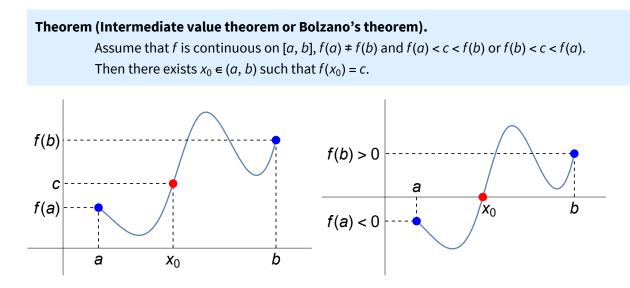
Calculus 1 - 07

Properties of continuous functions

Intermediate value theorem



Proof. We prove the case f(a) < c < f(b). The point x_0 can be found with an interval halving method (bisection method).

1st step: Consider the midpoint $\frac{a+b}{2}$ of the interval [a, b]. There are three cases: If $f\left(\frac{a+b}{2}\right) > c \implies a_1 := a, \ b_1 := \frac{a+b}{2}$ If $f\left(\frac{a+b}{2}\right) < c \implies a_1 := \frac{a+b}{2}, \ b_1 := b$ If $f\left(\frac{a+b}{2}\right) = c \implies x_0 := \frac{a+b}{2}$

2nd step: Consider the midpoint $\frac{a_1 + b_1}{2}$ of the interval $[a_1, b_1]$. There are again three cases:

If
$$f\left(\frac{a_1+b_1}{2}\right) > c \implies a_2 := a_1, \ b_2 := \frac{a_1+b_1}{2}$$

If $f\left(\frac{a_1+b_1}{2}\right) < c \implies a_2 := \frac{a_1+b_1}{2}, \ b_2 := b_1$
If $f\left(\frac{a_1+b_1}{2}\right) = c \implies x_0 := \frac{a_1+b_1}{2}$

Continuing the above procedure, we either reach x_0 in one of the steps, or we define the sequences (a_n) and (b_n) such that

$$[a, b] \supset [a_1, b_1] \supset [a_2, b_2] \supset ... \supset [a_n, b_n] \supset [a_{n+1}, b_{n+1}] \supset ...,$$

and

$$b_1 - a_1 = \frac{b - a}{2}, \ b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{b - a}{2^2}, \ \dots, \ b_n - a_n = \frac{b - a}{2^n}, \ \dots$$

From this it follows that $\lim_{n\to\infty} (b_n - a_n) = 0$, so by the Cantor axiom there exists a unique element $x_0 \in [a, b]$ such that $\bigcap_{n=1}^{\infty} [a_n, b_n] = \{x_0\}$. Then $a_n \longrightarrow x_0$, $b_n \longrightarrow x_0$, so by the continuity of f we have that $\lim_{n\to\infty} f(a_n) = f(x_0) = \lim_{n\to\infty} f(b_n)$, and since $f(a_n) \le c \le f(b_n)$, it follows that $f(x_0) = c$.

Consequence 1. (Bolzano's theorem)

Assume that f is continuous on [a, b] and f(a) f(b) < 0. Then there exists $x_0 \in (a, b)$ such that $f(x_0) = 0$.

Remark. The above two theorems are equivalent.

Consequence 2. Every polynomial of odd degree has at least one real root.

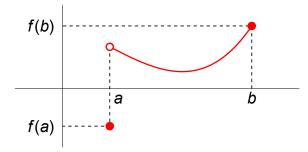
Proof: Let $f(x) = a_{2k+1} x^{2k+1} + a_{2k} x^{2k} + \dots + a_1 x + a_0$, and let $a_{2k+1} > 0$.

- \implies $\lim f(x) = \infty$, so there exists a number *b* such that f(b) > 1, and
 - $\lim_{x \to \infty} f(x) = -\infty$, so there exists a number *a* such that f(a) < -1.

Since f is a polynomial then it is everywhere continuous, so it is also continuous on the closed interval [a, b] and f(a) f(b) < 0.

Thus by Consequence 1. there exists $x \in (a, b)$, for which f(x) = 0.

Remark. If f is not continuous on the closed interval [a, b] then the theorem is not true, as the following example shows. Here f(a) and f(b) have different signs but f is not continuous at a and f doesn't have a root on the interval (a, b).



Applications

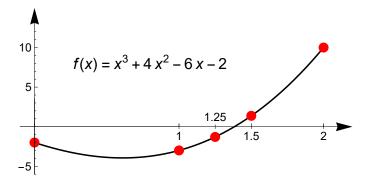
Example 1. Find a real root of the polynomial $f(x) = x^3 + 4x^2 - 6x - 2$.

Solution. We apply an interval halving method. First we find two numbers a and b such that f(a) and f(b) have opposite signs.

- 1) f(0) = -2 < 0, $f(2) = 10 > 0 \implies f$ has a root in the interval [0, 2]. Bisect the interval and examine the sign of f at $x = \frac{0+2}{2} = 1$.
- 2) f(1) = -3 < 0, $f(2) = 10 > 0 \implies f$ has a root in the interval [1, 2]. Bisect the interval again and examine the sign of f at $x = \frac{1+2}{2} = 1.5$. 3) f(1) = -3 < 0, $f(1.5) = 1.375 > 0 \implies f$ has a root in the interval [1, 1.5].
- Bisect the interval again and examine the sign of *f* at $x = \frac{1+1.5}{2} = 1.25$.

4) $f(1.25) \approx -1.29688 < 0$, $f(1.5) = 1.375 > 0 \implies f$ has a root in the interval [1.25, 1.5].

Continuing the process, the root can be approximated as \approx 1.38318....



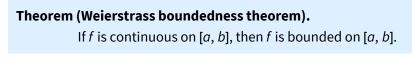
Example 2. Show that the equation $2^x = x^2 + \lg(x)$ has a real solution.

Solution. Set the equation to zero and consider the function $f(x) = 2^x - x^2 - \lg(x)$.

We have to show that there exists a real number x such that f(x) = 0, that is, we have to find two numbers a and b such that f(a) and f(b) have opposite signs. For example

- f(1) = 2 1 0 = 1 > 0
- $f(3) = 8 9 \lg(3) \approx -1.47712 < 0$
- \implies by Bolzano's theorem *f* has a root in the interval (1, 3) and thus the equation has a real solution.

Weierstrass extreme value theorem

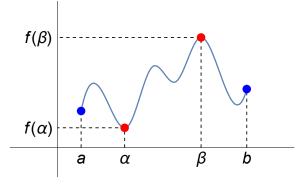


Proof. 1) Indirectly, suppose that for example *f* is not bounded above. Then for all $n \in \mathbb{N}$ there exists $x_n \in [a, b]$, such that $f(x_n) > n$.

- 2) Obviously $x_n \in [a, b]$ for all $n \in \mathbb{N}$, so the sequence (x_n) is bounded, and thus by the Bolzano-Weierstrass theorem there exists a convergent subsequence (x_{n_k}) such that $\lim_{k \to \infty} x_{n_k} = \alpha \in [a, b]$.
- 3) Since *f* is continuous at α and $x_{n_k} \xrightarrow{k \to \infty} \alpha$ then $\lim_{k \to \infty} f(x_{n_k}) = f(\alpha)$, so the sequence $(f(x_{n_k}))$ is bounded.
- 4) Since the index sequence (n_k) is strictly monotonically increasing, then $n_k \ge k$ $\implies f(x_{n_k}) > n_k \ge k$ for all $k \in \mathbb{N} \implies$ the sequence $(f(x_{n_k}))$ is not bounded above (it diverges to $+\infty$). This is a contradiction, so f is bounded above on [a, b].

Theorem (Weierstrass extreme value theorem).

If *f* is continuous on the closed interval [*a*, *b*] then there exist numbers $\alpha \in [a, b]$ and $\beta \in [a, b]$, such that $f(\alpha) \le f(x) \le f(\beta)$ for all $x \in [a, b]$, that is, *f* has both a minimum and a maximum on [*a*, *b*].



Proof. 1) Let $A = f([a, b]) = \{f(x) : x \in [a, b]\}.$

By the previous theorem A is bounded, so by the least-upper-bound property of the real numbers, $\exists \sup A := M \in \mathbb{R}$. We prove that $\exists \beta \in [a, b]$, such that $f(\beta) = M$.

2) Since *M* is the **least** upper bound, then for all $n \in \mathbb{N}$, $M - \frac{1}{n}$ is not an upper bound for *A*, so

 $\exists x_n \in [a, b]$ such that $f(x_n) > M - \frac{1}{n}$.

Since *M* is an upper bound for *A*, we have $M - \frac{1}{n} < f(x_n) \le M$ for all $n \in \mathbb{N}$.

- 3) The sequence $(x_n) \subset [a, b]$ is bounded, so by the Bolzano-Weierstrass theorem there exists a convergent subsequence (x_{n_k}) such that $\lim_{k \to a} x_{n_k} = \beta \in [a, b]$.
- 4) Then $M \frac{1}{n_k} < f(x_{n_k}) \le M$ for all $k \in \mathbb{N}$. Since $\frac{1}{n_k} \xrightarrow{k \to \infty} 0$, then by the sandwich theorem $f(x_{n_k}) \xrightarrow{k \to \infty} M$.

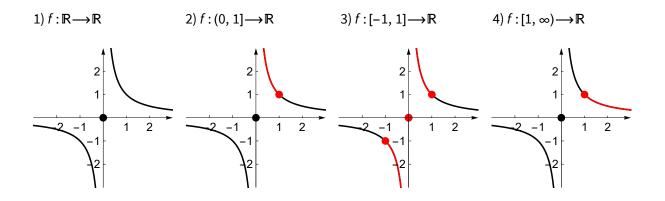
5) Since *f* is continuous at β and $x_{n_k} \xrightarrow{k \to \infty} \beta$ then $\lim_{k \to \infty} f(x_{n_k}) = f(\beta)$.

The limit is unique, so $f(\beta) = M$.

6) The existence of $\alpha \in [a, b]$ can be proved similarly.

For example, let $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ and investigate f on the following intervals.

- **a)** The interval (0, 1] is bounded but **not closed**. *f* is continuous here but not bounded above and thus it doesn't have a maximum.
- **b)** The interval [-1, 1] is compact, but *f* is **not continuous** here and doesn't have a minimum and a maximum.
- c) The interval $[1, \infty)$ is **not bounded**. *f* is continuous here, but doesn't have a minimum.



Remark. It follows from the intermediate value theorem and the extreme value theorem that if *f* is continuous on [*a*, *b*], then the range of *f* is a closed and bounded interval: f([a, b]) = [c, d], where $c = \min \{f(x) : x \in [a, b]\}$ and $d = \max \{f(x) : x \in [a, b]\}$.

Uniform continuity

Introduction. Recall that $f: H \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous on H if f is continuous for all $x \in H$, that is, $\forall x \in H$ $\forall \varepsilon > 0 \exists \delta > 0$ such that $\forall y \in H$, $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$. Here $\delta = \delta(\varepsilon, x)$, that is, continuity at a point is a local property. In some cases δ can be chosen independent of x.

Definition. The function $f: E \subset \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on the set $H \subset E$, if $\forall \epsilon > 0 \quad \exists \delta > 0$ such that $\forall x, y \in H: |x - y| < \delta \implies |f(x) - f(x)| < \epsilon$.

Remarks. a) Here δ depends only on ε and not on x.

b) The definition implies that $\exists \inf_{x \in H} \delta(\varepsilon, x) > 0$.

c) *H* is usually an interval.

- d) If *f* is uniformly continuous on the interval *I* (open or closed) and $J \subset I$ then *f* is uniformly continuous on *J*. The same δ is suitable for *J*.
- e) If f is uniformly continuous on H then f is continuous for all $x \in H$.

Example. Let $f(x) = x^2$.

a) Prove that f is continuous for all $x_0 \in [1, 2]$.

b) Does there exist inf _{x₀ ∈ [1,2]} δ(ε, x₀) > 0, that is, does there exist a δ(ε) that is suitable for all x₀ ∈ [1, 2]? Is f uniformly continuous on [1, 2]?
c) If f uniformly continuous on (1, 2)?
d) Is f uniformly continuous on (1, ∞)?

Solution. a)
$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |x - x_0| \cdot |x + x_0| = |x - x_0| \cdot (x + x_0) < |x - x_0| \cdot (x_0 + 1 + x_0) < \varepsilon \text{ if } |x - x_0| < \frac{\varepsilon}{2x_0 + 1} = \delta(\varepsilon, x_0)$$

b) $\delta(\varepsilon, x_0) = \frac{\varepsilon}{2x_0 + 1} \xrightarrow{x_0 \in [1,2]} \frac{\varepsilon}{2 \cdot 2 + 1} = \frac{\varepsilon}{5} = \delta(\varepsilon, 2),$
this is a common $\delta(\varepsilon)$ that is suitable for all $x \in [1, 2],$
so f is uniformly continuous on $[1, 2].$
c) Yes, $\delta(\varepsilon, 2)$ is also suitable here, see Remark d).
d) f is not uniformly continuous on $(1, \infty).$
Let $x_n = n + \frac{1}{n} \longrightarrow \infty$ and $y_n = n \longrightarrow \infty$. Then $x_n - y_n = \frac{1}{n} \longrightarrow 0$, that is, the terms get
arbitrarily close to each other if n is large enough, but
 $|f(x_n) - f(y_n)| = |(n + \frac{1}{n})^2 - n^2| = 2 + \frac{1}{n^2} > 2,$
so if $\varepsilon < 2$ then there is no suitable δ .
Another choice: $x_n = \sqrt{n+1}, y_n = \sqrt{n}.$

Example. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Solution. Let
$$\varepsilon > 0$$
. If $\delta = \varepsilon^2$ and $|x - y| < \delta$ then
 $|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \sqrt{|\sqrt{x} - \sqrt{y}|} \cdot |\sqrt{x} - \sqrt{y}| \leq \sqrt{|\sqrt{x} - \sqrt{y}|} \leq \sqrt{|\sqrt{x} - \sqrt{y}|} \cdot |\sqrt{x} + \sqrt{y}| = \sqrt{|x - y|} < \sqrt{\delta} = \varepsilon.$

Example. Let $f(x) = \frac{1}{x}$. Prove that a) f is uniformly continuous on $[1, \infty)$; b) f is not uniformly continuous on (0, 1).

Solution. a) $|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x - y|}{|x - y|} \le \frac{|x - y|}{|1 \cdot 1|} = |x - y| < \varepsilon = \delta.$

b)
$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x - y|}{xy} < \varepsilon \text{ if } |x - y| < \varepsilon x y,$$

but $\delta(y) = \varepsilon x y \longrightarrow 0$ if $y \longrightarrow 0$, so there is no common δ that is independent of y .
For example, if $x_n = \frac{1}{n}$ and $y_n = \frac{1}{n+1}$ then $x_n - y_n = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} \longrightarrow 0$, but
 $|f(x_n) - f(y_n)| = |n - (n+1)| = 1,$

so if $\varepsilon < 1$ then there is no suitable δ .

Theorem (Heine). If f is continuous on the compact set H then f is uniformly continuous on H.

Proof. 1) Indirectly assume that *f* is not uniformly continuous on *K*, that is,

 $\exists \varepsilon > 0$ such that $\forall \delta > 0 \quad \exists x, y \in H$ such that $|x - y| < \delta$ but $|f(x) - f(y)| \ge \varepsilon$.

2) Let $\delta = \frac{1}{n}$ for all $n \in \mathbb{N}^+$.

Then for this $\delta \exists x_n, y_n \in H$ such that $\left| x_n - y_n \right| < \frac{1}{n}$ but $|f(x_n) - f(y_n)| \ge \varepsilon$.

- 3) Since *H* is compact, then by the Bolzano-Weierstrass theorem the sequence $(x_n) \subset H$ has a convergent subsequence whose limit belongs to *H*, that is, there is an index sequence (n_k) such that (x_{n_k}) is convergent and $\lim_{k \to \infty} x_{n_k} = \alpha \in H$.
- 4) We show that with the same index sequence (n_k) , the sequence (y_{n_k}) is also convergent and $\lim y_{n_k} = \alpha$. For all $n \in \mathbb{N}^+$ we have

$$\left| y_{n_k} - \alpha \right| \leq \left| y_{n_k} - x_{n_k} \right| + \left| x_{n_k} - \alpha \right| < \frac{1}{n_k} + \left| x_{n_k} - \alpha \right|$$

Since $\frac{1}{n_k} \xrightarrow{k \to \infty} 0$ and $|x_{n_k} - \alpha| \xrightarrow{k \to \infty} 0$ then their sum also tends to 0, so $|y_{n_k} - \alpha| \xrightarrow{k \to \infty} 0$. 5) Since $x_{n_k} \xrightarrow{k \to \infty} \alpha$ and $y_{n_k} \xrightarrow{k \to \infty} \alpha$ and f is continuous at $\alpha \in H$, then $f(x_{n_k}) \xrightarrow{k \to \infty} f(\alpha)$ and

 $f(y_{n_k}) \xrightarrow{k \to \infty} f(\alpha)$, from where $\lim_{k \to \infty} (f(x_{n_k}) - f(y_{n_k})) = f(\alpha) - f(\alpha) = 0$,

however, this is a contradiction, since for all $n \in \mathbb{N}^+ |f(x_n) - f(y_n)| \ge \varepsilon$. It means that the indirect assumption is false, so the statement of the theorem is true.

Theorem. If *f* is continuous on $[a, \infty)$ and $\exists \lim_{x\to\infty} f(x) = A \in \mathbb{R}$ then *f* is uniformly continuous on $[a, \infty)$.

Lipschitz continuity

Definition. The function f is **Lipschitz continuous** on the set A if there exists $L \ge 0$ (Lipschitz constant), such that $|f(x) - f(y)| \le L |x - y|$ for all $x, y \in A$.

Theorem. If *f* is Lipschitz continuous on *A*, then *f* is uniformly continuous on *A*.

Proof. a) If L = 0 then δ can be arbitrary, f is constant, so it is uniformly continuous.

b) If
$$L > 0$$
 then let $\delta = \frac{\varepsilon}{L}$. If $\left| x - y \right| < \frac{\varepsilon}{L}$ for all $x, y \in A$, then
 $\left| f(x) - f(y) \right| < L \left| x - y \right| \le L \cdot \frac{\varepsilon}{L} = \varepsilon$.

Remark. The converse of the theorem is not true.

For example $f(x) = \sqrt{x}$ is uniformly continuous on [0, 1] but not Lipschitz continuous.

Let
$$x = 0$$
, $y > 0$ and $L > 0$. Then
 $\left| \sqrt{y} - \sqrt{x} \right| \le L \left| y - x \right| \iff \sqrt{y} \le L \cdot y \iff \frac{1}{L^2} \le y$

It means that there is no positive number that is less than $\frac{1}{L^2}$, which is a contradiction.

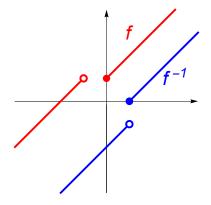
Remark. f is Lipschitz continuous on $A \implies f$ is uniformly continuous on $A \implies f$ is continuous on A.

Continuity of the inverse function

Definition. The function f is **invertible** if for all $x, y \in D_f, x \neq y \implies f(x) \neq f(y)$. (Or, equivalently, for all $x, y \in D_f$: $(f(x) = f(y) \implies x = y)$). The inverse function f^{-1} of f is defined as follows: $D_{f^{-1}} = R_f$ and $(f^{-1} \circ f)(x) = x$ for all $x \in D_f$.

Remark. If f is invertible and continuous at x_0 then from this it doesn't follow that

 f^{-1} is continuous at $f(x_0)$. For example, the function $f(x) = \begin{cases} x+1 & \text{if } x \ge 0 \\ x+2 & \text{if } x < -1 \end{cases}$ is invertible. If we express x from the equation y = f(x), then we get that the inverse of f is $f^{-1}(y) = \begin{cases} y-1 & \text{if } y \ge 1 \\ y-2 & \text{if } y < 1 \end{cases} \implies f \text{ is continuous but } f^{-1} \text{ is not continuous.} \end{cases}$



Theorem. Assume that $f : [a, b] \longrightarrow \mathbb{R}$ is continuous and strictly monotonic. Then f^{-1} is continuous on R_f .

Proof. 1) Since *f* is continuous on [*a*, *b*] then it follows from the intermediate value theorem and extreme value theorem that the range of *f* is a closed and bounded interval. Let $[c, d] = R_f$.

Since f is strictly monotonic then it is bijective, so it has an inverse, $f^{-1}: [c, d] \rightarrow [a, b]$.

2) Let $v \in [c, d]$ arbitrary, $u := f^{-1}(v)$ and assume that $(y_n) \subset [c, d]$, $y_n \longrightarrow v$ is an arbitrary sequence. To prove the continuity of f^{-1} at v, it is enough to show that $x_n := f^{-1}(y_n) \longrightarrow f^{-1}(v) = u$.

3) Assume indirectly that the sequence $(x_n) \subset [a, b]$ does not tend to u.

Then $\exists \delta > 0 \forall k \in \mathbb{N} \exists n_k > k$, such that $|x_{n_k} - u| \ge \delta$.

4) Since the sequence $(x_{n_k}) \subset [a, b] \setminus (u - \delta, u + \delta)$ is bounded, then it has a convergent

subsequence $(x_{n_{k_i}})$. Let $\lim_{l\to\infty} x_{n_{k_i}} = \alpha$. Obviously $\alpha \in [a, b]$, but $\alpha \neq u$.

- 5) Since *f* is continuous at α then $f(x_{n_{k_i}}) = y_{n_{k_i}} \longrightarrow f(\alpha)$. Since $y_n \xrightarrow{n \to \infty} v$ and $(y_{n_{k_i}})$ is a subsequence of (y_n) , then $y_{n_{k_i}} \longrightarrow v$, so $f(\alpha) = v$.
- 6) We obtained that α ≠ u, but f(α) = f(u) = v, which means that f is not bijective. This is a contradiction, so the indirect assumption is false. Therefore, x_n→u and thus f⁻¹ is continuous at v.

Convexity and continuity

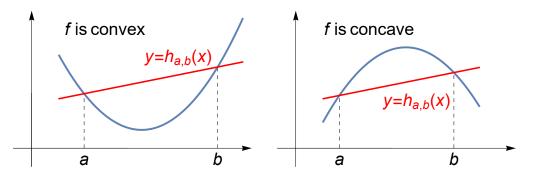
Definition. The function f is **convex** on the interval $I \subset D_f$ if for all x, $y \in I$ and $t \in [0, 1]$

 $f(t x + (1 - t) y) \le t f(x) + (1 - t) f(y)$

The function f is **concave** on the interval $I \subset D_f$ if for all x, $y \in I$ and $t \in [0, 1]$

 $f(t x + (1 - t) y) \ge t f(x) + (1 - t) f(y).$

f is strictly convex / strictly concave if equality doesn't hold.

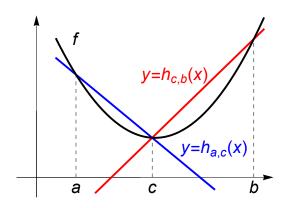


Remark. Let $a, b \in I$, then the secant line passing through the points (a, f(a)) and (b, f(b)) is

 $h_{a,b}(x) = \frac{f(b) - f(a)}{b - a} (x - a) + f(a).$ The function f is $\begin{cases} \text{convex} \\ \text{concave} \end{cases}$ on the interval $I \subset D_f$ if $\forall a, b \in I, \ a < x < b \implies \begin{cases} f(x) \le h_{a,b}(x) \\ f(x) \ge h_{a,b}(x) \end{cases}$, that is, the secant lines of falways lie $\begin{cases} \text{above} \\ \text{below} \end{cases}$ the graph of f.

Theorem. If *f* is convex on the open interval *I*, then *f* is continuous on *I*.

Proof. Let *a*, *b*, *c* \in *I* such that *a* < *c* < *b*. If *x* \in (*c*, *b*), then $h_{a,c} \leq f(x) \leq h_{c,b}(x)$. Since $\lim_{x \to c^+} h_{a,c}(x) = \lim_{x \to c^+} h_{c,b}(x) = f(c)$, then by the sandwich theorem $\lim_{x \to c^+} f(x) = f(c)$, and similarly $\lim_{x \to c^-} f(x) = f(c)$.



Remark. If *f* is convex on a closed interval, then *f* can be discontinuous only at the endpoints of the interval.