
Calculus 1 - 07

Properties of continuous functions

Intermediate value theorem

Theorem (Intermediate value theorem or Bolzano’s theorem).
Assume that f  is continuous on [a, b], f (a) ≠ f (b) and f (a) < c < f (b) or f (b) < c < f (a). 
Then there exists x0 ∈ (a, b) such that f (x0) = c.

a

f (a)

b

f (b)

x0

c    a

f (a) < 0
b

f (b) > 0

x0

Proof. We prove the case f (a) < c < f (b). The point x0 can be found with an interval halving method
    (bisection method).

      1st step: Consider the midpoint 
a+ b

2
 of the interval [a, b]. There are three cases:

    If f
a+ b

2
> c  ⟹  a1 := a, b1 :=

a+ b

2

    If f
a+ b

2
< c  ⟹  a1 :=

a+ b

2
, b1 := b

    If f
a+ b

2
= c  ⟹   x0 :=

a+ b

2

    2nd step: Consider the midpoint 
a1 + b1

2
 of the interval [a1, b1]. There are again three cases:     

      If f
a1 + b1

2
> c  ⟹  a2 := a1, b2 :=

a1 + b1

2

      If f
a1 + b1

2
< c  ⟹  a2 :=

a1 + b1

2
, b2 := b1

      If f
a1 + b1

2
= c  ⟹   x0 :=

a1 + b1

2
      Continuing the above procedure, we either reach x0 in one of the steps, or we define 
      the sequences (an) and (bn) such that
      [a, b] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ ... ⊃ [an, bn] ⊃ [an+1, bn+1] ⊃ ...,
      and



      b1 - a1 =
b- a

2
, b2 - a2 =

b1 - a1

2
=
b- a

22
, ..., bn - an =

b- a

2n
, ...

      From this it follows that lim
n∞

(bn - an) = 0, so by the Cantor axiom there exists a unique 

      element x0 ∈ [a, b] such that 
n=1

∞

[an, bn] = {x0}.

      Then an⟶x0, bn⟶x0, so by the continuity of f  we have that lim
n∞

f (an) = f (x0) = lim
n∞

f (bn),

      and since f (an) ≤ c ≤ f (bn), it follows that f (x0) = c. 
      

Consequence 1. (Bolzano’s theorem)
Assume that f  is continuous on [a, b] and f (a) f (b) < 0.
Then there exists x0 ∈ (a, b) such that f (x0) = 0.

Remark. The above two theorems are equivalent.

Consequence 2. Every polynomial of odd degree has at least one real root.

Proof: Let f (x) = a2 k+1 x2 k+1 + a2 k x2 k + ...+ a1 x + a0, and let a2 k+1 > 0.
    ⟹    lim

x∞
f (x) =∞, so there exists a number b such that f (b) > 1,  and

                lim
x-∞

f (x) = -∞, so there exists a number a such that f (a) < -1.

    Since f  is a polynomial then it is everywhere continuous, so it is also continuous on the
    closed interval [a, b] and f (a) f (b) < 0.
    Thus by Consequence 1. there exists x ∈ (a, b), for which f (x) = 0.

     

Remark. If f  is not continuous on the closed interval [a, b] then the theorem is not true, as the
         following example shows. Here f (a) and f (b) have different signs but f  is not continuous
         at a and f  doesn’t have a root on the interval (a, b).

a

f (a)

b

f (b)

Applications

Example 1. Find a real root of the polynomial f (x) = x3 + 4 x2 - 6 x - 2.

Solution. We apply an interval halving method. First we find two numbers a and b such that
f (a) and f (b) have opposite signs.
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( ) ( )  opposite signs.

1) f (0) = -2 < 0, f (2) = 10 > 0  ⟹  f  has a root in the interval [0, 2]. 

     Bisect the interval and examine the sign of f  at x =
0+ 2

2
= 1.

2) f (1) = -3 < 0, f (2) = 10 > 0  ⟹  f  has a root in the interval [1, 2]. 

     Bisect the interval again and examine the sign of f  at x =
1+ 2

2
= 1.5. 

3) f (1) = -3 < 0, f (1.5) = 1.375 > 0  ⟹  f  has a root in the interval [1, 1.5].

    Bisect the interval again and examine the sign of f  at x =
1+ 1.5

2
= 1.25. 

4) f (1.25) ≈ -1.29688 < 0, f (1.5) = 1.375 > 0  ⟹  f  has a root in the interval [1.25, 1.5].
    
    Continuing the process, the root can be approximated as ≈ 1.38318... .

1.25

f (x) = x3 + 4 x2 - 6 x - 2

1 1.5 2

-5

5

10

Example 2. Show that the equation   2x = x2 + lg(x)   has a real solution.

Solution. Set the equation to zero and consider the function f (x) = 2x - x2 - lg(x).
We have to show that there exists a real number x such that f (x) = 0, that is,
we have to find two numbers a and b such that f (a) and f (b) have opposite signs.
For example 
    f (1) = 2- 1- 0 = 1 > 0 
    f (3) = 8- 9- lg(3) ≈ -1.47712 < 0
 ⟹  by Bolzano’s theorem f  has a root in the interval (1, 3) and thus 
          the equation has a real solution.
          

Weierstrass extreme value theorem

Theorem (Weierstrass boundedness theorem). 
If f  is continuous on [a, b], then f  is bounded on [a, b].

Proof. 1) Indirectly, suppose that for example f  is not bounded above. 
         Then for all n ∈  there exists xn ∈ [a, b], such that f (xn) > n.
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( )

    2) Obviously xn ∈ [a, b] for all n ∈ , so the sequence (xn) is bounded, and thus
         by the Bolzano-Weierstrass theorem there exists a convergent subsequence (xnk) such that
         lim

k∞
xnk = α ∈ [a, b]. 

   3) Since f  is continuous at α and xnk⟶
k∞

α  then lim
k∞

f (xnk) = f (α), so the sequence 

        (f (xnk)) is bounded.
   4) Since the index sequence (nk) is strictly monotonically increasing, then nk ≥ k
        ⟹  f (xnk) > nk ≥ k for all k ∈   ⟹  the sequence (f (xnk)) is not bounded above 
        (it diverges to +∞). This is a contradiction, so f  is bounded above on [a, b].
        

Theorem (Weierstrass extreme value theorem). 
If f  is continuous on the closed interval [a, b] then 
there exist numbers α ∈ [a, b] and β ∈ [a, b], such that
f (α) ≤ f (x) ≤ f (β) for all x ∈ [a, b],
that is, f  has both a minimum and a maximum on [a, b].

a bα β

f (α)

f (β)

Proof. 1) Let A = f ([a, b]) = {f (x) : x ∈ [a, b]}.
         By the previous theorem A is bounded, so by the least-upper-bound property of the 
         real numbers, ∃ sup A :=M ∈ . We prove that ∃ β ∈ [a, b], such that f (β) =M.

    2) Since M is the least upper bound, then for all n ∈ , M-
1

n
 is not an upper bound for A, so

         ∃ xn ∈ [a, b] such that f (xn) >M-
1

n
.

         Since M is an upper bound for A, we have  M-
1

n
< f (xn) ≤M for all n ∈ .

    3) The sequence (xn) ⊂ [a, b] is bounded, so by the Bolzano-Weierstrass theorem 
         there exists a convergent subsequence (xnk) such that lim

k∞
xnk = β ∈ [a, b]. 

    4) Then M-
1

nk
< f (xnk) ≤M for all k ∈ . Since 

1

nk

k∞
0, then by the sandwich theorem 

          f (xnk)⟶
k∞

M.

    5) Since f  is continuous at β and xnk⟶
k∞

β  then lim
k∞

f (xnk) = f (β). 

         The limit is unique, so f (β) =M.
    6) The existence of α ∈ [a, b] can be proved similarly.
    

Remark. If f  is not continuous or if the interval is not compact, then the theorem is not true.
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 compact,

          For example, let f (x) =
1

x
if x ≠ 0

0 if x = 0
  and investigate f  on the following intervals.

          a) The interval (0, 1] is bounded but not closed. f  is continuous here but not bounded 
                above and thus it doesn’t have a maximum.
          b) The interval [-1, 1] is compact, but f  is not continuous here and doesn’t have a 
               minimum and a maximum.
          c) The interval [1, ∞) is not bounded. f  is continuous here, but doesn’t have a minimum.
          

1) f :⟶  2) f : (0, 1]⟶    3) f : [-1, 1]⟶     4) f : [1, ∞)⟶

-2 -1 1 2

-2

-1

1

2

   
-2 -1 1 2

-2

-1

1

2

   
-2 -1 1 2

-2

-1

1

2

   
-2 -1 1 2

-2

-1

1

2

Remark. It follows from the intermediate value theorem and the extreme value theorem that
          if f  is continuous on [a, b], then the range of f  is a closed and bounded interval:
          f ([a, b]) = [c, d], where c = min {f (x) : x ∈ [a, b]} and d = max {f (x) : x ∈ [a, b]}.

Uniform continuity

Introduction. Recall that f :H ⊂ ⟶ is continuous on H if f  is continuous for all x ∈ H, 
that is, ∀ x ∈ H ∀ ε > 0 ∃ δ > 0 such that ∀ y ∈ H, x - y < δ ⟹ f (x) - f (y) < ε.
Here δ = δ(ε, x), that is, continuity at a point is a local property. In some cases δ 
can be chosen independent of x.

Definition. The function f : E ⊂ ⟶ is uniformly continuous on the set H ⊂ E, if
    ∀ ε > 0 ∃ δ > 0   such that  ∀ x, y ∈ H : x - y < δ ⟹ f (x) - f (x) < ε. 

Remarks. a) Here δ depends only on ε and not on x.
         b) The definition implies that ∃ inf

x ∈H
δ(ε, x) > 0.

         c) H is usually an interval.
         d) If f  is uniformly continuous on the interval I (open or closed) and J ⊂ I then
              f  is uniformly continuous on J. The same δ is suitable for J.
         e) If f  is uniformly continuous on H then f  is continuous for all x ∈ H.
         

Example. Let f (x) = x2.
a) Prove that f  is continuous for all x0 ∈ [1, 2].
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b) Does there exist inf
x0 ∈ [1,2]

δ(ε, x0) > 0, that is, 

     does there exist a δ(ε) that is suitable for all x0 ∈ [1, 2]?
     Is f  uniformly continuous on [1, 2]?
 c) If f  uniformly continuous on (1, 2)?
 d) Is f  uniformly continuous on (1, ∞)?

Solution. a) f (x) - f (x0) = x2 - x0
2 = x - x0 · x + x0 = x - x0 · (x + x0) <

       < x - x0 · (x0 +1+ x0) < ε   if   x - x0 <
ε

2 x0 + 1
= δ(ε, x0)

 b) δ(ε, x0) =
ε

2 x0 + 1
≥

x0 ∈ [1,2] ε

2 ·2+ 1
=
ε

5
= δ(ε, 2), 

      this is a common δ(ε) that is suitable for all x ∈ [1, 2],
      so f  is uniformly continuous on [1, 2].
 c) Yes, δ(ε, 2) is also suitable here, see Remark d).
 d) f  is not uniformly continuous on (1, ∞).

      Let xn = n+
1

n
⟶∞ and yn = n⟶∞. Then xn - yn =

1

n
⟶0, that is, the terms get 

      arbitrarily close to each other if n is large enough, but

      f (xn) - f (yn) = n+
1

n

2
- n2 = 2+

1

n2
> 2,

      so if ε < 2 then there is no suitable δ.
      Another choice: xn = n+ 1 , yn = n .
      

Example. Prove that f (x) = x  is uniformly continuous on [0, ∞).

Solution. Let ε > 0. If δ = ε2 and x - y < δ then 

f (x) - f (y) = x - y = x - y · x - y ≤

≤ x - y · x + y = x - y < δ = ε.

Example. Let f (x) =
1

x
. Prove that

a) f  is uniformly continuous on [1, ∞);
b) f  is not uniformly continuous on (0, 1).

Solution. a) f (x) - f (y) =
1

x
-

1

y
=

x - y

x y
≤

x - y

1 ·1
= x - y < ε = δ.

b) f (x) - f (y) =
1

x
-

1

y
=

x - y

x y
< ε if  x - y < ε x y,

      but δ(y) = ε x y⟶0 if y⟶0, so there is no common δ that is independent of y.

      For example, if xn =
1

n
 and yn =

1

n+ 1
 then xn - yn =

1

n
-

1

n+ 1
=

1

n(n+ 1)
⟶0, but 

      f (xn) - f (yn) = n- (n+ 1) = 1,
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( ) (y ) ( )

      so if ε < 1 then there is no suitable δ.
      

Theorem (Heine). If f  is continuous on the compact set H then f  is uniformly continuous on H.

Proof. 1) Indirectly assume that f  is not uniformly continuous on K, that is, 
         ∃ ε > 0 such that ∀ δ > 0 ∃ x, y ∈ H  such that  x - y < δ  but f (x) - f (y) ≥ ε.
   

    2) Let δ =
1

n
 for all n ∈ +. 

         Then for this δ   ∃ xn, yn ∈ H  such that xn - yn <
1

n
  but  f (xn) - f (yn) ≥ ε.

    3) Since H is compact, then by the Bolzano-Weierstrass theorem the sequence (xn) ⊂ H 
         has a convergent subsequence whose limit belongs to H, that is, there is an 
         index sequence (nk) such that (xnk) is convergent and lim

k∞
xnk = α ∈ H.     

    4) We show that with the same index sequence (nk), the sequence (ynk) is also convergent 
         and lim

k∞
ynk = α. For all n ∈ + we have

         ynk -α ≤ ynk - xnk + xnk -α <
1

nk
+ xnk -α

         Since 
1

nk

k∞
0  and  xnk -α ⟶

k∞
0  then their sum also tends to 0, so ynk -α ⟶

k∞
0.

    5) Since  xnk⟶
k∞

α  and  ynk⟶
k∞

α  and  f  is continuous at α ∈ H, then f (xnk)⟶
k∞

f (α)  and 

        f (ynk)⟶
k∞

f (α), from where lim
k∞

(f (xnk) - f (ynk)) = f (α) - f (α) = 0,

         however, this is a contradiction, since for all n ∈ +  f (xn) - f (yn) ≥ ε.
         It means that the indirect assumption is false, so the statement of the theorem is true.
         

Theorem. If f  is continuous on [a, ∞) and ∃ limx∞ f (x) = A ∈   then  f  is 
  uniformly continuous on [a, ∞).

Lipschitz continuity

Definition. The function f  is Lipschitz continuous on the set A if there exists 
    L ≥ 0 (Lipschitz constant), such that f (x) - f (y) ≤ L x - y   for all x, y ∈ A.

Theorem. If f  is Lipschitz continuous on A, then f  is uniformly continuous on A.

Proof. a) If L = 0 then δ can be arbitrary, f  is constant, so it is uniformly continuous.

              b) If L > 0 then let δ =
ε

L
. If x - y <

ε

L
 for all x, y ∈ A, then

                  f (x) - f (y) < L x - y ≤ L ·
ε

L
= ε.

Remark. The converse of the theorem is not true.
          For example f (x) = x  is uniformly continuous on [0, 1] but not Lipschitz continuous.
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 example ( )  uniformly  Lipschitz
          Let x = 0, y > 0 and L > 0. Then

          y - x ≤ L y - x   ⟺  y ≤ L · y  ⟺  
1

L2
≤ y

          It means that there is no positive number that is less than 
1

L2
, which is a contradiction.

Remark. f  is Lipschitz continuous on A  ⟹  f  is uniformly continuous on A  ⟹  f  is continuous on A.

Continuity of the inverse function

Definition. The function f  is invertible if for all x, y ∈ Df , x ≠ y  ⟹  f (x) ≠ f (y).
    (Or, equivalently, for all x, y ∈ Df :  (f (x) = f (y) ⟹ x = y)).
    The inverse function f -1 of f  is defined as follows: 
    Df-1 = Rf  and f -1 ◦ f  (x) = x for all x ∈ Df .     

Remark. If f  is invertible and continuous at x0 then from this it doesn’t follow that 

          f -1 is continuous at f (x0). For example, the function f (x) =
x + 1 if x ≥ 0
x + 2 if x < -1

 is invertible.

         If we express x from the equation y = f (x), then we get that the inverse of f  is

         f -1(y) =
y - 1 if y ≥ 1
y - 2 if y < 1

     ⟹    f  is continuous but f -1 is not continuous.

         

         

f

f -1

Theorem. Assume that f : [a, b]⟶ is continuous and strictly monotonic. 
 Then f -1 is continuous on Rf .

Proof. 1) Since f  is continuous on [a, b] then it follows from the intermediate value theorem 
          and extreme value theorem that the range of f  is a closed and bounded interval.
          Let [c, d] = Rf .
          Since f  is strictly monotonic then it is bijective, so it has an inverse, f -1 : [c, d]⟶ [a, b].
     2) Let v ∈ [c, d] arbitrary, u := f -1(v) and assume that (yn) ⊂ [c, d], yn⟶v is an arbitrary 
          sequence. To prove the continuity of f -1 at v, it is enough to show that 
          xn := f -1(yn)⟶f -1(v) = u.
     3) Assume indirectly that the sequence (xn) ⊂ [a, b] does not tend to u.
          Then ∃ δ > 0 ∀ k ∈  ∃ nk > k, such that xnk - u ≥ δ.
     4) Since the sequence (xnk) ⊂ [a, b] \ (u-δ, u+δ) is bounded, then it has a convergent
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k  convergent
          subsequence xnkl . Let lim

l∞
xnkl = α. Obviously α ∈ [a, b], but α ≠ u.

     5) Since f  is continuous at α then f xnkl  = ynkl ⟶f (α).

          Since yn
n∞

v and ynkl  is a subsequence of (yn), then ynkl ⟶v, so f (α) = v.
     6) We obtained that α ≠ u, but f (α) = f (u) = v, which means that f  is not bijective.
          This is a contradiction, so the indirect assumption is false. 
          Therefore, xn⟶u and thus f -1 is continuous at v.        

Convexity and continuity

Definition. The function f  is convex on the interval I ⊂ Df  if for all x, y ∈ I and t ∈ [0, 1]

f (t x + (1- t) y) ≤ t f (x) + (1- t) f (y)

    The function f  is concave on the interval I ⊂ Df  if for all x, y ∈ I and t ∈ [0, 1]
    
    f (t x + (1- t) y) ≥ t f (x) + (1- t) f (y).     
    
    f  is strictly convex / strictly concave if equality doesn’t hold.

f is convex

y=ha,b(x)

a b

     

f is concave

y=ha,b(x)

a b

Remark. Let a, b ∈ I, then the secant line passing through the points (a, f (a)) and (b, f (b)) is

ha,b(x) =
f (b) - f (a)

b- a
(x - a) + f (a).

The function f  is 
convex
concave

 on the interval I ⊂ Df  if

∀ a, b ∈ I, a < x < b  ⟹  
f (x) ≤ ha,b(x)
f (x) ≥ ha,b(x)

, that is, the secant lines of f

always lie 
above
below

  the graph of f .

Theorem. If f  is convex on the open interval I, then f  is continuous on I.

Proof. Let a, b, c ∈ I such that a < c < b.  If x ∈ (c, b), then ha,c ≤ f (x) ≤ hc,b(x).
    Since lim

xc+
ha,c(x) = lim

xc+
hc,b(x) = f (c), then by the sandwich theorem lim

xc+
f (x) = f (c),

    and similarly lim
xc-

f (x) = f (c).
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a bc

f

y=hc,b(x)

y=ha,c(x)

Remark. If f  is convex on a closed interval, then f  can be discontinuous only at the 
         endpoints of the interval.
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