Calculus 1 - 09

Applications of differential calculus

L'Hospital's rule

Theorem (L'Hospital's rule).

Assume that $a \in \overline{R} = \mathbb{R} \cup \{-\infty, \infty\}$, *I* is a neighbourhood of *a*, the functions *f* and *g* are differentiable

on *I* \ $\{a\}$ and $q(x) \neq 0$, $q'(x) \neq 0$ for all $x \in I \setminus \{a\}$. Assume moreover that

$$
\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \quad \text{or} \quad \lim_{x\to a} |f(x)| = \lim_{x\to a} |g(x)| = \infty.
$$

If ∃ lim *xa f* ' (*x*) *g*' (*x*) = *b* ∈ then ∃ lim *xa f*(*x*) *g*(*x*) = *b*.

Remark. The theorem holds for right-hand and left-hand limits as well.

Proof. We prove it in the case when $a \in \mathbb{R}$ (for right-hand limit).

Assume that $a \in \mathbb{R}$, $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$ and $\exists \lim_{x \to a^+} g(x)$ *f* ' (*x*) *g*' (*x*) $= b \in \mathbb{R}$. Extend the functions *f* and *g* such that $f(a) = g(a) = 0$ and let $x \in I$, $x > a$. Then *f* and *g* are continuous on [*a*, *x*] and differentiable on (*a*, *x*), so by Cauchy's mean value theorem there exists $c \in (a, x)$ such that *^f*(*x*) *g*(*x*) $=\frac{f(x) - f(a)}{g(x)}$ $g(x) - g(a)$ $=\frac{f'(c)}{f''(c)}$ *g*' (*c*) . Let (x_n) be a sequence such that $x_n \rightarrow a$ and choose $c_n \in (a, x_n)$ for all *n*. Then $c_n \rightarrow a$ and *f*(*xn*) *g*(*xn*) $=\frac{f'(c_n)}{f''(c_n)}$ *g*' (*cn*) for all $n \in \mathbb{N}$. Therefore lim *n*∞ *f*(*xn*) *g*(*xn*) = lim *n*∞ *f* ' (*cn*) *g*' (*cn*) = *b* and by the sequential criterion for the limit, lim *xa f*(*x*) *g*(*x*) = *b*.

Undefined forms

Remark. The theorem can be applied for limits of the following type:

1)
$$
\frac{0}{0}
$$
, $\frac{\infty}{\infty}$ \implies L'Hospital's rule can be applied directly
\n2) $0 \cdot \infty$ \implies transformation: $f(x) g(x) = \frac{f(x)}{\frac{1}{g(x)}}$ or $f(x) g(x) = \frac{g(x)}{\frac{1}{f(x)}}$
\n3) $\infty - \infty$ \implies $f(x) - g(x) = \frac{1}{h(x)} - \frac{1}{k(x)} = \frac{k(x) - h(x)}{h(x)k(x)} \quad \left(\frac{0}{0}\right)$

4) 0⁰, 1[∞], ∞⁰
$$
\implies
$$
 $(f(x))^{g(x)} = e^{g(x) \cdot \ln(f(x))}$

Exercises

Pages 171-172 of the pdf file (first 9 examples): https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_elm.pdf

Pages 72-73 of the pdf file, exercise 26: https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf In exercises 26. g), h) the L'Hospital's rule cannot be applied.

Local properties and the derivative

Remarks. (1) If *f* is monotonically increasing on (a, b) , then *f* is locally increasing for all $x_0 \in (a, b)$.

- (2) If *f* is locally increasing **for all** $x_0 \in (a, b)$, then *f* is monotonically increasing on (a, b) .
- (3) However, if f is locally increasing at x_0 then it doesn't imply that there exists a neighbourhood $B(x_0, r)$ where *f* is monotonically increasing. The following functions are locally increasing at $x_0 = 0$ but on any interval that contains 0, the functions are not monotonically increasing.

 \sim

Theorem. Assume that f is differentiable at x_0 .

- (1) If *f* is locally increasing at x_0 then $f'(x_0) \ge 0$.
- (2) If *f* is locally decreasing at x_0 then $f'(x_0) \leq 0$.
- (3) If $f'(x_0) > 0$ then *f* is strictly locally increasing at x_0 .
- (4) If $f'(x_0) < 0$ then *f* is strictly locally decreasing at x_0 .

Proof. (1) If *f* is locally increasing at x_0 then $\exists \delta > 0$ such that

 $0 < |x - x_0| < \delta \implies$ $f(x) - f(x_0)$ $x - x_0$ ≥ 0. $($ If *x* < *x*₀ then *x* – *x*₀ < 0 and *f*(*x*) – *f*(*x*₀) ≤ 0 and if $x > x_0$ then $x - x_0 > 0$ and $f(x) - f(x_0) \ge 0$.) Since *f* is differentiable at x_0 then $f'(x_0) = \lim_{x \to x_0}$ $f(x) - f(x_0)$ $x - x_0$ ≥ 0. (2) Similar to case (1). (3) If $f'(x_0) = \lim_{x \to x_0}$ $f(x) - f(x_0)$ $x - x_0$ $>$ 0, then there exists δ $>$ 0 such that if $0 < |x - x_0| < \delta$ then *f*(*x*) – *f*(*x*₀) $x - x_0$ $> 0.$ \Rightarrow if $\begin{cases} x_0 < x < x_0 + \delta \end{cases}$ *x*₀ – *δ* < *x* < *x*₀ then $\begin{cases} f(x) > f(x_0) \\ f(x) & f(x) \end{cases}$ $f(x) < f(x_0)$ \implies *f* is strictly locally increasing at *x*₀. (3) Similar to case (4).

Remarks. Assume that *f* is differentiable at x_0 .

(1) If *f* is strictly locally increasing at x_0 then it doesn't imply that $f'(x_0) > 0$. **If** *f* **is strictly locally increasing at** x_0 **then** $f'(x_0) \ge 0$ **, since** $\exists \delta > 0$ **such that** $0 < |x - x_0| < \delta \implies$ $f(x) - f(x_0)$ $x - x_0$ $>$ 0, but for the limit $\lim_{x \to x_0}$ $f(x) - f(x_0)$ $x - x_0$ ≥ 0. For example $f(x) = x^3$ is strictly locally increasing at $x_0 = 0$, but $f'(0) = 3x^2 \mid x=0$.

1.
$$
f(x) = x^3
$$

2. $f(x) = -x^3$
3. $f(x) = \begin{cases} x + x^2 \sin(\frac{10}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

- (2) If $f'(x_0) \ge 0$ then it doesn't imply that f is locally increasing at x_0 . For example $f(x) = -x^3$ is not locally increasing at $x_0 = 0$, but $f'(0) = \ge 0$.
- (3) If $f'(x_0) > 0$ then it doesn't imply that f is monotonically increasing on an interval containing x_0 .

For example, let *f* be a function such that $x - x^2 \le f(x) \le x + x^2 \forall x \implies f(0) = 0$. If *x* > 0 then 1 - *x* ≤ $\frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0}$ ≤ 1 + *x*, If *x* < 0 then $1 - x$ ≥ $f(x) - f(0)$ *x* - 0 ≥ 1 + *x*, so by the sandwich theorem *f* ' (0) = $\lim_{x \to x_0}$ $f(x) - f(x_0)$ $x - x_0$ = 1 > 0. For example, let $f(x) = \begin{cases} x + x^2 \sin \left(\frac{10}{x} \right) \end{cases}$ *x* if *x* ≠ 0 0 if $x = 0$

Darboux's theorem

Theorem. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is differentiable and $f'(a) < y < f'(b)$ or $f'(b) < y < f'(a)$. Then there exists $c \in (a, b)$ such that $f'(c) = y$.

Remark. We say that *f* ' has the intermediate value property of Darboux property.

Proof. 1) Let $g:[a, b] \rightarrow \mathbb{R}$, $g(x) = f(x) - y \cdot x \implies g$ is differentiable and $g'(x) = f'(x) - y$. 2) Assume that $f'(a) < y < f'(b) \implies q'(a) = f'(a) - y < 0 < f'(b) - y < q'(b)$ 3) *g* is differentiable, so it is continuous on [*a*, *b*]

 \Rightarrow by Weierstrass extreme value theorem it has a minimum and a maximum on [a, b].

4) Since $\begin{cases} g'(a) < 0 \\ g'(b) > 0 \end{cases}$ then $\begin{cases} g \text{ is strictly locally decreasing at } a \\ g \text{ is strictly locally increasing at } b \end{cases}$ \Rightarrow *g* does not have a minimum at *a* and *b* but on the open interval (*a*, *b*) \implies there exists $c \in (a, b)$ such that *q* has a local minimum at *c* \Rightarrow $g'(c) = 0 = f'(c) - y \Rightarrow f'(c) = y$ for some $c \in (a, b)$.

Remark. From Darboux's theorem it follows that if *f* ' is not continuous at a point then *f* ' cannot have a discontinuity of the first type at that point, so at least one of the one-sided limits doesn't exist or exists but is not finite

 \Rightarrow *f* ' has an essential discontinuity at the given point.

Statement. If *f* is differentiable on [a , $a + \delta$] ($\delta > 0$) and *f* ' has a discontinuity at a then the limit lim $f(x)$ doesn't exist or ∃ lim $f(x) \notin \mathbb{R}$. *xa*+0 *xa*+0

Continuously differentiable functions

Definition. Assume that *I* is a neighbourhood of $a \in D_f$ and *f* is differentiable on $I \cap D_f$. Then *f* is **continuous differentiable at** *a* if *f* ' is continuous at *a*. *f* is **continuously differentiable** on *A* if *f* is continuous differentiable ∀ *x* ∈ *A*.

Notation: $C^1(A) = \{f : f \text{ is continuously differentiable on } A\}.$

Higher order derivatives

Definition. If *f* ' is differentiable at *x* then we say that *f* is twice differentiable at *x* and the second derivative or second order derivative of *f* at x_0 is $f''(x) = (f')'(x)$. Differentiating *f* repeatedly, we get the third, ..., *n*th derivative of *f*.

Notation:
$$
f''(x) = f^{(2)}(x) = \frac{d^2 f(x)}{dx^2}
$$

\n $f'''(x) = f^{(3)}(x) = \frac{d^3 f(x)}{dx^3}$
\n...
\n $f^{(n)}(x) = \frac{d^n f(x)}{dx^n}$
\nBy definition: $f^{(0)}(x) = f(x)$

Example: $f(x) = \sin x \implies f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, $f^{(4)}(x) = \sin x$, ... $f(x) = e^x \implies f^{(n)}(x) = e^x \quad \forall n \in \mathbb{N}$

Investigation of differentiable functions

Monotonicity on an interval

Theorem. Assume that f : $(a, b) \rightarrow \mathbb{R}$ is differentiable. Then (1) *f* is monotonically increasing \iff $f'(x) \ge 0$ for all $x \in (a, b)$ (2) *f* is monotonically decreasing \iff $f'(x) \le 0$ for all $x \in (a, b)$ (3) *f* is constant \iff $f'(x) = 0$ for all $x \in (a, b)$ (4) $f'(x) > 0$ for all $x \in (a, b) \implies f$ is strictly monotonically increasing (5) $f'(x) < 0$ for all $x \in (a, b) \implies f$ is strictly monotonically decreasing

Proof. (1)

- (i) If *f* is monotonically increasing then *f* is locally monotonically increasing for all *x* ∈ (*a*, *b*) \Rightarrow *f* ' (*x*) ≥ 0 ∀ *x* ∈ (*a*, *b*).
- (ii) Assume that $f'(x) \ge 0$ for all $x \in (a, b)$. Let $a < x_1 < x_2 < b$ and apply Lagrange's mean value theorem for $[x_1, x_2]$. Then there exists $c \in (x_1, x_2) \subset (a, b)$ such that

$$
\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) \ge 0 \implies f(x_2) \ge f(x_1)
$$

Therefore if $x_1 < x_2$ then $f(x_1) \le f(x_2)$, so *f* is monotonically increasing on (a, b) .

- (2) Similar to case (1).
- (3) *f* is constant \iff *f* is monotonically increasing and decreasing \iff $f'(x) \ge 0$ and $f'(x) \le 0$ $\forall x \in (a, b) \iff f'(x) = 0$ $\forall x \in (a, b)$

 (4) and (5) : similar to case (1) (ii)

```
Remark. Statements (4) and (5) cannot be reversed.
```
For example, $f(x) = x^3$ is strictly monotonically increasing on R, however $f'(x) > 0$ does not hold for all $x \in \mathbb{R}$, since $f'(x) = 3x^2 \implies f'(0) = 0$.

Remark. If the domain of *f* is not an interval then the above theorem is not true, as the following examples show.

> 1) Let $f : \mathbb{R} \setminus \mathbb{Z} \longrightarrow \mathbb{R}$, $f(x) = \{x\} = x - [x]$. Then *f* is differentiable on $\mathbb{R} \setminus \mathbb{Z}$ and $f'(x) = 1 > 0$ for all $x \in \mathbb{R} \setminus \mathbb{Z}$ but *f* is not monotonically increasing.

2) Let $f : \mathbb{R} \setminus \mathbb{Z} \longrightarrow \mathbb{R}$, $f(x) = [x]$. Then *f* is differentiable on $\mathbb{R} \setminus \mathbb{Z}$ and $f'(x) = 0$ for all $x \in \mathbb{R} \setminus \mathbb{Z}$ but *f* is not constant.

Local extremum, sufficient conditions

Definition. If *f* is differentiable at x_0 and $f'(x_0) = 0$ then x_0 is a **stationary point** of *f*. If $f'(x_0) = 0$ or f is not differentiable at x_0 then x_0 is a **critical point** of f.

Remark. Recall that if *f* is differentiable at *x*⁰ ∈ int *D_f* and *f* has a local extremum at *x*⁰ then *f* ' (*x*⁰) = 0. This is a necessary condition for the existence of a local extremum. The next two theorems formulate sufficient conditions.

Theorem (Sufficient condition for a local extremum, first derivative test). Assume that *f* is differentiable at $x_0 \in \text{int } D_f$. If $f'(x_0) = 0$ and f' changes sign at x_0 , then f has a local extremum at x_0 . Namely, if $f'(x_0) = 0$ and f' is (strictly) locally \begin{cases} increasing at x_0 at x_0 then *f* has a (strict) local $\begin{cases} \text{minimum} \\ \text{maximum} \end{cases}$ at x_0 .

Proof. Assume that $f'(x_0) = 0$ and f' is locally increasing at x_0 (that is, *f* ' changes sign from negative to positive) \Rightarrow $\exists \delta > 0$ such that $\begin{cases} f'(x) \leq 0 \text{ if } x_0 - \delta < x < x_0 \\ f(x) \geq 0 \text{ if } x_0 = x_0, x_0 \leq \delta \end{cases}$ *f* ' (*x*) ≥ 0 if *x*₀ < *x* < *x*₀ + *δ* \Rightarrow $\begin{cases} f \text{ is monotonically decreasing on } (x_0 - \delta, x_0) \\ f \text{ is non-orthonormalized, } f \text{$

f is monotonically increasing on $(x_0, x_0 + \delta)$

$$
\implies \begin{cases} f(x) \ge f(x_0) \text{ if } x_0 - \delta < x < x_0 \\ f(x) \ge f(x_0) \text{ if } x_0 < x < x_0 + \delta \end{cases} \implies f \text{ has a local minimum at } x_0.
$$

Theorem (Sufficient condition for a local extremum, second derivative test).

Assume that *f* is twice differentiable at $x_0 \in \text{int } D_f$.

If $f'(x_0) = 0$ and $f''(x_0) \neq 0$ then f has a local extremum at x_0 .

If $\begin{cases} f''(x_0) > 0 \\ g''(x_0) > 0 \end{cases}$ *f* '' $(x_0) < 0$ then *f* has a strict local $\begin{cases} \text{minimum} \\ \text{maximum} \end{cases}$ at x_0 .

- **Proof.** $f''(x_0) > 0 \implies f'$ is locally increasing at x_0 and $f'(x_0) = 0$ \Rightarrow by the previous theorem *f* has a local minimum at x_0 .
- **Remark.** The sign change of *f* ' at *x*0 is only a sufficient but not a necessary condition for the existence of a local extremum at x_0 .

For example, if
$$
f(x) = \begin{cases} x^2 \left(2 + \sin\left(\frac{1}{x}\right)\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
$$

then *f* is differentiable for all $x \in \mathbb{R}$. At $x = 0$:

$$
f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \left(2 + \sin\left(\frac{1}{x}\right)\right)}{x} = \lim_{x \to 0} x \left(2 + \sin\left(\frac{1}{x}\right)\right) = 0 \text{ (since it is 0 bounded)},
$$

so the necessary condition holds at $x_0 = 0$.

so the necessary condition holds at $x_0 = 0$.

However, in any neighbourhood of $x_0 = 0$:

f has strictly monotonic increasing and decreasing sections \implies

 f' has both positive and negative values \Longrightarrow

 f' doesn't change sign at $x_0 = 0$.

Yet *f* has a local extreme value at $x_0 = 0$, and it is even an absolute minimum here.

Local extremum and higher order derivatives

Remark. If $f'(x_0) = 0$ and $f''(x_0) = 0$ then it cannot be decided whether f has a local extremum at x_0 . For example:

1) $f(x) = x^3$ does not have a local extremum at $x_0 = 0$, 2) $f(x) = x^4$ has a local minimum at $x_0 = 0$, 3) $f(x) = -x^4$ has a local maximum at $x_0 = 0$, and in each case $f'(0) = f''(0) = 0$.

Theorem. (1) Assume that *f* is 2 *k* times differentiable at
$$
x_0
$$
, $k \ge 1$.
\nIf $f'(x_0) = ... = f^{(2k-1)}(x_0) = 0$ and
$$
\begin{cases} f^{(2k)}(x_0) > 0 \\ f^{(2k)}(x_0) < 0 \end{cases}
$$
\nthen *f* has a strict local $\begin{cases} \text{minimum} \\ \text{maximum} \end{cases}$ at x_0 .

(2) Assume that *f* is $2k + 1$ times differentiable at $x_0, k \ge 1$. If $f'(x_0) = ... = f^{(2k)}(x_0) = 0$ and $f^{(2k+1)}(x_0) \neq 0$, then *f* is strictly monotonic in a neighbourhood of x_0 , so f doesn't have a local extremum at x_0 .

Remark. Part (1) in other words: If the first non-zero derivative (after the first one) has an even order

then f has a local extremum at x_0 .

Proof. (1) We prove the statement for a strict local minimum by induction.

(i) If $k = 1$ then the statement is true. (ii) Assume that the statement holds for $k - 1$ and let $q = f'$. $(\implies g' = f''', ..., g^{(2k-3)} = f^{(2k-1)}, g^{(2k-2)} = f^{(2k)}$. From the induction hypothesis it follows that if $g'(x_0)$ = . . = $g^{(2k-3)}(x_0)$ = 0 and $g^{(2k-2)}(x_0)$ > 0 then the function $q = f''$ has a strict local minimum at x_0 . (iii) We want to prove that if $f'(x_0) = f''(x_0) = f'''(x_0) = ... = f^{(2k-1)}(x_0) = 0$ and $f^{(2k)}(x_0) > 0$ then *f* has a strict local minimum at x_0 . Since $f''(x_0) = 0$ and $f''(x_0)$ and $f''(x_0)$ as a strict local minimum at x_0 , then $\exists \delta > 0$ such that $f''(x) > 0$, $\forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$ \Rightarrow *f* ' is strictly monotonically increasing on $(x_0 - \delta, x_0 + \delta)$ \Rightarrow *f* ' is strictly locally increasing at *x*₀ \Rightarrow *f* has a strict local minimum at x_0 .

(2) Assume that
$$
f'(x_0) = f''(x_0) = ... = f^{(2k)}(x_0) = 0
$$
 and $f^{(2k+1)}(x_0) \neq 0$.
\nLet $g = f'$, then $g'(x_0) = ... = g^{(2k-1)}(x_0) = 0$ and $g^{(2k)}(x_0) \neq 0$.
\n \Rightarrow by part (1), $g = f'$ has a strict local extremum at x_0 .
\nSince $f'(x_0) = 0$, then either $f'(x) > 0$ or $f'(x) < 0$, $\forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$
\n $\Rightarrow f$ is strictly monotonic on $(x_0 - \delta, x_0 + \delta)$
\n $\Rightarrow f$ doesn't have a local extremum at x_0 .

Example. $f(x) = x^n$ is *n* times differentiable,

$$
f^{(k)}(x) = n(n-1)(n-2)...(n-k+1)x^{n-k}, \quad k = 1, 2, ..., n-1
$$

\n
$$
f^{(n)}(x) = n!
$$

\n
$$
\implies
$$
 if $x_0 = 0$, then $f'(0) = f''(0) = ... = f^{(n-1)}(0) = 0$, $f^{(n)}(0) = n! > 0$
\n
$$
\implies
$$
 at $x_0 = 0$ f has a local minimum if *n* is even and *f* doesn't have a local
\nextremum if *n* is odd.

Convexity / concavity on an interval

Theorem (Necessary and sufficient condition for convexity). If *f* is differentiable on the interval *I*, then the following statements are equivalent. (1) *f* is convex on *I* (2) *f*(*x*) ≥ *f*(*a*) + *f* ' (*a*) (*x* - *a*) if *x*, *a* ∈ *I* (3) *f* ' is monotonically increasing on *I*

Remark. The geometrical meaning of (2) is that for all $a \in I$, the graph of *f* lies above the tangent line at *a*.

 \Rightarrow $f(y) - f(a) \le (\lambda - 1) f(a) + (1 - \lambda) f(x)$ \Rightarrow $f(y) - f(a) \le (1 - \lambda) (f(x) - f(a))$ Dividing both sides by $y - a = (1 - \lambda)(x - a) > 0 \implies \frac{f(y) - f(a)}{f(x)}$ *y* **-** *a* ≤ *f***(***x***) -** *f***(***a***)** *x* **-** *a* If *y* \rightarrow *a* +, then *f* ' (*a*) ≤ *f*(*x*) - *f*(*a*) $\frac{f(x)}{x-a}$ \implies $f(x) \ge f(a) + f'(a) (x-a)$ if $x, a \in I$. If $a > x$ then the proof is similar and if $a = x$ then the statement is obvious.

Proof of (2) \implies **(3):** Let $T_a(x) = f(a) + f'(a)(x - a)$. If $a, b \in I$, $a < b \implies T_a(a) = f(a) \ge T_b(a)$ and $T_a(b) \le f(b) = T_b(b)$

$$
\Rightarrow f'(a) = \frac{T_a(b) - T_a(a)}{b - a} = \frac{T_a(b) - f(a)}{b - a} \le \frac{f(b) - T_b(a)}{b - a} = \frac{T_b(b) - T_b(a)}{b - a} = f'(b)
$$

\n
$$
\Rightarrow f'(a) = \frac{T_a(b) - T_a(a)}{b - a} = \frac{T_a(b) - T_b(a)}{b - a} = f'(b)
$$

Proof of (3)
$$
\Rightarrow
$$
 (1): Let $a, b \in I$, $a < b$, $\lambda \in (0, 1)$ for which $x = \lambda a + (1 - \lambda)b$
\n $\Rightarrow x - a = (1 - \lambda)(b - a)$
\n $b - x = \lambda(b - a)$

Then by Lagrange's mean value theorem there exist $c_1 \in (a, x)$ and $c_2 \in (x, b)$ such that

$$
\frac{f(x) - f(a)}{x - a} = f'(c_1) \text{ and } f'(c_2) = \frac{f(b) - f(x)}{b - x}.
$$

f ' is monotonically increasing \implies *f* ' (*c*₁) \le *f* ' (*c*₂)

$$
\implies \frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(x)}{b - x} \implies \frac{f(x) - f(a)}{(1 - \lambda)(b - a)} \le \frac{f(b) - f(x)}{\lambda(b - a)} \implies f(x) \le \lambda f(a) + (1 - \lambda)f(b)
$$

\n
$$
\implies f \text{ is convex on } I.
$$

Consequence (Necessary and sufficient condition for convexity).

Assume that *f* is twice differentiable on the interval *I*. Then

(1) *f* '' (*x*) ≥ 0 ∀ *x* ∈ *I* if and only if *f* is convex on *I*.

(2) $f''(x) ≤ 0 \forall x ∈ I$ if and only if *f* is concave on *I*.

Consequence.

Assume that *f* is twice differentiable on the interval *I*. Then (1) If $f''(x) > 0 \forall x \in I$ then *f* is strictly convex on *I*. (2) If $f''(x) < 0 \forall x \in I$ then *f* is strictly concave on *I*.

Inflection point

Definition. Assume that *f* is continuous at $a \in \text{int } D_f$ and there exists $\delta > 0$ such that

f is convex on $(a - \delta, a)$ and concave on $(a, a + \delta)$ or *f* is concave on $(a - \delta, a)$ and convex on $(a, a + \delta)$. Then *a* is called a point of inflection of the function *f*.

Theorem (Necessary condition for an inflection point, second derivative test). If *f* is twice differentiable at x_0 and *f* has an inflection point at x_0 then $f''(x_0) = 0$.

Proof. If *f* is convex on $(x_0 - \delta, x_0]$ and concave on $[x_0, x_0 + \delta)$ then

f ' is monotonically increasing on $(x_0 - \delta, x_0]$ and monotonically decreasing on $[x_0, x_0 + \delta)$ \implies *f* ' has a local maximum at $x_0 \implies f''(x_0) = 0$.

Theorem (Sufficient condition for an inflection point, third derivative test). If *f* is three times differentiable in a neighbourhood of x_0 , $f''(x_0) = 0$ and $f'''(x_0) \neq 0$, then f has an inflection point at x_0 .

Inflection point and higher order derivatives

Theorem. (1) Assume that *f* is $2k + 1$ times differentiable at $x_0, k \ge 1$. If $f''(x_0) = ... = f^{(2k)}(x_0) = 0$ and $f^{(2k+1)}(x_0) \neq 0$ then f has an inflection point at x_0 .

- (2) Assume that *f* is 2 *k* times differentiable at x_0 , $k \ge 1$. If $f''(x_0) = ... = f^{(2k-1)}(x_0) = 0$ and $f^{(2k)}(x_0) \neq 0$, then *f* is strictly convex or concave in a neighbourhood of x_0 , so *f* doesn't have an inflection point at x_0 .
- **Remark.** Part (1) in other words: If the first non-zero derivative (after the second one) has an odd order then f has a local extremum at x_0 .

Linear asymptotes

- **Definition.** The straight line $x = a$ is a **vertical asymptote** of the function *f* if $\lim_{x \to a+} f(x) = \pm \infty$ or $\lim_{x \to a-} f(x) = \pm \infty$.
- **Definition.** The straight line $q(x) = Ax + B$ is a **linear asymptote** of the function *f* at ∞ or $-\infty$ if lim $(f(x) - g(x)) = 0$ or lim $(f(x) - g(x)) = 0$.

 $q(x)$ is a **horizontal asymptote** if $A = 0$ and an **oblique or slant asymptote** if $A \neq 0$.

Statement. $g(x) = Ax + B$ is a linear asymptote of f at $\pm \infty$ if and only if *A* = $\lim_{x \to \pm \infty}$ *f*(*x*) *x* and $B = \lim_{x \to \pm \infty} (f(x) - Ax)$

Example. lim $x \rightarrow \frac{\pi}{2} \pm$ $\tan x = \pm \infty \implies x = \frac{\pi}{4}$ 2 is a vertical asymptote of $f(x) = \tan(x)$.

Example. If $f(x) = x + 2 + 1$ 1 *x* then $g(x) = x + 2$ is a linear asymptote of *f* at $\pm \infty$.

Example. If $f(x) = xe^{\frac{2}{x}}$ then $g(x) = x + 2$ is a linear asymptote of *f* at $\pm \infty$.

Solution.
$$
A = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x e^{\frac{2}{x}}}{x} = \lim_{x \to \pm \infty} e^{\frac{2}{x}} = e^{0} = 1
$$

\n $B = \lim_{x \to \pm \infty} \left(x e^{\frac{2}{x}} - x \right) = \lim_{x \to \pm \infty} \frac{e^{\frac{2}{x}} - 1}{\frac{1}{x}}. \text{ Let } y = \frac{2}{x}, \text{ then } B = \lim_{y \to 0^{\pm}} \frac{e^{y} - 1}{\frac{1}{2} \cdot y} = 2,$
\nusing that $\lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$. The limit can also be calculate with the L'Hospital's rule.
\nSo $g(x) = x + 2$.

Extreme values on a closed interval

Remark. If *f* is continuous on a closed and bounded interval then by the

Weierstrass extreme value theorem *f* has a minimum and a maximum.

The possible points are:

1) the points where *f* is not differentiable

2) the points where the derivative of *f* is 0

3) the endpoints of the interval

Finally the largest and smallest of the possible values must be selected.

Analyzing graphs of functions

Summary of the steps:

- 1) finding the domain of *f*
- 2) finding the zeros of *f*
- 3) parity, periodicity
- 4) limits at the endpoints of the intervals constituting the domain
- 5) investigation of $f' \implies$ monotonicity, extreme values
- 6) investigation of $f'' \implies$ convexity/concavity, inflection points
- 7) linear asymptotes
- 8) plotting the graph of *f*, finding the range of *f*

Exercises

https://math.bme.hu/~nagyi/calculus1/functions.pdf

Examples

1.
$$
f(x) = \frac{x}{x^3 + 1}
$$

 $D_f = (-\infty, -1) \cup (-1, \infty);$ $f(x) = 0 \iff x = 0;$ $\lim_{x \to \pm \infty} f(x) = 0, \lim_{x \to -1+0} f(x) = -\infty, \lim_{x \to -1-0} f(x) = +\infty$

Monotonicity, local extremum:

$$
f'(x) = \frac{1 - 2x^3}{(x^3 + 1)^2} = 0 \iff x = \frac{1}{\sqrt[3]{2}} \approx 0.79
$$

Convexity / concavity, inflection points:

$$
f''(x) = \frac{6x^2(x^3 - 2)}{(x^3 + 1)^3} = 0 \iff x = 0 \text{ or } x = \sqrt[3]{2} \approx 1.26
$$

The graph of *f*:

2. $f(x) = 2 \sin x + \sin 2x$

 $D_f = \mathbb{R}$; *f* is odd;

f is periodic with period 2 $\pi \implies$ it may be assumed that $0 \le x \le 2 \pi$; \implies on this interval $f(x) = 0 \iff x = 0$ or $x = \pi$ or $x = 2\pi$

Monotonicity, local extremum:

$$
f'(x) = 2\cos x + 2\cos 2x = 2(\cos x + \cos^2 x - (1 - \cos^2 x)) =
$$

= 2 \cdot (2 \cos^2 x + \cos x - 1) = 0 \implies (\cos x)_{1,2} = \frac{-1 \pm 3}{4} \implies \cos x = -1 \text{ or } \cos x = \frac{1}{2}

$$
\implies x_1 = \frac{\pi}{3}, x_2 = \pi, x_3 = \frac{5\pi}{3}
$$

4 2

Convexity / concavity, inflection points:

 $f''(x) = -2 \sin x - 4 \sin 2 x = -2 \sin x - 8 \sin x \cos x =$

$$
= -2\sin x(1 + 4\cos x) = 0 \implies \sin x = 0 \text{ or } \cos x = -\frac{1}{4}
$$

$$
\implies x_1 = 0, x_2 = \pi, x_3 = 2\pi, x_4 = \arccos\left(-\frac{1}{4}\right) \approx 1.82, x_5 = 2\pi - \arccos\left(-\frac{1}{4}\right) \approx 4.46
$$

The graph of *f*:

Implicitely given curve

Example. The curve $y = y(x)$ is given by the following implicit equation:

 $x \sinh x - y \cosh y = 0$

Study the properties of this curve in a neighbourhood of (0, 0).

Solution. The point $(0, 0)$ is on the curve: $y(0) = 0$.

1) The first derivative of $x \sinh x - y(x) \cosh y(x) = 0$ with respect to x :

sinh *x* + *x* cosh *x* -*y* ' (*x*) cosh *y*(*x*) -*y* (*x*) *y* ' (*x*) sinh *y*(*x*) = 0

If
$$
x = 0
$$
, $y = 0 \implies 0 + 0.1 - y'(0) \cdot 1 - 0.9'(0) \cdot 0 = 0 \implies y'(0) = 0$

2) The second derivative with respect to *x*:

cosh $x + \cosh x + x \sinh x - y''(x) \cosh y(x) - y'(x) y'(x) \sinh y(x)$ $-y'(x) y'(x) \sinh y(x) - y(x) y''(x) \sinh y(x) - y(x) y'(x) y'(x) \cosh y(x) = 0$

If $x = 0$, $y = 0 \implies 1 + 1 + 0 - y''(0) - 0 - 0 - 0 - 0 = 0 \implies y''(0) = 2$

Since $y'(0) = 0$ and $y''(0) = 2 > 0$ then the curve $y = y(x)$ has local minimum at *x* = 0 and it is convex in some neighbourhood of *x* = 0.

