $f: X \longrightarrow Y$ be a function and $A \subset X$. The **restriction of** f **to** A **is the function** $f \mid_A : A \longrightarrow Y, f \mid_A (x) = f(x).$

Remark.
$$\lim_{x \to x_0+} f(x) = \lim_{x \to x_0} f \mid_{D_f \cap [x_0, \infty)} (x)$$
 and $\lim_{x \to x_0-} f(x) = \lim_{x \to x_0} f \mid_{D_f \cap (-\infty, x_0]} (x)$

Example 1. Using the definition, show that
$$\lim_{x\to -2} \frac{8-2x^2}{x+2} = 8$$
.

Solution. We have to show that if x is "close" to x_0 , that is, $|x - x_0|$ is "small", then f(x) is "close" to A, that is, |f(x) - A| is also "small". That is, we have to show that for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$, then $|f(x) - A| < \varepsilon$.

Here $x_0 = -2$. If $\varepsilon > 0$ then

$$| f(x) - A | = \left| \frac{8 - 2x^2}{x + 2} - 8 \right| = \left| \frac{2 \cdot (4 - x^2)}{x + 2} - 8 \right| = | 2 \cdot (2 - x) - 8 | =$$

$$= | -2x - 4 | = | (-2)(x + 2)| = 2 | x + 2 | = 2 | x - (-2) | < \varepsilon, \text{ if } \left| x + 2 \right| < \frac{\varepsilon}{2}$$

 \implies with the choice $\delta = \delta(\varepsilon) = \frac{\varepsilon}{2}$ the definition holds. Remark: $-2 \notin D_f$.

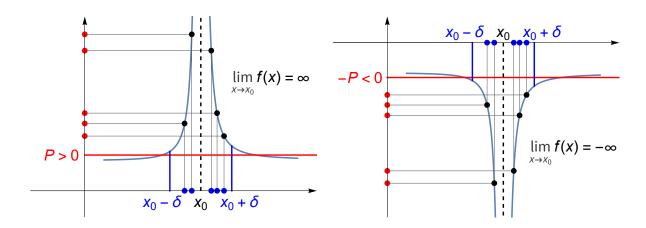
For example if $\varepsilon = 10^{-2}$ then $\delta = 5 \cdot 10^{-3}$.

Example 2. Using the definition, show that $\lim_{x\to -3} \sqrt{1-5x} = 4$.

Solution. Let $\varepsilon > 0$. Then

$$|f(x) - A| = \left| \sqrt{1 - 5x} - 4 \right| = \left| \frac{1 - 5x - 16}{\sqrt{1 - 5x} + 4} \right| = \frac{5 |x - (-3)|}{\sqrt{1 - 5x} + 4} \le \frac{5 |x + 3|}{\mathbf{0} + 4} < \varepsilon,$$
if $|x + 3| < \frac{4\varepsilon}{5} \implies$ with the choice $\delta(\varepsilon) = \frac{4\varepsilon}{5}$ the definition holds.

Definition. Suppose $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a function and $x_0 \in D_f$. Then $\lim_{x \to x_0} f(x) = \begin{cases} \infty & \text{if } x \to x_0 \end{cases}$ for all P > 0 there exists $\delta(P) > 0$ such that if $x \in D_f$ and $0 < |x - x_0| < \delta(P)$ then $\begin{cases} f(x) > P \\ f(x) < -P \end{cases}$



Remark. The one-sided limits can be defined similarly:

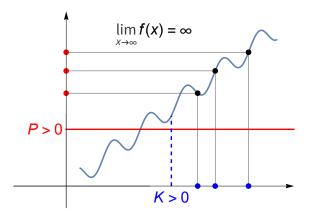
- $\lim_{x \to x_0+} f(x) = \begin{cases} \infty & \text{if } \forall P > 0 \ \exists \ \delta(P) > 0 \text{ such that if } x \in D_f \text{ and } x_0 < x < x_0 + \delta(P) \text{ then } \begin{cases} f(x) > P \\ f(x) < -P \end{cases}$ $\lim_{x \to x_0-} f(x) = \begin{cases} \infty & \text{if } \forall P > 0 \ \exists \ \delta(P) > 0 \text{ such that if } x \in D_f \text{ and } x_0 \delta(P) < x < x_0 \text{ then } \begin{cases} f(x) > P \\ f(x) < -P \end{cases}$

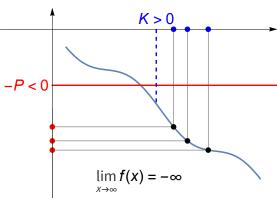
Example 3.
$$\lim_{x \to 2} \frac{1}{(x-2)^2} = \infty$$
, since if $P > 0$, then $f(x) = \frac{1}{(x-2)^2} > P \iff 0 < |x-2| < \frac{1}{\sqrt{P}}$ \implies with the choice $\delta(P) = \frac{1}{\sqrt{P}}$ the definition holds.

Limit at ∞ and -∞

Definitions. Assume that D_f is not bounded above.

- (1) $\lim f(x) = A \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists $K(\varepsilon) > 0$ such that if $x > K(\varepsilon)$ then $|f(x) A| < \varepsilon$.
- (2) $\lim_{x \to \infty} f(x) = \infty$ if for all P > 0 there exists K(P) > 0 such that if x > K(P) then f(x) > P.
- (3) $\lim f(x) = -\infty$ if for all P > 0 there exists K(P) > 0 such that if x > K(P) then f(x) < -P.





Definitions. Assume that D_f is not bounded below.

- (1) $\lim_{x \to 0} f(x) = A \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists $K(\varepsilon) > 0$ such that if $x < -K(\varepsilon)$ then $|f(x) A| < \varepsilon$.
- (2) $\lim f(x) = \infty$ if for all P > 0 there exists K(P) > 0 such that if x < -K(P) then f(x) > P.
- (3) $\lim f(x) = -\infty$ if for all P > 0 there exists K(P) > 0 such that if x < -K(P) then f(x) < -P.

The extended set of real numbers

Definition. Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ denote the extended set of real numbers. We define $-\infty \le x \le \infty$ for all $x \in \overline{\mathbb{R}}$. The arithmetic operations on \mathbb{R} can be partially extended to $\overline{\mathbb{R}}$ as follows.

$$(1) a + \infty = +\infty + a = \infty,$$

$$(5) \frac{a}{--} = 0,$$

$$a \in \mathbb{R}$$

(2)
$$a - \infty = -\infty + a = -\infty$$
, $a \neq +\infty$

$$(6) \stackrel{\pm \infty}{---} = \pm \infty,$$

$$a \in (0, +\infty)$$

(3)
$$a \cdot (\pm \infty) = \pm \infty \cdot a = \pm \infty$$
, $a \in (0, +\infty]$

$$a \in (0, +\infty)$$

$$(5) \frac{a}{=} = 0, \qquad a \in \mathbb{R}$$

$$(6) \frac{d}{a} = \pm \infty, \qquad a \in (0, +\infty)$$

$$(7) \frac{d}{a} = \mp \infty, \qquad a \in (-\infty, 0)$$

$$a\in (-\infty,\,0)$$

$$(4) \ a \cdot (\pm \infty) = \pm \infty \cdot a = \mp \infty, \qquad a \in \mathbb{R}$$

Definitions. The interval $(a - \varepsilon, a + \varepsilon)$ is called a neighbourhood of $a \in \mathbb{R}$ if $\varepsilon > 0$. For any $P \in \mathbb{R}$, the interval (P, ∞) is called a neighbourhood of $+\infty$ and the interval $(-\infty, P)$ is called a neighbourhood of $-\infty$.

Remark. The definition of a limit point can be extended to $\overline{\mathbb{R}}$ as follows. Let $A \subset \overline{\mathbb{R}}$ and $x \in \overline{\mathbb{R}}$. Then x is a limit point of A, if any neighbourhood of x contains a point in A that is distinct from x.

Remark. Examples for the set of limit points in $\overline{\mathbb{R}}$: $(\mathbb{N}^+)' = \{\infty\}$, $\mathbb{Z}' = \{\infty, -\infty\}$, $\mathbb{Q}' = \overline{\mathbb{R}}$, $\mathbb{R}' = \overline{\mathbb{R}}$.

Remark. If f is a sequence, that is, $D_f = \mathbb{N}^+$, then the only accumulation point of D_f is ∞ , so we can investigate the limit only here.

Summary

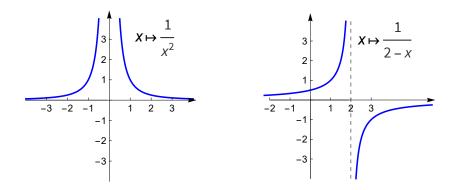
The above definitions of the limit can be summarized as follows.

Theorem. Assume that $a \in \overline{\mathbb{R}}$ is a limit point of D_f and $b \in \overline{\mathbb{R}}$. Then $\lim_{x \to a} f(x) = b$ if and only if for any neighbourhood J of b there exists a neighbourhood I of a such that if $x \in I \cap D_f$ and $x \neq a$ then $f(x) \in J$.

Examples

$$\bullet \lim_{x \to 0-0} \frac{1}{x^2} = \lim_{x \to 0+0} \frac{1}{x^2} = +\infty \qquad \implies \lim_{x \to 0} \frac{1}{x^2} = +\infty \qquad \bullet \lim_{x \to \infty} \frac{1}{x^2} = \lim_{x \to \infty} \frac{1}{x^2} = 0$$

$$\bullet \lim_{x \to 0-0} \frac{1}{x^2} = \lim_{x \to 0+0} \frac{1}{x^2} = -\infty \implies \lim_{x \to 0} \frac{1}{2-x} \text{ doesn't exist} \qquad \bullet \lim_{x \to \infty} \frac{1}{x^2} = \lim_{x \to \infty} \frac{1}{x^2} = 0$$

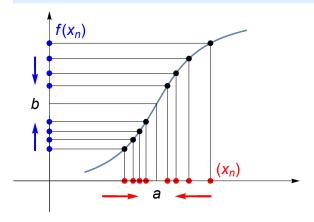


The sequential criterion for the limit of a function

Theorem. Suppose $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a function, $a, b \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$, and $a \in D_f'$. Then the following two statements are equivalent.

$$(1) \lim_{x \to a} f(x) = b$$

(2) For all sequences $(x_n) \subset D_f \setminus \{a\}$ for which $x_n \longrightarrow a$, $\lim_{n \to \infty} f(x_n) = b$.



Proof. We prove it for $a, b \in \mathbb{R}$.

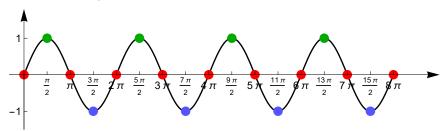
- (1) \Longrightarrow (2): Assume that for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $0 < |x \alpha| < \delta(\varepsilon)$ then $|f(x) - b| < \varepsilon$.
 - Let (x_n) be a sequence for which $x_n \in D_f \setminus \{a\}$ for all $n \in \mathbb{N}$ and $x_n \longrightarrow a$.
 - Then for $\delta(\varepsilon) > 0$ there exists a threshold index $N(\delta(\varepsilon)) \in \mathbb{N}$ such that if $n > N(\delta(\varepsilon))$ then $|x_n - a| < \delta(\varepsilon)$.
 - Thus for all $n > N(\delta(\varepsilon))$, $|f(x_n) b| < \varepsilon$ also holds, so $f(x_n) \longrightarrow b$.
- (2) \Longrightarrow (1): Indirectly, assume that (2) holds but $\lim f(x) \neq b$, that is, there exists $\varepsilon > 0$ such that for all $\delta > 0$ there exists $x \in D_f$ for which $0 < |x-a| < \delta$ and $|f(x)-b| \ge \varepsilon$.
 - Let $\delta_n = \frac{1}{n} > 0$ for all $n \in \mathbb{N}^+$. Then for δ_n there exists $x_n \in D_f$ such that $0 < |x_n - a| < \delta_n = \frac{1}{n} \text{ and } |f(x_n) - b| \ge \varepsilon.$
 - It means that $x_n \rightarrow a$, but $\lim_{n \rightarrow \infty} f(x_n) \neq b$, which is a contradiction, so $\lim_{x \rightarrow a} f(x) = b$.

Remark. The theorem is useful for problems where we prove that the limit doesn't exist.

Examples

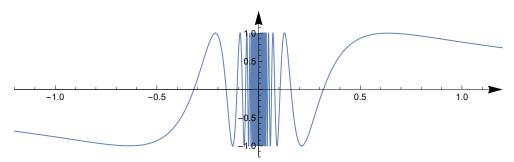
1. Show that the limit $\lim \sin(x)$ does not exist.

Solution. We give two different sequences tending to infinity such that the sequence of the corresponding function values have different limits. For example:



- 1) If $a_n = \frac{\pi}{2} + n \cdot 2\pi$, then $a_n \longrightarrow \infty$ and $\sin(a_n) = 1 \longrightarrow 1$.
- 2) If $b_n = n \cdot \pi$, then $b_n \longrightarrow \infty$ and $\sin(b_n) = 0 \longrightarrow 0$.
- 3) If $c_n = \frac{3\pi}{2} + n \cdot 2\pi$, then $c_n \longrightarrow \infty$ and $\sin(c_n) = -1 \longrightarrow -1$. $\Longrightarrow \lim_{x \to \infty} \sin(x)$ doesn't exist.

2. Let $f(x) = \sin\left(\frac{1}{x}\right)$, $D_f = \mathbb{R} \setminus \{0\}$. Show that f does not have a limit at 0.



Example. Let
$$x_n = \frac{1}{n \pi} \longrightarrow 0$$
 and $y_n = \frac{1}{\frac{\pi}{2} + 2n \pi} \longrightarrow 0$. Then

- $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sin\left(\frac{1}{x_n}\right) = \lim_{x \to \infty} \sin(n\pi) = 0$ and
- $\lim_{n \to \infty} f(y_n) = \lim_{x \to \infty} \sin\left(\frac{\pi}{y_n}\right) = \lim_{x \to \infty} \sin\left(\frac{\pi}{2} + 2n\pi\right) = 1 \neq 0 \implies \lim_{x \to 0} \sin\left(\frac{1}{x}\right)$ doesn't exist.

Consequences

Theorem. Suppose $x_0 \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is a limit point of $D_f \cap D_g$ and $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$,

 $\lim_{x\to x_0} g(x) = B \in \mathbb{R}, c \in \mathbb{R}. \text{ Then}$

- $(1) \lim_{x \to x_0} (cf)(x) = c \cdot A$
- (2) $\lim_{x \to x_0} (f \pm g)(x) = A \pm B$
- $(3) \lim_{x \to x_0} (f \cdot g)(x) = A \cdot B$
- $(4) \lim_{x \to x_0} {f \choose d}(x) = \frac{A}{B} \text{ if } B \neq 0$
- (5) If $\lim f(x) = 0$ and g is bounded in a neighbourhood of x_0 then $\lim (f g)(x) = 0$.

Remark. The statements (1)-(4) are also true if $A, B \in \overline{\mathbb{R}}$ and the corresponding operations are defined in $\overline{\mathbb{R}}$.

Theorem. Suppose $x_0 \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is a limit point of $D_f \cap D_q$ and $\lim_{x\to x_0} f(x) = A \in \overline{\mathbb{R}}, \lim_{x\to x_0} g(x) = B \in \overline{\mathbb{R}}.$

If $f(x) \le g(x)$ for all $x \in D_f \cap D_g$ then $A \le B$.

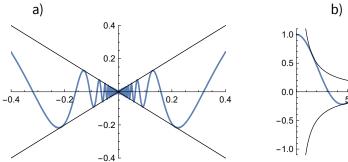
Theorem (Sandwich theorem for limits). Suppose that

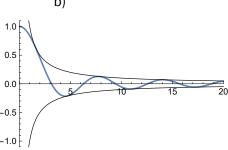
- (1) $x_0 \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is a limit point of $D_f \cap D_q \cap D_h$,
- (2) $f(x) \le g(x) \le h(x)$ for all x in a neighbourhood of x_0 and
- $(3) \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = b \in \overline{\mathbb{R}}.$

Then $\lim g(x) = b$.

Remark. The theorem is also true for one-sided limits and if $b = \pm \infty$ then only one estimation is enough.

Example. Show that a) $\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$ and b) $\lim_{x \to \infty} \frac{1}{x} \sin(x) = 0$.





Solution.

a)
$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$
, since $-\left|x\right| \le x \sin\left(\frac{1}{x}\right) \le \left|x\right|$, and $\lim_{x \to 0} (\left|x\right|) = \lim_{x \to 0} (-\left|x\right|) = 0$
Or: $x \longrightarrow 0$ and $\sin\left(\frac{1}{x}\right)$ is bounded, so the product also tends to 0.

b)
$$\lim_{x \to \infty} \frac{\sin(x)}{x} = 0$$
, since $-\frac{1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$ if $x > 0$, and $\lim_{x \to \infty} \left(-\frac{1}{x}\right) = \lim_{x \to \infty} \left(\frac{1}{x}\right) = 0$.
Or: $\frac{1}{x} \xrightarrow{x \to \infty} 0$ and $\sin(x)$ is bounded, so the product also tends to 0.

Example

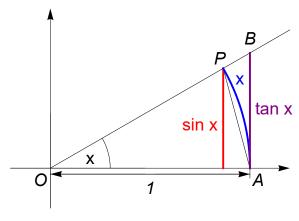
Theorem.
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

Proof. Since $f(x) = \frac{\sin x}{x}$ is even, it is enough to consider the right-hand limit $\lim_{x \to 0+} \frac{\sin x}{x}$ Let $0 < x < \frac{\pi}{2}$.

The area of the *POA* triangle is $T_1 = \frac{1 \cdot \sin x}{2}$.

The area of the *POA* circular sector is $T_2 = \frac{1^2 \cdot x}{2}$.

The area of the *OAB* triangle is $T_3 = \frac{1 \cdot \tan x}{2}$.



Obviously
$$T_1 < T_2 < T_3 \implies \frac{1 \cdot \sin x}{2} < \frac{1^2 \cdot x}{2} < \frac{1 \cdot \tan x}{2}$$
.

Multiplying both sides by $\frac{2}{\sin x} > 0$: $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$.

Since $\lim_{x \to 0+} \frac{1}{\cos x} = 1$ then $\lim_{x \to 0+} \frac{x}{\sin x} = 1 \implies \lim_{x \to 0+} \frac{\sin x}{x} = 1 = \lim_{x \to 0-} \frac{\sin x}{x}$

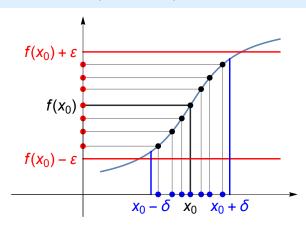
Remark. If $0 < x < \frac{\pi}{2}$, then $\sin x < x \implies |\sin x| \le |x| \quad \forall x \in \mathbb{R}$.

Continuity

Definition. The function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is $\{$ continuous from the left at the point $x_0 \in D_f$ if continuous from the right

for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in D_f$ and $\begin{cases} |x - x_0| < \delta(\varepsilon) \\ x_0 - \delta(\varepsilon) < x \le x_0 \\ x_0 \le x < x_0 + \delta(\varepsilon) \end{cases}$

then $|f(x)-f(x_0)| < \varepsilon$.



Remarks. 1) f is continuous at $x_0 \in D_f \iff$ for all $\varepsilon > 0$ there exists $\delta > 0$ such that

if
$$x \in (B(x_0, \delta) \cap D_f$$
 then $f(x) \in B(f(x_0), \varepsilon)$.
2) f is $\begin{cases} \text{continuous from the right} \\ \text{continuous from the left} \end{cases}$ at $x_0 \in D_f \iff \begin{cases} f \mid_{D_f \cap [X_0, \infty)} \\ f \mid_{D_f \cap (-\infty, X_0]} \end{cases}$ is continuous at x_0 .

3) f is continuous at $x_0 \in D_f \iff f$ is continuous at x_0 from the right and from the left.

Theorem. Suppose $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ and $x_0 \in D_f \cap D_f$. Then f is continuous at x_0 if and only if $\lim_{x \to x_0} f(x)$ exists and $\lim_{x \to x_0} f(x) = f(x_0)$.

Definition. f is continuous if f is continuous for all $x \in D_f$.

Notation. If $A \subset \mathbb{R}$ then $C(A, \mathbb{R})$ or C(A) denotes the set of continuous functions $f: A \longrightarrow \mathbb{R}$. For example, $f \in C([a, b])$ means that $f : [a, b] \rightarrow \mathbb{R}$ is continuous.

The sequential criterion for continuity

Theorem: The function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at $x_0 \in D_f$ if and only if for all sequences $(x_n) \subset D_f$ for which $x_n \longrightarrow x_0$, $\lim_{n \to \infty} f(x_n) = f(x_0)$.

Consequences

Theorem. If f and g are continuous at $x_0 \in D_f \cap D_g$ then cf, $f \pm g$ and fg is continuous at x_0 ($c \in \mathbb{R}$). If $g(x_0) \neq 0$ then $\frac{f}{g}$ is also continuous at x_0 .

Theorem (Sandwich theorem for continuity): Suppose that

- (1) there exists $\delta > 0$ such that $I = (x_0 \delta, x_0 + \delta) \subset D_f \cap D_a \cap D_h$
- (2) f and h are continuous at x_0
- (3) $f(x_0) = h(x_0)$
- (4) $f(x) \le g(x) \le h(x)$ for all $x \in I$

Then g is continuous at x_0 .

Definition. The composition of the functions f and g is $(f \circ g)(x) = f(g(x))$ whose domain is $D_{f\circ g}=\{x\in D_g:g(x)\in D_f\}.$

Theorem. If g is continuous at $x_0 \in D_g$ and f is continuous at $g(x_0) \in D_f$ then $f \circ g$ is continuous at x_0 .

Theorem (Limit of a composition). Let a be a limit point of $D_{f \circ g}$ for which $\lim g(x) = b$.

Assume that

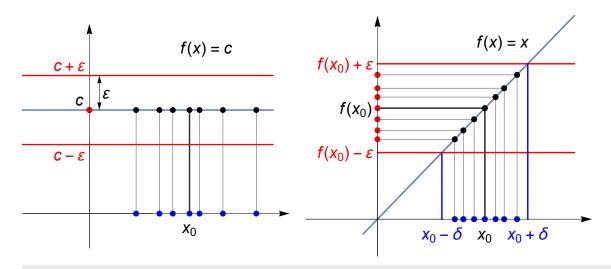
- (1) $b \in D_f$, f is continuous at b and f(b) = c **or**
- (2) $b \in D_f' \setminus D_f$ and $\lim f(x) = c$ **or**
- (3) g is injective, $b \in D_f$ ' and $\lim_{x \to a} f(x) = c$.

Then $\lim_{x\to a} (f\circ g)(x) = c$.

Examples

1. Show that the constant function $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = c is continuous for all $x_0 \in \mathbb{R}$.

Solution. Let $\varepsilon > 0$, then with any $\delta > 0$ if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| = |c - c| = 0 < \varepsilon$.



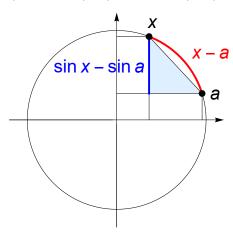
2. Show that the function $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = x is continuous for all $x_0 \in \mathbb{R}$.

Solution. Let $\varepsilon > 0$, then with $\delta(\varepsilon) = \varepsilon$ if $|x - x_0| < \delta(\varepsilon) = \varepsilon$, then $|f(x) - f(x_0)| = |x - x_0| < \varepsilon$.

3.
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = x^n$ is continuous for all $x_0 \in \mathbb{R}$, $n \in \mathbb{N}$, since $f(x) = x^n = x \cdot x \cdot \dots \cdot x \longrightarrow x_0 \cdot x_0 \cdot \dots \cdot x_0 = x_0^n = f(x_0)$

- 4. Polynomials $(P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0, \ a_i \in \mathbb{R})$ are continuous for all $x_0 \in \mathbb{R}$.
- 5. $f(x) = \sin x$ and $g(x) = \cos x$ are continuous for all $x \in \mathbb{R}$.
- **Proof.** We show that $f(x) = \sin x$ is continuous at $a \in \mathbb{R}$. Let $x \in \mathbb{R}$, $x \neq a$ and consider the right-angled triangle with vertices ($\cos a$, $\sin a$), ($\cos x$, $\sin x$), ($\cos x$, $\sin a$). Then the lengths of the legs are less than the length of the hypotenuse, which is less then the arc length x - a, that is, $|\sin x - \sin a| \le |x - a|$.

If $\varepsilon > 0$ and $\delta = \varepsilon$ then for all $x \in \mathbb{R}$ for which $|x - \alpha| < \delta$ we have that $|f(x)-f(a)| = |\sin x - \sin a| \le |x-a| < \varepsilon$, so f is continuous at a.



a) the sign function or signum function:
$$sgn(x) = \begin{cases} 1, & ha \ x > 0 \\ 0, & ha \ x = 0 \\ -1, & ha \ x < 0 \end{cases}$$

b) the floor function: $f(x) = [x]$, where $[x] = max\{k \in \mathbb{Z} : k \le x\}$

- b) the floor function: f(x) = [x], where $[x] = \max\{k \in \mathbb{Z} : k \le x\}$
- c) the fractional part function: $f(x) = \{x\} = x [x]$

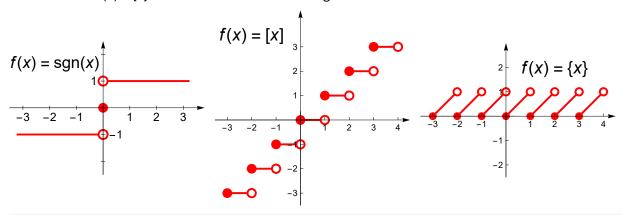
Solution. a) $\limsup sgn(x) = 1 \neq sgn(0) = 0 \implies f(x) = sgn(x)$ is not continuous at 0 from the right (and similarly not continuous at 0 from the left) \Longrightarrow f is not continuous at 0. If $x \neq 0$ then f is continuous at x.

b) If
$$k \in \mathbb{Z}$$
 then $\lim_{x \to k-0} [x] = k-1$, $\lim_{x \to k+0} [x] = k = [k]$

 \implies f(x) = [x] is continuous at k from the right but not from the left.

c) If
$$k \in \mathbb{Z}$$
 then $\lim_{x \to k-0} \{x\} = 1$, $\lim_{x \to k+0} \{x\} = \{k\} = 0$

 \implies $f(x) = \{x\}$ is continuous at k from the right but not from the left.



$$7. f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \text{ is continuous for all } x \in \mathbb{R}.$$

8. Show that the **Dirichlet function** $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$ is not continuous at any $x \in \mathbb{R}$.

Solution. • If $x_0 \in \mathbb{Q}$, then let $x_n \in \mathbb{R} \setminus \mathbb{Q}$ $\forall n$ such that $x_n \longrightarrow x_0$. Then $f(x_n) = 0 \longrightarrow 0 \neq 1 = f(x_0)$.

• If $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then let $x_n \in \mathbb{Q} \ \forall n$ such that $x_n \longrightarrow x_0$. Then $f(x_n) = 1 \longrightarrow 1 \neq 0 = f(x_0)$.

9. Show an example for a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous only at one point.

Solution. Let $f(x) = \begin{cases} x, & \text{ha } x \in \mathbb{Q} \\ -x, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Then f is continuous only at 0

Since f(x) = |x| for all $x \in \mathbb{R}$, then $x_n \rightarrow 0 \iff |x_n| \rightarrow 0 \iff |f(x_n)| \rightarrow 0 \iff f(x_n) \rightarrow 0.$

Similar examples: $f(x) = \begin{cases} x, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$, $f(x) = \begin{cases} x, & \text{ha } x \in \mathbb{Q} \\ 2x, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ etc.

Types of discontinuities

Definition. We say that the function f is **discontinuous** at $x_0 \in \mathbb{R}$ or f has a discontinuity at $x_0 \in \mathbb{R}$ if x_0 is a limit point of D_f and f is not continuous at x_0 .

Classification of discontinuities:

- 1) Discontinuity of the first kind:
 - a) f has a **removable discontinuity** at x_0 if $\exists \lim_{x \to \infty} f(x) \in \mathbb{R}$ but $\lim_{x \to \infty} f(x) \neq f(x_0)$ is not defined.
 - b) f has a **jump discontinuity** at x_0 if $\exists \lim_{x \to x_0^-} f(x) \in \mathbb{R}$ and $\exists \lim_{x \to x_0^+} f(x) \in \mathbb{R}$ but $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$.
- 2) Discontinuity of the second kind:

f has an **essential discontinuity** or a discontinuity of the second kind at x_0 if f has a discontinuity at x_0 but not of the first kind.

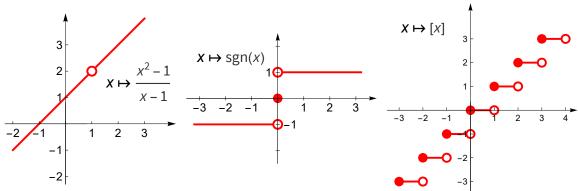
Remarks: 1. In the case of a discontinuity of the first kind, both one-sided limits exist and are finite.

2. In the case of an essential discontinuity, at least one of the one-sided limits doesn't exist or exists but is not finite.

Examples

1. Discontinuity of the first kind

a) $f(x) = \frac{x^2 - 1}{x^2 - 1}$ has a removable discontinuity at $x_0 = 1$.



- b) $f(x) = \operatorname{sgn}(x)$ has a jump discontinuity at x = 0.
- c) f(x) = [x] has a jump discontinuity for all $x \in \mathbb{Z}$.

2. Discontinuity of the second kind

a)
$$f_1(x) = \frac{1}{x}$$
, $f_2(x) = \frac{1}{x^2}$ and $f_3 = \sin \frac{1}{x}$ have an essential discontinuity at $x = 0$.

- b) The Dirichlet function has essential discontinuities for all $x \in \mathbb{R}$.
- c) The function $f(x) = e^{\frac{1}{x}}$ has an essential discontinuity at x = 0.
 - If $x \longrightarrow 0+$, then $\frac{1}{x} \longrightarrow \infty$, and since $\lim_{x \to \infty} e^x = \infty$, then $\lim_{x \to 0+0} e^{\frac{1}{x}} = \infty$.
 - If $x \longrightarrow 0$ -, then $\frac{1}{x} \longrightarrow -\infty$, and since $\lim_{x \to -\infty} e^x = 0$, then $\lim_{x \to 0-0} e^{\frac{1}{x}} = 0$.

