Calculus 1 - 06

Limits of real functions

Definitions

A **function** $f : A \rightarrow B$ is a mapping that assigns exactly one element of *B* to every element from *A*. The set *A* is called the **domain** of *f* (notation: D_f or Dom(*f*)) and the set *f*(*A*) = {*f*(*x*) : *x* ∈ *A*} is called the **range** of *f* (notation: R_f or Ran(*f*)).

A function $f : A \rightarrow B$ is **one-to one** or **injective** if for all $x, y \in A$: $(f(x) = f(y) \implies x = y)$. A function $f : A \rightarrow B$ is **onto** or **surjective** if $f(A) = B$. A function *f* is **bijective** if it is injective and surjective.

The function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is

- \bullet even, if ∀ *x* ∈ *D_f*, $-x \in D_f$ and $f(x) = f(-x)$ (for example, $f(x) = x^2$ or $f(x) = \cos x$)
- odd, if $\forall x \in D_f$, $-x \in D_f$ and $f(-x) = -f(x)$ (for example, $f(x) = x^3$ or $f(x) = \sin x$)
- \bullet monotonically increasing if $\forall x, y \in D_f$ (*x* < *y* \Longrightarrow *f*(*x*) ≤ *f*(*y*))
- monotonically decreasing if $\forall x, y \in D_f$ ($x < y \implies f(x) \ge f(y)$)
- \bullet strictly monotonically increasing if ∀ *x*, *y* ∈ *D_f* (*x* < *y* \Rightarrow *f*(*x*) < *f*(*y*)) (for example, *f*(*x*) = \sqrt{x} , $f(x) = x^3$
- \bullet strictly monotonically decreasing if $\forall x, y \in D_f$ ($x < y \implies f(x) > f(y)$)
- periodic with period $p > 0$ if $\forall x \in D_f$, $x + p \in D_f$ and $f(x) = f(x + p)$ (for example, $f(x) = \sin x$)

Limit at a finite point

Definition. The limit of the function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ at the point $x_0 \in \mathbb{R}$ is $A \in \mathbb{R}$ if (1) x_0 is a limit point of D_f ($x \in D_f$) (2) for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in D_f$ and $0 < |x - x_0| < \delta(\varepsilon)$ then $|f(x) - A| < \varepsilon$ Notation: $\lim f(x) = A$ $x \rightarrow x_0$

Remark: $0 < |x - x_0| < \delta$ means that $x_0 - \delta < x < x_0$ or $x_0 < x < x_0 + \delta$.

One-sided limits: Notation. The \begin{cases} right hand limit of *f* at x_0 is denoted as left hand limit $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0 + 0)$ $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0 - 0)$ **Definition.** Suppose x_0 ∈ ℝ is a limit point of $\begin{cases} D_f \cap [x_0, \infty) \\ D_f \cap (-\infty, x_0] \end{cases}$. Then $\lim_{x \to x_0^+} f(x) = A$ lim *f*(*x*) = *A* if for all ε > 0 there exists δ(ε) > 0 such that if *x* ∈ *Df* and

$$
\left\{\n\begin{array}{l}\n\lim_{x \to x_0^-} f(x) = A \\
\int_{0}^{x_0} x_0 < x < x_0 + \delta(\varepsilon) \\
x_0 - \delta(\varepsilon) < x < x_0 \\
\end{array}\n\right.
$$
\nthen
$$
\left\|\n\begin{array}{l}\nf(x) - A\mid < \varepsilon.\n\end{array}\n\right.
$$

Consequence. If x_0 is a limit point of D_f then lim $f(x)$ exists if and only if lim $f(x)$ and lim $f(x)$ exist $x \rightarrow x_0$ $x \rightarrow x_0 +$ $x \rightarrow x_0$ and $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$.

Definition. Let f : X → Y be a function and A ⊂ X . The **restriction of** f **to** A is the function $f \mid_A : A \longrightarrow Y, \ f \mid_A (x) = f(x).$

Remark. $\lim_{x \to x_0+} f(x) = \lim_{x \to x_0} f \mid_{D_f \cap [x_0, \infty)} (x)$ and $\lim_{x \to x_0-} f(x) = \lim_{x \to x_0} f \mid_{D_f \cap (-\infty, x_0]} (x)$

Example 1. Using the definition, show that $\lim_{x\to -2}$ $8 - 2 x^2$ $\frac{1}{x+2} = 8.$

Solution. We have to show that if *x* is "close" to x_0 , that is, $x - x_0$ is "small", then $f(x)$ is "close" to

> *A*, that is, $|f(x) - A|$ is also "small". That is, we have to show that for all $\varepsilon > 0$ there exists δ > 0 such that if 0 < | x - x₀ | < δ, then | f(x) - A | < ε. Here $x_0 = -2$. If $\varepsilon > 0$ then $f(x) - A = \left| \frac{8 - 2x^2}{x + 2} - 8 \right| = \left| \frac{2 \cdot (4 - x^2)}{x + 2} \right|$ $\left|\frac{x}{x+2} - 8\right| = |2 \cdot (2-x) - 8| =$

$$
= |-2x-4| = |(-2)(x+2)| = 2 |x+2| = 2 |x-(-2)| < \varepsilon, \text{ if } |x+2| < \frac{\varepsilon}{2}
$$

\n
$$
\implies \text{with the choice } \delta = \delta(\varepsilon) = \frac{\varepsilon}{2} \text{ the definition holds. Remark: } -2 \notin D_f.
$$

\nFor example if $\varepsilon = 10^{-2}$ then $\delta = 5 \cdot 10^{-3}$.

Example 2. Using the definition, show that $\lim_{x\to -3} \sqrt{1-5x} = 4$.

Solution. Let $\varepsilon > 0$. Then

$$
\left| f(x) - A \right| = \left| \sqrt{1 - 5x} - 4 \right| = \left| \frac{1 - 5x - 16}{\sqrt{1 - 5x} + 4} \right| = \frac{5 \mid x - (-3) \mid}{\sqrt{1 - 5x} + 4} \le \frac{5 \mid x + 3 \mid}{0 + 4} < \varepsilon,
$$

if $\left| x + 3 \right| < \frac{4 \varepsilon}{5} \implies$ with the choice $\delta(\varepsilon) = \frac{4 \varepsilon}{5}$ the definition holds.

Definition. Suppose $f : D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a function and $x_0 \in D_f$ '. Then $\lim_{x \to x_0} f(x) = \begin{cases} \infty & \text{if } x \to \infty \\ -\infty & \text{if } x \in \mathbb{R} \end{cases}$ for all $P > 0$ there exists $\delta(P) > 0$ such that if $x \in D_f$ and $0 < |x - x_0| < \delta(P)$ then $\begin{cases} f(x) > P \\ f(x) < -P \end{cases}$.

Remark. The one-sided limits can be defined similarly:

• $\lim_{x\to x_0+} f(x) = \begin{cases} \infty & \text{if } \forall P > 0 \ \exists \delta(P) > 0 \ \text{such that if } x \in D_f \text{ and } x_0 < x < x_0 + \delta(P) & \text{then } \begin{cases} f(x) > P \\ f(x) < -P \end{cases} \end{cases}$ • $\lim_{x\to x_0^-} f(x) = \begin{cases} \infty & \text{if } \forall P > 0 \ \exists \delta(P) > 0 \ \text{such that if } x \in D_f \text{ and } x_0 - \delta(P) < x < x_0 \ \text{then } \begin{cases} f(x) > P \\ f(x) < -P \end{cases}$

Example 3.
$$
\lim_{x \to 2} \frac{1}{(x-2)^2} = \infty
$$
, since if $P > 0$, then $f(x) = \frac{1}{(x-2)^2} > P \iff 0 < |x-2| < \frac{1}{\sqrt{P}}$ \implies with the choice $\delta(P) = \frac{1}{\sqrt{P}}$ the definition holds.

Limit at ∞ and -∞

Definitions. Assume that D_f is not bounded above.

(1) $\lim_{x \to \infty} f(x) = A \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists $K(\varepsilon) > 0$ such that if *x* > $K(\varepsilon)$ then | $f(x) - A$ | < ε. (2) $\lim f(x) = \infty$ if for all *P* > 0 there exists $K(P)$ > 0 such that if $x > K(P)$ then $f(x) > P$. *x* ∞ (3) $\lim_{x \to \infty} f(x) = -\infty$ if for all $P > 0$ there exists $K(P) > 0$ such that if $x > K(P)$ then $f(x) < -P$.

Remark. If *f* is a sequence, that is, $D_f = \mathbb{N}^+$, then the only accumulation point of D_f is ∞ , so we can investigate the limit only here.

Definitions. Assume that D_f is not bounded below.

- (1) $\lim_{x \to -\infty} f(x) = A ∈ ℝ$ if for all $ε > 0$ there exists $K(ε) > 0$ such that if $x < -K(ε)$ then $|f(x) A| < ε$.
- (2) $\lim f(x) = \infty$ if for all $P > 0$ there exists $K(P) > 0$ such that if $x < -K(P)$ then $f(x) > P$. *x*→ -∞
- (3) $\lim_{x \to -\infty} f(x) = -\infty$ if for all *P* > 0 there exists $K(P) > 0$ such that if $x < -K(P)$ then $f(x) < -P$.

Summary

The above definitions of the limit can be summarized as follows.

Theorem. Assume that $a \in \overline{\mathbb{R}}$ is a limit point of D_f and $b \in \overline{\mathbb{R}}$. Then $\lim_{x \to a} f(x) = b$ if and only if for any neighbourhood *J* of *b* there exists a neighbourhood *I* of *a* such that if $x \in I \cap D_f$ and $x \neq a$ then $f(x) \in J$.

Examples

The sequential criterion for the limit of a function

In the syllabus it is called transference principle.

```
Theorem. Suppose f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R} is a function, a, b \in \mathbb{\overline{R}} = \mathbb{R} \cup \{-\infty, \infty\}, and a \in D_f'.
                Then the following two statements are equivalent.
                (1) \lim_{x\to a} f(x) = b
```
(2) For all sequences (x_n) ⊂ $D_f \setminus \{a\}$ for which $x_n \longrightarrow a$, $\lim_{n \to \infty} f(x_n) = b$.

Proof. We prove it for $a, b \in \mathbb{R}$.

(1) \implies (2): \bullet Assume that for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $0 < |x - a| < \delta(\varepsilon)$

- then $|f(x)-b| < \varepsilon$.
- Let (x_n) be a sequence for which $x_n \in D_f \setminus \{a\}$ for all $n \in \mathbb{N}$ and $x_n \longrightarrow a$.
- Then for $\delta(\varepsilon) > 0$ there exists a threshold index $N(\delta(\varepsilon)) \in \mathbb{N}$ such that if $n > N(\delta(\varepsilon))$ then $|x_n - a| < \delta(\varepsilon)$.
- Thus for all $n > N(\delta(\varepsilon))$, $|f(x_n) b| < \varepsilon$ also holds, so $f(x_n) \to b$.

(2) \Longrightarrow (1): \bullet Indirectly, assume that (2) holds but $\lim_{x\to a} f(x) \neq b$, that is,

there exists $\varepsilon > 0$ such that for all $\delta > 0$ there exists $x \in D_f$ for which $0 < |x - a| < \delta$ and $|f(x) - b| \ge \varepsilon$.

- Let $\delta_n = \frac{1}{n}$ > 0 for all *n* ∈ ⁺ . Then for δ*n* there exists *xn* ∈ *Df* such that 0 < | *x_n* − *a* | < *δ_n* = $\frac{1}{n}$ and | *f*(*x_n*) − *b* | ≥ *ε*.
- It means that $x_n \to a$, but $\lim_{n \to \infty} f(x_n) \neq b$, which is a contradiction, so $\lim_{x \to a} f(x) = b$.

Remark. The theorem is useful for problems where we prove that the limit doesn't exist.

Examples

- 1. Show that the limit lim sin(*x*) does not exist. *x*∞
- **Solution.** We give two different sequences tending to infinity such that the sequence of the corresponding function values have different limits. For example:

2. Let *f*(*x*) = sin 1 \mathcal{L}_χ D_f = $\mathbb{R} \setminus \{0\}$. Show that f does not have a limit at 0. -1.0 -0.5 $/$ 1.0 1.0 \pm 1.1 $/$ 0.5 1.0 -1.0 -0.5 0.5 1.0 **Example.** Let $x_n = \frac{1}{n \pi} \rightarrow 0$ and $y_n = \frac{1}{\pi}$ 2 + 2 *n* π \rightarrow 0. Then • $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sin$ 1 *xn* $=\lim_{x\to\infty}\sin(n\pi)=0$ and • $\lim_{n \to \infty} f(y_n) = \lim_{x \to \infty} \sin$ 1 *yn* $=\lim_{x\to\infty} \sin\left(\frac{\pi}{2}\right)$ 2 $+ 2n \pi$ = 1 \neq 0 \implies limes in 1 *x* doesn't exist.

Consequences

Theorem. Suppose $x_0 \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is a limit point of $D_f \cap D_g$ and $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$,

 $\lim g(x) = B \in \mathbb{R}, c \in \mathbb{R}$. Then $x \rightarrow x_0$ (1) $\lim_{x \to 0} (cf)(x) = c \cdot A$ $x \rightarrow x_0$ (2) $\lim_{x \to x_0} (f \pm g)(x) = A \pm B$ (3) $\lim_{x \to x_0} (f \cdot g)(x) = A \cdot B$ *f A*

(4) lim
 $x \rightarrow x_0$ *g* $(x) =$ *B* if $B \neq 0$ (5) If $\lim f(x) = 0$ and g is bounded in a neighbourhood of x_0 then $\lim (fg)(x) = 0$. $x \rightarrow x_0$ $x \rightarrow x_0$

Remark. The statements (1)-(4) are also true if $A, B \in \overline{\mathbb{R}}$ and the corresponding operations are defined in $\overline{\mathbb{R}}$.

Theorem. Suppose $x_0 \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is a limit point of $D_f \cap D_g$ and $\lim_{x \to x_0} f(x) = A \in \overline{\mathbb{R}}, \lim_{x \to x_0} g(x) = B \in \overline{\mathbb{R}}.$ If *f*(*x*) ≤ *g*(*x*) for all *x* ∈ *D_f* ∩ *D_a* then *A* ≤ *B*.

Theorem (Sandwich theorem for limits). Suppose that (1) $x_0 \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is a limit point of $D_f \cap D_g \cap D_h$, (2) $f(x) \le g(x) \le h(x)$ for all *x* in a neighbourhood of x_0 and (3) $\lim f(x) = \lim h(x) = b \in \overline{\mathbb{R}}$. $x \rightarrow x_0$ $x \rightarrow x_0$ Then $\lim g(x) = b$. $X \rightarrow X_0$

Remark. The theorem is also true for one-sided limits and if $b = \pm \infty$ then only one estimation is enough.

x x Or: $x \rightarrow 0$ and sin 1 *x* is bounded, so the product also tends to 0.

b)
$$
\lim_{x \to \infty} \frac{\sin(x)}{x} = 0
$$
, since $-\frac{1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$ if $x > 0$, and $\lim_{x \to \infty} \left(-\frac{1}{x}\right) = \lim_{x \to \infty} \left(\frac{1}{x}\right) = 0$.
Or: $\frac{1}{x} \to 0$ and $\sin(x)$ is bounded, so the product also tends to 0.

Example

Theorem. lim *x*0 sin *x* $\frac{1}{x}$ = 1

Proof. Since $f(x) =$ sin *x x* is even, it is enough to consider the right-hand limit $\lim_{x\to 0+}$ sin *x* $\frac{1}{x}$. Let $0 < x < \frac{\pi}{4}$ 2 . The area of the *P O A* triangle is $T_1 = \frac{1 \cdot \sin x}{2}$. The area of the *P O A* circular sector is $T_2 = \frac{1^2 \cdot x}{2}$. The area of the *O A B* triangle is $T_3 = \frac{1 \cdot \tan x}{2}$. x *O* \uparrow *A P B 1* sin x x tan x Obviously $T_1 < T_2 < T_3 \implies \frac{1 \cdot \sin x}{2}$ \prec $1^2 \cdot x$ 2 \prec 1·tan *x* $\frac{1}{2}$. Multiplying both sides by 2 sin *x* $> 0: 1 <$ *x* sin *x* \prec 1 cos *x* . Since lim 1 cos *x* $= 1$ then $\lim_{x\to 0+}$ *x* sin *x* $= 1 \implies \lim_{x \to 0+}$ sin *x* $\frac{1}{x} = 1 = \lim_{x \to 0^-}$ sin *x x* **Remark.** If $0 < x < \frac{\pi}{4}$ 2 , then $\sin x < x \implies |\sin x| \leq |x| \quad \forall x \in \mathbb{R}$.

Continuity

for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in D_f$ and $|x-x_0| < \delta(\varepsilon)$ $x_0 - \delta(\varepsilon) < x \leq x_0$ $x_0 \leq x < x_0 + \delta(\varepsilon)$

right

then $|f(x) - f(x_0)| < \varepsilon$.

Remarks. 1) *f* is continuous at $x_0 \in D_f$ \iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that

- if $x \in (B(x_0, \delta) \cap D_f$ then $f(x) \in B(f(x_0), \varepsilon)$. 2) *f* is \begin{cases} continuous from the right at $x_0 \in D_f \iff \begin{cases} f \mid_{D_f \cap [x_0,\infty)} \\ f \mid_{D_f \cap (-\infty,x_0]} \end{cases}$ is continuous at x_0 .
- 3) *f* is continuous at x_0 ∈ *D_f* \Longleftrightarrow *f* is continuous at x_0 from the right and from the left.

Theorem. Suppose $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ and $x_0 \in D_f \cap D_f'$. Then *f* is continuous at x_0 if and only if $\lim_{x \to x_0} f(x)$ exists and $\lim_{x \to x_0} f(x) = f(x_0)$.

Definition. f is continuous if f is continuous for all $x \in D_f$.

Notation. If $A \subset \mathbb{R}$ then $C(A, \mathbb{R})$ or $C(A)$ denotes the set of continuous functions $f : A \longrightarrow \mathbb{R}$. For example, $f \in C([a, b])$ means that $f : [a, b] \rightarrow \mathbb{R}$ is continuous.

The sequential criterion for continuity

Theorem: The function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at $x_0 \in D_f$ if and only if for all sequences $(x_n) \subset D_f$ for which $x_n \longrightarrow x_0$, $\lim_{n \to \infty} f(x_n) = f(x_0)$.

Consequences

Theorem. If *f* and *g* are continuous at $x_0 \in D_f \cap D_g$ then *cf*, $f \pm g$ and *f g* is continuous at x_0 (*c* ∈ ℝ). If $g(x_0) \neq 0$ then *f g* is also continuous at *x*0.

Theorem (Sandwich theorem for continuity): Suppose that (1) there exists $\delta > 0$ such that $I = (x_0 - \delta, x_0 + \delta) \subset D_f \cap D_q \cap D_h$ (2) f and h are continuous at x_0

 $f(x_0) = h(x_0)$ (4) *f*(*x*) ≤ *g*(*x*) ≤ *h*(*x*) for all *x* ∈ *I* Then q is continuous at x_0 .

Definition. The composition of the functions *f* and *g* is $(f \circ q)(x) = f(q(x))$ whose domain is *D*_{*f* ∘ *g* = {*x* ∈ *D*_{*a*} : *g*(*x*) ∈ *D*_{*f*}}.}

Theorem. If *g* is continuous at x_0 ∈ D_q and *f* is continuous at $g(x_0)$ ∈ D_f then $f \circ g$ is continuous at x_0 .

Theorem (Limit of a composition). Let a be a limit point of $D_{f \circ g}$ for which $\lim_{x \to a} g(x) = b$.

Assume that (1) *b* ∈ *D*_f, *f* is continuous at *b* and $f(b) = c$ or (2) *b* ∈ *D_f* ' \ *D_f* and $\lim_{x \to b} f(x) = c$ or (3) *g* is injective, *b* ∈ *D*_f' and lim $f(x) = c$. *x b* Then $\lim_{x\to a}$ $(f \circ g)$ $(x) = c$.

Examples

1. Show that the constant function $f : \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = c$ is continuous for all $x_0 \in \mathbb{R}$.

Solution. Let $\varepsilon > 0$, then with any $\delta > 0$ if $x - x_0$ $\leq \delta$, then $|f(x) - f(x_0)| = |c - c| = 0 < \varepsilon$.

2. Show that the function $f : \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = x$ is continuous for all $x_0 \in \mathbb{R}$.

Solution. Let $\varepsilon > 0$, then with $\delta(\varepsilon) = \varepsilon$ if $|x - x_0| < \delta(\varepsilon) = \varepsilon$, then $|f(x) - f(x_0)| = |x - x_0| < \varepsilon$.

3. $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = x^n$ is continuous for all $x_0 \in \mathbb{R}$, $n \in \mathbb{N}$, since $f(x) = x^n = x \cdot x \cdot ... \cdot x \longrightarrow x_0 \cdot x_0 \cdot ... \cdot x_0 = x_0^n = f(x_0)$

4. Polynomials $(P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0, a_i \in \mathbb{R}$ are continuous for all $x_0 \in \mathbb{R}$.

5. $f(x) = \sin x$ and $g(x) = \cos x$ are continuous for all $x \in \mathbb{R}$.

Proof. We show that $f(x) = \sin x$ is continuous at $a \in \mathbb{R}$. Let $x \in \mathbb{R}$, $x \neq a$ and consider the right-angled triangle with vertices (cos *a*, sin *a*), (cos *x*, sin *x*), (cos *x*, sin *a*). Then the lengths of the legs

are

less than the length of the hypotenuse, which is less then the arc length $x - a$, that is, $|\sin x - \sin a| \leq |x - a|$.

If $\varepsilon > 0$ and $\delta = \varepsilon$ then for all $x \in \mathbb{R}$ for which $|x - a| < \delta$ we have that $|f(x) - f(a)| = |\sin x - \sin a| \le |x - a| < \varepsilon$, so *f* is continuous at *a*.

6. Investigate the continuity of the following functions: a) the sign function or signum function: sgn(*x*) = 1, ha *x* > 0 0, ha *x* = 0 $\lfloor -1, \text{ ha } x < 0$ b) the floor function: $f(x) = [x]$, where $[x] = \max\{k \in \mathbb{Z} : k \leq x\}$ c) the fractional part function: $f(x) = \{x\} = x - [x]$

Solution. a) $\lim_{x\to 0+}$ sgn(*x*) = 1 \neq sgn(0) = 0 \implies $f(x)$ = sgn(*x*) is not continuous at 0 from the right

(and similarly not continuous at 0 from the left) \implies *f* is not continuous at 0. If *x* ≠ 0 then *f* is continuous at *x*.

b) If
$$
k \in \mathbb{Z}
$$
 then $\lim_{x \to k-0} [x] = k - 1$, $\lim_{x \to k+0} [x] = k = [k]$
\n $\implies f(x) = [x]$ is continuous at k from the right but not from the left.

c) If
$$
k \in \mathbb{Z}
$$
 then $\lim_{x \to k-0} {x} = 1$, $\lim_{x \to k+0} {x} = {k} = 0$
\n $\implies f(x) = {x}$ is continuous at k from the right but not from the left.

7. $f(x) = \begin{cases} x \sin(x) \\ y \sin(x) \end{cases}$ 1 *x* if *x* ≠ 0 0 if $x = 0$ is continuous for all $x \in \mathbb{R}$.

8. Show that the **Dirichlet function** $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$ is not continuous at any $x \in \mathbb{R}$.

Solution. \bullet If $x_0 \in \mathbb{Q}$, then let $x_n \in \mathbb{R} \setminus \mathbb{Q}$ $\forall n$ such that $x_n \rightarrow x_0$. Then $f(x_n) = 0 \rightarrow 0 \neq 1 = f(x_0)$. \bullet If $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then let $x_n \in \mathbb{Q}$ $\forall n$ such that $x_n \rightarrow x_0$. Then $f(x_n) = 1 \rightarrow 1 \neq 0 = f(x_0)$.

9. Show an example for a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous only at one point.

Solution. Let $f(x) = \begin{cases} x, & \text{ha } x \in \mathbb{Q} \\ -x, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Then *f* is continuous only at 0

Since $f(x) = |x|$ for all $x \in \mathbb{R}$, then $x_n \to 0 \iff |x_n| \to 0 \iff |f(x_n)| \to 0 \iff f(x_n) \to 0.$

Similar examples: $f(x) = \begin{cases} x, & \text{for } x \in \mathbb{Q} \\ 0, & \text{for } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$, $f(x) = \begin{cases} x, & \text{for } x \in \mathbb{Q} \\ 2x, & \text{for } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ etc.

Types of discontinuities

.

Definition. We say that the function *f* is **discontinuous** at $x_0 \in \mathbb{R}$ or *f* has a discontinuity at $x_0 \in \mathbb{R}$ if x_0 is a limit point of D_f and f is not continuous at x_0 .

Classification of discontinuities:

1) Discontinuity of the first kind:

a) *f* has a **removable discontinuity** at x_0 if ∃ lim $f(x) \in \mathbb{R}$ but lim $f(x) \neq f(x_0)$ or $f(x_0)$ is not defined.

b) f has a **jump discontinuity** at x_0 if $\exists \lim_{x \to x_0^-} f(x) \in \mathbb{R}$ and $\exists \lim_{x \to x_0^+} f(x) \in \mathbb{R}$ but $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$.

2) Discontinuity of the second kind:

f has an **essential discontinuity** or a discontinuity of the second kind at x_0 if *f* has a discontinuity

at x_0 but not of the first kind.

Remarks: 1. In the case of a discontinuity of the first kind, both one-sided limits exist and are finite. 2. In the case of an essential discontinuity, at least one of the one-sided limits doesn't

exist

or exists but is not finite.

Examples

1. Discontinuity of the first kind

a) $f(x) =$ $x^2 - 1$ $\frac{1}{x-1}$ has a removable discontinuity at $x_0 = 1$.

b) $f(x) = sgn(x)$ has a jump discontinuity at $x = 0$.

c) $f(x) = [x]$ has a jump discontinuity for all $x \in \mathbb{Z}$.

2. Discontinuity of the second kind

- b) The Dirichlet function has essential discontinuities for all $x \in \mathbb{R}$.
- c) The function $f(x) = e^{\frac{1}{x}}$ has an essential discontinuity at $x = 0$. \bullet If $x \rightarrow 0 +$, then 1 *x* →∞, and since $\lim_{x \to \infty} e^x = \infty$, then $\lim_{x \to 0+0} e^{\frac{1}{x}} = \infty$.

• If
$$
x \to 0^-
$$
, then $\frac{1}{x} \to -\infty$, and since $\lim_{x \to -\infty} e^x = 0$, then $\lim_{x \to 0^-} e^{\frac{1}{x}} = 0$.