Calculus1-07

Properties of continuous functions

Intermediate value theorem
Theorem (Intermediate value theorem or Bolzano’s theorem).

Assume that f is continuous on [a, b], f(a) = f(b) and f(a) < c < f(b) or f(b) < c < f(a).
Then there exists xg € (a, b) such that f(xg) = c.

f(b) > 0

f(a)<OF

Proof. We prove the case f(a) < ¢ < f(b). The point x, can be found with an interval halving method
(bisection method).

a+b
1st step: Consider the midpoint —— of the interval [a, b]. There are three cases:
2

a+b a+b
Iff( )>c=>alz=a, by :=
2
a+b a+b
Iff( )<c=>01:= , by:=b
2 2
a+b a+b
Iff(—):c = Xg:=
2 2
01+b1

2nd step: Consider the midpoint of the interval [ay, b;]. There are again three cases:

a;+b a;+b
Iff( = 1)>c=:oazz=al, by := i
2b b 2
a + a;+
Iff( - 1)<c=>az:= = 1,b2:=b1
2b 2b
a + a; +
Iff( ! l)=c=:~ Xo = it
2 2

Continuing the above procedure, we either reach x, in one of the steps, or we define
the sequences (a,) and (b,) such that

[Cl, b] 2 [017 bl] o [02’ b2] 2.2 [an: bn] 2 [an+1, bn+1] Doy
and



2
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b-a bij-a;, b-a b-a
bi-a,=——, by-a, = = , v bp—ap=
2 2 2? 2"

From this it follows that lim (b, — a,,) = 0, so by the Cantor axiom there exists a unique

N—oco

element xo € [a, b] such that ([a,, ba] = {Xo}.
n=1
Then a,— X, b,— Xg, S0 by the continuity of f we have that lim f(a,) = f(xo) = lim f(b,),

and since f(a,) < c < f(b,), it follows that f(xg) = c.

Consequence 1. (Bolzano’s theorem)
Assume that f is continuous on [a, b] and f(a) f(b) < 0.
Then there exists x, € (a, b) such that f(xg) = 0.

Remark. The above two theorems are equivalent.

Consequence 2. Every polynomial of odd degree has at least one real root.

k

Proof: Let f(X) = 0y o1 X2 K + a5 x> + ...+ a1 X + g, and let ay 4,1 > 0.

= o limf(x) = o, so there exists a number b such that f(b) > 1, and

X—>o0

e lim f(x) = -, so there exists a number a such that f(a) < -1.

X->-00

Since f is a polynomial then it is everywhere continuous, so it is also continuous on the

closed interval [a, b] and f(a) f(b) < 0.
Thus by Consequence 1. there exists x € (a, b), for which f(x) = 0.

Remark. If f is not continuous on the closed interval [a, b] then the theorem is not true, as the
following example shows. Here f(a) and f(b) have different signs but f is not continuous
at a and f doesn’t have a root on the interval (a, b).

f(b)

Applications
Example 1. Find a real root of the polynomial f(x) = x> +4 x> -6 x - 2.

Solution. We apply an interval halving method. First we find two numbers a and b such that
f(a) and f(b) have opposite signs.
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1)f(0)=-2 <0, f(2)=10>0 = f hasarootin the interval [0, 2].
0+2

Bisect the interval and examine the signof fat x = — = 1.
2

2)f(1)=-3<0, f(2)=10>0 = f hasarootin theinterval[1, 2].
1+2
Bisect the interval again and examine the sign of f at x= —— = 1.5.
2

3)f(1)=-3<0, f(1.5)=1.375>0 = f hasarootin theinterval[1, 1.5].

1
Bisect the interval again and examine the sign of f at x = —— = 1.25.
2

4) f(1.25) = -1.29688 < 0, f(1.5)=1.375>0 = f has arootin the interval [1.25, 1.5].

Continuing the process, the root can be approximated as = 1.38318....

A

10+
fx)=x3+4x°-6x-2
5,
1.25
| i ! -
‘\_/l/./ 1
-5h

Example 2. Show that the equation 2 = x2 +Ig(x) has a real solution.

Solution. Set the equation to zero and consider the function f(x) = 2* - x* - lg(x).
We have to show that there exists a real number x such that f(x) = 0, that is,

we have to find two numbers a and b such that f(a) and f(b) have opposite signs.

For example
ef(1)=2-1-0=1>0
e f(3)=8-9-1g(3)»-1.47712<0

= by Bolzano’s theorem f has a root in the interval (1, 3) and thus
the equation has a real solution.

Weierstrass extreme value theorem

Theorem (Weierstrass boundedness theorem).
If f is continuous on [a, b], then f is bounded on [a, b].

Proof. 1) Indirectly, suppose that for example f is not bounded above.
Then for all n e N there exists x, € [a, b], such that f(x,) > n.

3
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2) Obviously x, € [a, b] for all n € N, so the sequence (x,) is bounded, and thus
by the Bolzano-Weierstrass theorem there exists a convergent subsequence (x,,) such that
limx, =aela, bl.
koo

. . . k 00 .
3) Since f is continuous at a and x,,, S a then limf (Xn,) = f(a), so the sequence
k-0

(f (xn,)) is bounded.

4) Since the index sequence (ny) is strictly monotonically increasing, then nj, = k
= f(xp,)>nx 2 kforallke N = the sequence (f (x,,)) is not bounded above
(it diverges to +o0). This is a contradiction, so f is bounded above on [a, b].

Theorem (Weierstrass extreme value theorem).
If f is continuous on the closed interval [a, b] then
there exist numbers a €[a, b] and B € [a, b], such that
f(a) < f(x) < f(B)forall x € [a, b],
that is, f has both a minimum and a maximum on [a, b].

f(B)

f(a)

Proof. 1) Let A=f([a, b]) = {f(x): x €][a, b]}.
By the previous theorem A is bounded, so by the least-upper-bound property of the
real numbers, 3 sup A:= M eR. We prove that 3 B €[aq, b], such that f(8) = M.

1
2) Since M is the least upper bound, then for alln e N, M - — is not an upper bound for A, so
n
1
3 x, € [a, b] such that f(x,) >M - —.
n
1
Since M is an upper bound for A, we have M-— <f(x,)<MforallneN.
n

3) The sequence (x,) < [a, b] is bounded, so by the Bolzano-Weierstrass theorem
there exists a convergent subsequence (x,,) such that lim x,, = 8 €[a, b].
k>

1 1 —oo
4) Then M - — <f (xp,) <Mforall ke N. Since —k—>0, then by the sandwich theorem
Nk Ny
k—)oo
f (Xp,)— M.
5) Since f is continuous at 8 and xnkli:ﬁ then limf (x,,) = f(B).
k>
The limit is unique, so f(B) = M.
6) The existence of a € [a, b] can be proved similarly.

Remark. If f is not continuous or if the interval is not compact, then the theorem is not true.
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For example, let f(x) = { X fx#0 and investigate f on the following intervals.

0 ifx=0
a) The interval (0, 1] is bounded but not closed. f is continuous here but not bounded
above and thus it doesn’t have a maximum.
b) The interval [-1, 1] is compact, but f is not continuous here and doesn’t have a
minimum and a maximum.
¢) The interval [1, ) is not bounded. f is continuous here, but doesn’t have a minimum.

1)f:R—R 2)f:(0,1]—R 3)f:[-1,1]—R 4)f:[1, 0)—>R
2 2 2 2
1 1 1 1
@ @ - @ @
-1 1 2 -1 1 2 -1 1 2 -1 1 2
-1 -1 -1} -1
2 2 2 2

Remark. It follows from the intermediate value theorem and the extreme value theorem that
if f is continuous on [a, b], then the range of f is a closed and bounded interval:
f([a, b]) = [c, d], where c = min{f(x): x € [a, b]} and d = max {f(x) : x € [qa, b]}.

Uniform continuity

Introduction. Recall that f : Hc R— R is continuous on H if f is continuous for all x e H,
thatis,VxeH Ve>0 3I6>0suchthatVyeH, |x-y| <6 = |f(x)-f(y)]| <&
Here 6 = O(¢, x), that is, continuity at a point is a local property. In some cases 6

can be chosen independent of x.

Definition. The function f : E c R— R is uniformly continuous on the set H c E, if
Ve>0 36>0 suchthat Vx,yeH: |x-y| <6 = |f(x)-f(x)]| <e.

Remarks. a) Here 6 depends only on € and not on x.
b) The definition implies that 3 inL (g, x) > 0.
Xe

¢) His usually an interval.

d) If f is uniformly continuous on the interval / (open or closed) and J c / then
fis uniformly continuous on J. The same ¢ is suitable for J.

e) If f is uniformly continuous on H then f is continuous for all x € H.

Example. Let f(x) = x°.
a) Prove that f is continuous for all x; € [1, 2].
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b) Does there exist inf 0O(g, xp) >0, that s,
Xo€[1,2]

does there exist a 6(¢) that is suitable for all xy € [1, 2]?
Is f uniformly continuous on [1, 2]?

¢) If f uniformly continuous on (1, 2)?

d) Is f uniformly continuous on (1, )?

Solution. a) | f(x)=f(xo) | = | X*=x3 | = | X=X | * | Xx+Xo | = | x=Xo | -(X+xo) <
< | x=Xo| -(Xo+1+x0) <€ if |x—x0| < = 6(g, Xq)
2Xo+1
£ xell2] € £
b) 6(8, X0)= 2 == =6(€’ 2))
2Xxp+1 2:2+1 5

this is a common 6(¢) that is suitable for all x e [1, 2],
so f is uniformly continuous on [1, 2].

¢) Yes, 6(¢, 2) is also suitable here, see Remark d).

d) f is not uniformly continuous on (1, o).

1 1
Letx,=n+—-—owand y, =n— . Then x, - y, = — —0, that is, the terms get
n n
arbitrarily close to each other if nis large enough, but
1)2 1
| f(xn)=f(yn) | = | (n+—) -n? | =2+—>2
n

n
so if € < 2 then there is no suitable 6.

Another choice: x, = yn+1, y,= \/;

Example. Prove that f(x) = \/; is uniformly continuous on [0, o).

Solution. Lete>0.1f6=¢*and | x-y | <&then

0=f) 1= | Nx =y | =y [ =y || Vx -4l | =
TN [ [ Vw47 | =N TF7T < VB =c.

1
Example. Let f(x) = —. Prove that
X

a) f is uniformly continuous on [1, );
b) f is not uniformly continuous on (0, 1).

. 11 | x-y| |x-yl|
Solution. a) | f(x)-f(y) | = |———|: < =|x-y| <e=6.
Xy Xy 1-1
11, |x=-yl
b) | f0) =) | = | =-= | = <eif [x-y| <exy,
Xy Xy
but 6(y)=ex y—0if y—0, so there is no common ¢ that is independent of y.
1 1 1 1
For example, if x,=— and y,=—— thenx,-y,= - -—— = —0, but
n n+1 n n+l nn+1l)

| fOa)=f(ya) | = | n=(n+1)| =1,
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so if € < 1 then thereis no suitable 6.

Theorem (Heine). If f is continuous on the compact set H then f is uniformly continuous on H.

Proof. 1) Indirectly assume that f is not uniformly continuous on K, that is,
Je>0 suchthat V6>0 3Ix,yeH suchthat | x-y| <6 but | f(x)-f(y)| 2e.

1
2) Let 6 = - forall n e N*.
n

1
Then forthis 6 3 x,, y, €H such that | Xn = Yn <; but | f(x,)-f(yn) | €.

3) Since H is compact, then by the Bolzano-Weierstrass theorem the sequence (x,) c H
has a convergent subsequence whose limit belongs to H, that is, there is an
index sequence (ny) such that (x,,) is convergent and lim x,, = a e H.
koo

4) We show that with the same index sequence (ny), the sequence (y,,) is also convergent
and lim y,, = a. Forall ne N* we have
k—oo
1
+ | Xp, —Q | <—+
Ny

.ynk _Xnk

ynk_a| < Xnk—a|

. N k—oo . k—oo
Since ——0 and x,,k—a| —0 then their sum also tends to 0, so |y,,k—a| —0.

Nk

5) Since xnklgoa and ynklzoa and fis continuous at a € H, then f(x,,k)lgff(a) and
f(ynk)ki?f(a), from where Lim (f(xn,) = f(yn,)) = f(a) - f(a) =0,

however, this is a contradiction, since forallne N* | f(x,)-f(y,) | €.
It means that the indirect assumption is false, so the statement of the theorem is true.

Theorem. If f is continuous on [a, ) and 3 lim,_,.. f(x) =AeR then fis
uniformly continuous on [a, o).

Lipschitz continuity

Definition. The function f is Lipschitz continuous on the set A if there exists
L 20 (Lipschitz constant), such that | f(x)-f(y) | <L | x-y | forallx, y € A.

Theorem. If f is Lipschitz continuous on A, then f is uniformly continuous on A.

Proof. a) If L =0 then 6 can be arbitrary, f is constant, so it is uniformly continuous.
& &
b)If >0 thenlet &= —.If | X—y| <~ forallx, y A then
&
| f(x)-f(y) | <L | X—y| SL-Z =¢.

Remark. The converse of the theorem is not true.
For example f(x) = \/; is uniformly continuous on [0, 1] but not Lipschitz continuous.
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Letx=0, y>0andL>0.Then
| \/;—\/;| sL|y—x| = WsL-y«:»L—lZSy

1
It means that there is no positive number that is less than —» which is a contradiction.
L

Remark. f is Lipschitz continuous on A = f is uniformly continuous on A = f is continuous on A.
Continuity of the inverse function

Definition. The function f is invertible if for all x, y € Df, x * y = f(x) £ f(y).
(Or, equivalently, for all x, y € Ds: (f(x) =f(y) = x=y)).
The inverse function f~! of f is defined as follows:
Df1=Rpand (f* of) (x) = x for all x € Dy.

Remark. If f is invertible and continuous at x, then from this it doesn’t follow that
1 ifxz
f~1is continuous at f(x,). For example, the function f(x) = { xr I xz0 is invertible.
x+2 ifx<-1
If we express x from the equation y = f(x), then we get that the inverse of f is
-1 ify=1
Fiy) = { Y
W y-2 ify<1

= fiscontinuous but f~!is not continuous.

Theorem. Assume that f : [a, b]— R is continuous and strictly monotonic.
Then 1 is continuous on Ry.

Proof. 1) Since f is continuous on [a, b] then it follows from the intermediate value theorem

and extreme value theorem that the range of f is a closed and bounded interval.
Let [c, d] = Ry.
Since f is strictly monotonic then it is bijective, so it has aninverse, f* : [c, d]—[a, b].

2) Let v e [c, d] arbitrary, u := f}(v) and assume that (y,) c[c, d], y,— V is an arbitrary
sequence. To prove the continuity of f~! at v, it is enough to show that
Xp =y, —F1(v)=u.

3) Assume indirectly that the sequence (x,,) c [a, b] does not tend to u.
Then36>0 VkeN In,>k,suchthat | x, -u| 26.

4) Since the sequence (x,,) c [a, b]\ (u - 6, u + 6) is bounded, then it has a convergent
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subsequence (xy, ). Let lim X, = a. Obviously a €[a, b], but a # u.
| [—)oo |
5) Since f is continuous at a then f(x,, ) = y,, —f(a).

Since y,,mov and (yy, ) is a subsequence of (y,), then y, —v, so f(a) = v.

6) We obtained that a # u, but f(a) = f(u) = v, which means that f is not bijective.
This is a contradiction, so the indirect assumption is false.
Therefore, x,— u and thus f~* is continuous at v.

Convexity and continuity

Definition. The function f is convex on the interval | c Dy if forall x, y e land t € [0, 1]
ftx+(1-t)y)<tf(x)+(1-t)f(y)
The function f is concave on the interval / ¢ Dy if forall x, y e land t € [0, 1]
ftx+(1-t)y)2tf(x)+(1-t)f(y).

f is strictly convex / strictly concave if equality doesn’t hold.

A

f is concave

f is convex
y:ha,b(x)

\J

f
’

a b
Remark. Let a, b €/, then the secant line passing through the points (a, f(a)) and (b, f(b)) is

f(b)-f
hap(X) = % (x—a)+f(a).

conve
The function f is { vex on theinterval | c Dy if
concave
f(x) < hap(x)

Va,bel, a<x<b =
{f(X)Zha,b(X)

,thatis, the secant lines of f

. [ above
always lie { below the graph of f.

Theorem. If f is convex on the open interval /, then f is continuous on /.

Proof. Leta, b, celsuchthata<c<b. Ifxe(c, b), then h, < f(X) < hc p(x).
Since lim hg ((x) = lim h p(x) = f(c), then by the sandwich theorem lim f(x) = f(c),

X-C+

and similarly lim f(x) = f(c).

9
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Remark. If f is convex on a closed interval, then f can be discontinuous only at the
endpoints of the interval.



