Calculus1-09

Applications of differential calculus

L’Hospital’s rule

Theorem (L’Hospital’s rule).

Assume that a e R = RU{-oo, o}, /is a neighbourhood of a, the functions f and g are differen-
tiable

on/\ {a} and g(x)*0, g'(x)*0forall xel\{a}. Assume moreover that

limf(x)=limg(x)=0 or lim |f(x)]| =lim | g(x) | =oo.

. ) — . fx)
If 3lim =beR then Ilim— =b.
X-a g' (X) X-a g(X)

Remark. The theorem holds for right-hand and left-hand limits as well.

Proof. We prove it in the case when a e R (for right-hand limit).

X
Assume thataeR, lim f(x) = lim g(x) =0and 3 lim ) =beR.
X—a+

X—>a+ X-a+ g' (X)
Extend the functions f and g such that f(a) =g(a)=0and letx e/, x>a.
Then f and g are continuous on [a, x] and differentiable on (g, x),

so by Cauchy’s mean value theorem there exists c € (a, x) such that
fx)  f)-fla) f'(c)

g0 gx-gl@ g'(©)
Let (x,) be a sequence such that x,— a and choose ¢, € (a, x,) for all n.
fxa)  f'(cn)

g(xn) g’ (cn)

f(xn) f'(cn) e _ f(x)

Therefore lim = lim = b and by the sequential criterion for the limit, lim— = b.
e g(Xy) > g'(Cn) X4 g(x)

forallneN.

Then c,—aand

Undefined forms

Remark. The theorem can be applied for limits of the following type:
0 o
1) PO = L’Hospital’s rule can be applied directly
. f(x) g(x)
2)0-0 = transformation: f(x)g(x) = — or f(x)g(x)=—
90 fx)

0

1
3) o= = f()-g(X)=— - — =

1 k(x) = h(x) (O)
h(x) k(x)  h(x)k(x)

4) 00’ loo, 000 — (f(X))g(X):eg(x)‘ln(f(x))



2 calculus1-09.nb

Exercises

Pages 171-172 of the pdffile (first 9 examples):
https://math.bme.hu/~tasnadi/merninf_anal_1/anall_elm.pdf

Pages 72-73 of the pdf file, exercise 26:

https://math.bme.hu/~tasnadi/merninf_anal_1/anall_gyak.pdf
In exercises 26. g), h) the L’Hospital’s rule cannot be applied.

Local properties and the derivative

Definition. Assume that x, € Dr and there exists 6 > 0 such that
forallx, ye Dy, ifxg-6<x<Xxg<y<Xg+0,

f(x) < f(xo) S f(y) locally increasing
f(x) 2 f(xo) 2 f(y) .| locally decreasing

then f(x) < f(x) < f(y) Then we say that f s strictly locally increasing atXo.
f(x) > f(xo) > f(y) strictly locally decreasing

Remarks. (1) If f is monotonically increasing on (a, b), then f is locally increasing for all x, € (a, b).
(2) If fis locally increasing for all x, € (g, b), then f is monotonically increasing on (a, b).

(3) Howevers, if fis locally increasing at x, then it doesn’t imply that there exists
a neighbourhood B(xy, r) where f is monotonically increasing.
The following functions are locally increasing at x, = 0 but on any interval that
contains 0, the functions are not monotonically increasing.

ifx+0 x ifxeQ

1
xsin?— ifx*0
1. f(x):{ X 2.f(x)={ 3-f(X)={2X ifx<R\Q

0 ifx=0

O x | =

ifx=0

3
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Theorem. Assume that f is differentiable at x,.
(1) If fis locally increasing at xo then f' (xo) 2 0.
(2) If f is locally decreasing at xo then f' (x) < 0.
(3) If f' (xo) > 0 then f is strictly locally increasing at xq.
(4) If f' (xo) < 0 then f is strictly locally decreasing at xo.

Proof. (1) If f is locally increasing at xo then 3 6 > 0 such that
f(x) = f(xo)
O<|x-X| <6 => —— =20.
X = Xo
(If x < xg then x - xy <0 and f(x) - f(xo) <0 and
if x > xy then x = xo > 0 and f(x) - f(xg) 2 0.)
. - . \ () -f(xo)
Since f is differentiable at x, then f' (xp) = lim —— 2 0.
X-Xo X = Xp

(2) Similar to case (1).

, . F0) = f(x0) .
(3) If f' (%) = lim ————— >0, then there exists 6 > 0 such that

XX X =X
f(x) - f(x0)
—>0.

X =Xo
[ Xo<x<xp+6 {f(x)>f(xo)
= If{)(o—6<x<)(0 then f(x) < f(xg)
= fis strictly locally increasing at xo.
(3) Similar to case (4).

if0< | x=Xo| <6 then

Remarks. Assume that f is differentiable at xp.
(1) If fis strictly locally increasing at x, then it doesn’t imply that f' (xp) > 0.

If f is strictly locally increasing at x, then f' (x,) = 0, since 3 6 > 0 such that

f(x) - f(x f(x) - f(x
O0<|x-X| <6= M>O,butf0rthelimitlim—() (0)2 )
X =Xo X=X X=X

For example f(x) = x* is strictly locally increasing at x, = 0, but f' (0) = 3 x? | ,.0 = 0.

, . (10)
X+X sm(—) ifx+0
X

1 flx)=x° 2.f(x)=-x° 3.1(x) = {
0 ifx=0
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(2) If f' (xo) 2 0 then it doesn’t imply that f is locally increasing at xo.
For example f(x) = —x® is not locally increasing at xo = 0, but f' (0) = = 0.

(3) If f' (xo) > 0 then it doesn't imply that f is monotonically increasing on an interval
containing xo.

For example, let f be a function such that x - x> < f(x) < x + x> V x = f(0) =0.
f(x)  f(x)-F(0)

Ifx>0thenl-x<— =——— <1+x,
X x-0
f(x)-£(0) .
Ifx<0thenl-x2——— >1+x,so by the sandwich theorem
x-0
00 - F(x) 26in(22) ifx =0
f'(0)= lim ———% —150. For example, letf(x):{XH sm(;) "X
R X=X 0 ifx=0

Darboux’s theorem

Theorem. Assume that f : [a, b]— R is differentiable and f' (@) < y < f' (b) or f' (b) < y < f' (q).
Then there exists c € (a, b) such thatf'(c) = y.

Remark. We say that f' has the intermediate value property of Darboux property.

Proof. 1) Letg:[a, b] >R, gx)=f(x)-y-x = gisdifferentiableandg'(x)=f"'(x)-y.
2) Assumethatf'(a)<y<f'(b) = g'(a)=f'(a)-y<0<f'(b)-y<g'(b)
3) g is differentiable, so it is continuous on [a, b]
= by Weierstrass extreme value theorem it has a minimum and a maximum on [a, b].
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2) SinCe{g'(a) <0 th {g?s str?ctly locallyfiecreasjing ata
g'(b)>0 gisstrictly locally increasing at b
= g does not have a minimum at @ and b but on the open interval (a, b)
= there exists c € (g, b) such that g has a local minimum at ¢
= g'(c)=0=f"(c)-y = f'(c)=yforsomece(a,b).

-1 ifx<0
Example. The sign function or signum function is defined as sgn x = { 0 ifx=0.
1 ifx>0

This function is not continuous at xo = 0, so there is no function f :R—R
for which f' (x) =sgn x onR (or on any interval that contains x, = 0).

Remark. From Darboux’s theorem it follows that if ' is not continuous at a point then
f' cannot have a discontinuity of the first type at that point, so at least one of the
one-sided limits doesn’t exist or exists but is not finite
= f'has an essential discontinuity at the given point.

Statement. If f is differentiable on [a, a + 6) (6 > 0) and f' has a discontinuity at a then the limit
lim f(x) doesn’texistor3 lim f(x)¢R.

x-a+0 x-a+0

Continuously differentiable functions

Definition. Assume that/is a neighbourhood of a € Ds and f is differentiable on / n Dy.
Then f is continuous differentiable at a if f' is continuous at a.
f is continuously differentiable on A if f is continuous differentiable V x € A.
Notation: C}(A) = {f : fis continuously differentiable on A}.

1
2 .
sin|—| ifxx0 . .. . . .
xSt (x) X is differentiable but f' is not continuous

Example: The function f(x) = {
0 ifx=0

1 1
(N R
), SR ()= { 2xsm(X) cos(X) if x 0'
0 ifx=0
15
f'(x)
f(x) H
—(;.3‘ ‘—6.2‘ —(; 11 - ‘0f2
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Higher order derivatives

Definition. If f' is differentiable at x then we say that f is twice differentiable at x and
the second derivative or second order derivative of f at xy is " (x) = (f')" (x).

Differentiating f repeatedly, we get the third, ..., nth derivative of f.
) X d? f(x)

Notation: f'" (x)=f@(x)= ——

d x?

d3

f (x) = O (x) =
d

F00) = d" f(x)
dx"

By definition: fO(x) = f(x)

Example: f(x) =sinx = f'(x)=cosx, f'"(x)=-sinx, f"" (x)=-cosx, fP(x)=sinx, ..
fx)=e* = fM(x)=e* VneN

Investigation of differentiable functions

Monotonicity on an interval

Theorem. Assume that f : (a, b)— R is differentiable. Then
(1) f is monotonically increasing < f'(x) 20 forall x € (a, b)
(2) f is monotonically decreasing < f'(x)<0forall x € (a, b)
(3) fisconstant < f'(x)=0forall x e (a, b)
(4) f' (x) > 0forall x € (a, b) = f is strictly monotonically increasing
(5) f'(x) <0forall x € (a, b) = f is strictly monotonically decreasing

Proof. (1)
(i) If f is monotonically increasing then f is locally monotonically increasing for all x € (a, b)
=f'(x)20 Vxe(a,b).
(ii) Assume that f' (x) =2 0 for all x € (a, b). Let a < x; < X, < b and apply Lagrange’s
mean value theorem for [x1, x;]. Then there exists c € (x4, x;) < (a, b) such that

f(x2) = f(x1)
X2 = X1
Therefore if x; < x, then f(x;) < f(x,), so f is monotonically increasing on (a, b).

=f'(0) 20 = f(x) 2 f(xy)

(2) Similar to case (1).

(3) fis constant < f is monotonically increasing and decreasing
= f'(x)20and f'(x)<0 Vxe(a,b) = f'(x)=0 Vxe(a,b)
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(4) and (5): similar to case (1) (ii)

Remark. Statements (4) and (5) cannot be reversed.
For example, f(x) = x3 is strictly monotonically increasing on R, however f' (x) > 0
does not hold forall x e R, since f' (x) =3 x> = f'(0) = 0.

Remark. If the domain of f is not an interval then the above theorem is not true,
as the following examples show.

1) Letf:R\Z—R, f(x) ={x}=x-[x]. Then f is differentiable on R\ Z
andf'(x)=1>0forall xeR\Z but f is not monotonically increasing.

2) Let f:R\Z—R, f(x) =[x]. Then f is differentiable on R\ Z
and f'(x) =0forall xe R\ Z but f is not constant.

Local extremum, sufficient conditions

Definition. If f is differentiable at x, and f' (xg) = 0 then X, is a stationary point of f.
If f' (xo) = 0 or f is not differentiable at x, then X is a critical point of f.

Remark. Recall that if f is differentiable at xq € int Df and f has a local extremum at x then ' (xg) = 0.
This is a necessary condition for the existence of a local extremum.
The next two theorems formulate sufficient conditions.

Theorem (Sufficient condition for a local extremum, first derivative test).
Assume that f is differentiable at x; € int Dy.
Iff'(xo) = 0and f' changes sign at xg, then f has a local extremum at x.

. . . increasing
N ly, if f' =0and f'is (strictly) locall { .
amely, if f' (xo) =0and f'is (strictly) locally 5 N Xo
then f has a (strict) local{ m|n|‘mum Xo-
maximum

Proof. Assume that f' (xg) = 0 and f' is locally increasing at xq
(thatis, f' changes sign from negative to positive)
! <0 -
= 36>Osuchthat{f (=0 !f Xo= 0 <X<Xo
f'(x)20if xo<x<xg+6
{ fis monotonically decreasing on (xo - 6, Xo)
fis monotonically increasing on (xq, Xo + 6)
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{ f() 2 f(xo) if o= 6 < x<xo = f has a local minimum at x,.

fx)2f(xg) if xg<x<Xxg+0

Theorem (Sufficient condition for a local extremum, second derivative test).
Assume that f is twice differentiable at xy € int Dy.

Iff'(xo) =0and f'" (xo) * 0 then f has a local extremum at xg.
If{ " (x0) >0 minimum

then f has a strict local { . Xo-
"' (%) <0 maximum
Proof. f'' (xg) >0 = f'is locally increasing at xo and f' (xo) =0

= by the previous theorem f has a local minimum at xq.

Remark. The sign change of f' at xq is only a sufficient but not a necessary condition
for the existence of a local extremum at x,.

1
2 . _ .
For example, iff(x):{x (2+sm(x)) ifx0
0 ifx=0
then f is differentiable for all x e R. At x = 0:

1
2[2 +sin| -
F(x) = £(0 X 1
f'(0)= limM = limw = limx(2+sin(—)) =0 (sinceitis 0-bounded),

x-0 x-0 x-0 X x-0 X
so the necessary condition holds at xo = 0.

However, in any neighbourhood of xq = 0:
f has strictly monotonic increasing and decreasing sections =
f' has both positive and negative values =
f'doesn't change sign at x, = 0.

Yet f has a local extreme value at xy = 0, and it is even an absolute minimum here.

0.04f 2 )
f(x)=x (2+sm(;)) )
0.03; f'(x)
22
0.02 y - 3 X /\ ﬂ
—(;3 —(;.2‘ - —(; 1‘ 1 2 0.3
0.01f
y=x°

i " 1 " " " " " " " " "
-0.10 -0.05 0.00 0.05 0.10 0.15

Local extremum and higher order derivatives

Remark. If f' (xg) = 0and " (xg) = 0 then it cannot be decided whether f has a local
extremum at xq. For example:
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1) f(x) = x* does not have a local extremum at x, = 0,
2) f(x) = x* has a local minimum at xo = 0,
3) f(x) = -x* has a local maximum at x, = 0, and in each case f' (0) = f" (0) = 0.

Theorem. (1) Assume that f is 2 k times differentiable at x,, k 2 1.

f29(x0) >0
If £ (Xo) =. .. = FP*D(x5) =0 and{ 0
(Xo) (Xo) F29 (x0) < 0
then f has a strict local{ m|n|.mum Xo-
maximum

(2) Assume that f is 2 k + 1 times differentiable at xq, k = 1.
Iff' (xo) =... = F?M(x,) =0 and f2**V(x,) # 0, then f is strictly monotonic
in a neighbourhood of xq, so f doesn’t have a local extremum at xp.

Remark. Part (1) in other words: If the first non-zero derivative (after the first one) has an even

order
then f has a local extremum at x,.

Proof. (1) We prove the statement for a strict local minimum by induction.

(i) If k = 1 then the statement is true.

(ii) Assume that the statement holds fork—1and letg = f"".
(=gqg'=f", .., g(zk-s) - f(2k—1)’ g(zk-z) - f(zk).)
From the induction hypothesis it follows that
if g" (Xo) = .. = g?*3(x,) = 0 and g*¥~?(x,) > 0 then the function
g =1f"has astrict local minimum at x,.

(iii) We want to prove that if

f'(x0) =F" (Xo) = F""" (Xo) =. .. = F2*¥"V(xo) = 0 and F?¥)(xy) > 0 then
f has a strict local minimum at x,.
Since f'"' (xg) =0 and f'" has a strict local minimum at xo,
then3 6>0suchthatf" (x)>0, Vxe(xg- 0, xo+ )\ {X}
= f'is strictly monotonically increasing on (xo - 8, Xo + 6)
= f'is strictly locally increasing at xq
= f has a strict local minimum at x;.

(2) Assume that ' (xo) = "' (Xo) =. .. = F2¥)(xo) = 0 and F@*¥*Y(x,) % 0.
Letg=f',then g' (xo) =. .. = g?*Y(x0) = 0 and g@¥(x,) % 0.
= by part (1), g = f' has a strict local extremum at x,.
Since f' (xp) =0, then either f' (x) >0o0rf'(x)<0, V x e (xg- 0, Xxo + 0) \ {Xo}
= f is strictly monotonic on (xy — &, Xo + 6)
= f doesn’t have a local extremum at x;.

Example. f(x) = x" is n times differentiable,
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fOx)=n(n-1)(n-2)...(n-k+1)x"*, k=1,2,..,n-1

M (x) =n!

= if X, =0, then f'(0)=f"(0)=...=f"D(0)=0, FM(0)=n!>0

= at x, =0 f has alocal minimum if n is even and f doesn’t have a local
extremum if nis odd.

Convexity / concavity on an interval

Theorem (Necessary and sufficient condition for convexity).
If f is differentiable on the interval /, then the following statements are equivalent.

(1) fis convex on/
(2) f(x)=f(a)+f'(a)(x-aqa) ifx,ael
(3) f'is monotonically increasing on /

Remark. The geometrical meaning of (2) is that for all a € /, the graph of f
lies above the tangent line at a.

Proof of (1) = (2):
A

hax

hax(y) y=Aa+(1-A)x

hax(y) = Af(a)+(1-A)f(x)
fisconvex = f(y) < hgx(y)

f(y)

Ifa<xandye(a, x)then 3 Ae(0, 1) such that
y=Aa+(1-A)x = y-a=A-1a+(1-A)x
=y-a=(1-A)(x-a)
fisconvex = f(y)<Af(a)+(1-A)f(x)



= f(y) - f(a) < (A= 1) f(a) + (1= A) F(x)
= f(y) - f(a) < (1 - A) (f(x) - f(a))
Fly)-fla) f(x)-f(a)

y-a X-a

Dividing both sidesbyy-a=(1-A)(x-a)>0
f(x)-f(a)

If y—a+,thenf'(a) <

= f(x)2f(a)+f'(a)(x-a) ifx,ael.
xX-a

If a > x then the proof is similar and if a = x then the statement is obvious.

A

Proof of (2) = (3): Let T, (x)=f(a)+f'(a) (x-aq).
Ifa,bel, a<b = T,(a)=f(a)2Ty(a) and T,(b) < f(b) = Ty(b)

Ta(b)~Ta(@) _Ta(b)-fla) F(b)-Tha) Ty(b)-Th(a)

= f'(a) = =f'(b)
b-a b-a b-a b-a
= f'is monotonically increasing on /
@=0) (3)= (1)

Ta(b)

calculus1-09.nb | 11

y

Proof of (3) = (1): Leta,bel, a<b, A€ (0, 1) forwhich x=Aa+(1-A)b
= x-a=(1-A)(b-a)
b-x=A(b-a)

Then by Lagrange’s mean value theorem there exist ¢; € (a, x) and ¢; € (x, b) such that
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f(x)-f f(b)-f
M =f'(c;) and f‘(cz)z%.

X-a -X
f'is monotonically increasing = f'(c1) <f'(cy)

f(x)-f(a) f(b)-f(x) f(x)-f(a) f(b) - f(x)
< ——3 <
X-a b-x (1-A)(b-a) A(b-a)
— fisconvexon/.

= f(x)<Af(a)+(1-A)F(b)

Consequence (Necessary and sufficient condition for convexity).
Assume that f is twice differentiable on the interval /. Then
(1)f"(x)20Vxel ifandonlyif fisconvexon/.
(2)f"(x)<0Vxel ifandonlyif fisconcaveon/.

Consequence.
Assume that f is twice differentiable on the interval /. Then
(1) If f"'(x)>0 ¥V x el then fis strictly convexon /.
(2) If f"'(x)<0 V¥V xel then fis strictly concave on /.

Inflection point

Definition. Assume that f is continuous at a € int D and there exists ¢ > 0 such that
fis convex on (a - 6, a) and concave on (a, a + )
or fisconcaveon (a- 9, a)and convexon (a, a+ 6).
Then ais called a point of inflection of the function f.

Theorem (Necessary condition for an inflection point, second derivative test).
If f is twice differentiable at x, and f has an inflection point at xo then ' (xg) = 0.

Proof. If f is convex on (xy — 6, Xg] and concave on [xg, Xo + 6) then
f'is monotonically increasing on (xg - 9, Xo] and monotonically decreasing on [xg, Xo + 0)
= f'hasalocal maximumatxg, = f" (xp) =0.

Theorem (Sufficient condition for an inflection point, second derivative test).
If f is twice differentiable in a neighbourhood of xq,
f" (xo) =0and f" changes sign at xq,
then f has an inflection point at xo.
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Theorem (Sufficient condition for an inflection point, third derivative test).
If f is three times differentiable in a neighbourhood of xg,
" (x)=0andf""(xq) 0,
then f has an inflection point at x,.

Inflection point and higher order derivatives

Theorem. (1) Assume that f is 2 k + 1 times differentiable at xg, k 2 1.
IfF" (xo) =. .. = 2N (x0) = 0 and F@¥*V(xy) £ 0
then f has an inflection point at xg.

(2) Assume that f is 2 k times differentiable at xq, k 2 1.

Iff'" (xo) =. .. = f2*V(x,) =0 and f2¥(x,) * 0, then f is strictly convex or concave
in a neighbourhood of Xy, so f doesn’t have an inflection point at xg.

Remark. Part (1) in other words: If the first non-zero derivative (after the second one) has an
odd order then f has a local extremum at xg.

Linear asymptotes

Definition. The straight line x = a is a vertical asymptote of the function f if
lim f(x) =toco or lim f(x)=toco.
X->a-

X->a+

Definition. The straight line g(x) = A x + B is a linear asymptote of the function f at o or - if
lim (f(x)-g(x)) =0 or lim (f(x) —g(x)) =0.

g(x) is a horizontal asymptote if A= 0 and an oblique or slant asymptote if A + 0.
Statement. g(x) = Ax + B is a linear asymptote of f at oo if and only if

f(x)
A= lim — and B= lim (f(x)-AX)

X-too  x X—too

JT
Example. lim tanx=Fcw = x=— is a vertical asymptote of f(x) = tan(x).
= 2

X>Tt
2

1
Example. If f(x) = x+ 2+ — then g(x) = x + 2 is a linear asymptote of f at tco.
X
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] or f(x) = x ex
I . ‘Mi‘ . L L L i
a7 -1 I 1 2 3 5;
_ L 1 L J/’ L L L 1 L L L L L
4 = [ 2

Example. If f(x) = x ex then g(x) = x + 2 is a linear asymptote of f at +oo.

2
. o fx) . xex LR
Solution. A= lim — = lim = lim ex=e"=1
X—>*oco X X—>toco X X—>too
2

2 ex-1 2 e/-1
B = lim (Xex—x)z lim .Lety=1>,thenB= lim =2,

+oo +oo l- -0+ 1‘ .
X ) X=> - X Y 5 y
using that lim —~ = 1. The limit can also be calculate with the L’Hospital’s rule.
x>0  x
Sog(x)=x+2.

Extreme values on a closed interval

Remark. If f is continuous on a closed and bounded interval then by the

Weierstrass extreme value theorem f has a minimum and a maximum.
The possible points are:

1) the points where f is not differentiable
2) the points where the derivative of fis 0
3) the endpoints of the interval
Finally the largest and smallest of the possible values must be selected.

Analyzing graphs of functions

Summary of the steps:

1) finding the domain of f

2) finding the zeros of f

3) parity, periodicity

4) limits at the endpoints of the intervals constituting the domain

5) investigation of f' = monotonicity, extreme values

6) investigation of f'"' = convexity/concavity, inflection points
)
)

7) linear asymptotes
8) plotting the graph of f, finding the range of f
Exercises

https://math.bme.hu/~nagyi/calculusl/functions.pdf

Examples



X

1. f(x)=

X +1

Df = (=00, —1) U (-1, o0); f(X) =0 & x=0;
lim f(X):(), lim f(X)=—00, lim f(X)=+oo
Xx--1+0 X=-1-0

X=too

Monotonicity, local extremum:

1-2x° 1
f'(x)= =0 & x=—=0.79
(e +1) i/E
X | X<-1"' -1<x< 31 X= 31 X> 31
! V2 V2 2
f' + : + 0 -
| 3
f Aol 2 max:%xe.% N
|

Convexity [/ concavity, inflection points:

6x%(x3-2
' (x)= ( )=0<=>x=00rx=i/5z1.26
(x*+1)°
X | x<-1 : -1<x<0 | x=0 @<x<\3/5 x:\ﬁ x>\3/5
£ o - 0 = 0 +
I 3
£l U N N |infl: 2042 | U
The graph of f:
0.8
:0.6
30.4
30.2 = Rr=R
-6 —‘4 —‘2 : é 4‘1 6
i‘—O

=

2. f(x)=2sinx+sin2x

Df=R; fisodd;

f is periodic with period 2 Tt = it may be assumed that 0 < x <2 r;

= onthisinterval f(x)=0 < x=0or x=Jmmor x=271

Monotonicity, local extremum:
f'(x)=2cosx+2cos2x=2(cosx+cos® x - (1-cos’ x)) =
-1%3

=2-(2cos’x+cosx-1)=0 = (COSX), =

1

= COSXx=-10r cosx=-
2
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T 57T
= X=X =T X3= ——
3
T T T 57T 57T 57T
X [0,—) = (—,n] 7T [n,—] = [—,Zn] 27T
3 3 3 3 3 3
f' + (%] - 0 - 0 + +
f 2 max:¥ N N min:—% 2
Convexity [/ concavity, inflection points:
f"(x)=-2sinx-4sin2x=-2sinx—8sin xcos x =
1

=-2sinx(l+4cosx)=0 = sinx=0 or cosx=-—
4

1 1
= X1=0,X =TT, X3 =271, X4 = arccos(——) = 1.82, xs =271 —-arc cos(——) = 4.46
4 4
X (%] (0, 1.82) 1.82 (1.82, ) 7T (77, 4.46) 4.46 (4.46, 2 27T
TT)
f'' (%] - 0 + 0 - (%] + (%]
f [infl:0 N infl:\n U infl:e N infl:\n U infl:e
3415 _
8 3 V15
8
The graph of f:
2,
1,
343 343
7‘7 ‘ ‘ 5‘7‘( } => f_ [_ )
S 182 b 446 = m 2 2

Implicitely given curve

Example. The curve y = y(x) is given by the following implicit equation:

xsinhx-ycoshy=0

Study the properties of this curve in a neighbourhood of (0, 0).

Solution. The point (0, 0) is on the curve: y(0) = 0.
1) The first derivative of x sinh x - y(x) cosh y(x) = 0 with respect to x:
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sinh x + x cosh x-y' (x) cosh y(x) -y (x) y' (x)sinh y(x) =0

Ifx=0, y=0 = 0+0-1-y'(0):-1-0-y'(0):0=0 = y'(0)=0

2) The second derivative with respect to x:

cosh x + cosh x + xsinh x -y " (x) cosh y(x) =y ' (x) y' (x) sinh y(x)
=y (%) y' (x) sinh y(x) = y(x) y" (x) sinh y(x) = y(x) y" (x) y' (x) cosh y(x) =0

fx=0,y=0= 1+1+0-y"(0)-0-0-0-0=0 = y"(0)=2

Since y'(0)=0and y" (0) = 2 > 0 then the curve y = y(x) has local minimum at
x =0and itis convex in some neighbourhood of x = 0.




