
Calculus 1 - 09

Applications of differential calculus

L’Hospital’s rule

Theorem (L’Hospital’s rule). 
Assume that a ∈  =  ⋃ {-∞, ∞},  I is a neighbourhood of a, the functions f  and g are differen-
tiable 
on I \ {a}   and   g(x) ≠ 0, g ' (x) ≠ 0 for all x ∈ I \ {a}. Assume moreover that 

lim
xa

f (x) = lim
xa

g(x) = 0     or     lim
xa

f (x) = lim
xa

g(x) = ∞.

If  ∃ lim
xa

f ' (x)

g ' (x)
= b ∈   then  ∃ lim

xa

f (x)

g(x)
= b.

Remark. The theorem holds for right-hand and left-hand limits as well.

Proof. We prove it in the case when a ∈  (for right-hand limit).

    Assume that a ∈ , lim
xa+

f (x) = lim
xa+

g(x) = 0 and ∃ lim
xa+

f ' (x)

g ' (x)
= b ∈ .

    Extend the functions f  and g such that f (a) = g(a) = 0 and let x ∈ I, x > a.
    Then f  and g are continuous on [a, x] and differentiable on (a, x),
    so by Cauchy’s mean value theorem there exists c ∈ (a, x) such that 

         
f (x)

g(x)
=
f (x) - f (a)

g(x) - g(a)
=
f ' (c)

g ' (c)
.

    Let (xn) be a sequence such that xn⟶a and choose cn ∈ (a, xn) for all n.

    Then cn⟶a and 
f (xn)

g(xn)
=
f ' (cn)

g ' (cn)
 for all n ∈ .

    Therefore lim
n∞

f (xn)

g(xn)
= lim
n∞

f ' (cn)

g ' (cn)
= b and by the sequential criterion for the limit, lim

xa

f (x)

g(x)
= b.

Undefined forms

Remark.  The theorem can be applied for limits of the following type:

1) 
0

0
,

∞

∞
   ⟹   L’Hospital’s rule can be applied directly

2) 0 ·∞     ⟹    transformation:  f (x) g(x) =
f (x)

1
g(x)

  or  f (x) g(x) =
g(x)

1
f (x)

3) ∞-∞  ⟹  f (x) - g(x) =
1

h(x)
-

1

k(x)
=
k(x) - h(x)

h(x) k(x)
      

0

0

4) 00, 1∞, ∞0   ⟹   (f (x))g(x) = eg(x)·ln(f (x))



Exercises

Pages 171-172 of the pdf file (first 9 examples):
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_elm.pdf

Pages 72-73 of the pdf file, exercise 26:
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf
In exercises 26. g), h) the L’Hospital’s rule cannot be applied.

Local properties and the derivative

Definition. Assume that x0 ∈ Df  and there exists δ > 0 such that 
   for all x, y ∈ Df , if x0 -δ < x < x0 < y < x0 +δ, 

   then  

f (x) ≤ f (x0) ≤ f (y)
f (x) ≥ f (x0) ≥ f (y)
f (x) < f (x0) < f (y)
f (x) > f (x0) > f (y)

. Then we say that f  is 

locally increasing
locally decreasing
strictly locally increasing
strictly locally decreasing

  at x0.

Remarks. (1) If f  is monotonically increasing on (a, b), then f  is locally increasing for all x0 ∈ (a, b).

  (2) If f  is locally increasing for all x0 ∈ (a, b), then f  is monotonically increasing on (a, b).
  
  (3) However, if  f  is locally increasing at x0 then it doesn’t imply that there exists

                 a neighbourhood B(x0, r) where f  is monotonically increasing.
                The following functions are locally increasing at x0 = 0 but on any interval that 
                contains 0, the functions are not monotonically increasing.
                

1.  f (x) =
x sin2 1

x
if x ≠ 0

0 if x = 0
2. f (x) =

1

x
if x ≠ 0

0 if x = 0
     3. f (x) =

x if x ∈ 

2 x if x ∈  \ 
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Theorem. Assume that f  is differentiable at x0.
 (1) If f  is locally increasing at x0 then f ' (x0) ≥ 0.
 (2) If f  is locally decreasing at x0 then f ' (x0) ≤ 0.
 (3) If f ' (x0) > 0 then f  is strictly locally increasing at x0.
 (4) If f ' (x0) < 0 then f  is strictly locally decreasing at x0.

Proof. (1) If f  is locally increasing at x0 then ∃ δ > 0 such that

0 < x - x0 < δ  ⟹  
f (x) - f (x0)

x - x0
≥ 0.

(If x < x0 then x - x0 < 0 and f (x) - f (x0) ≤ 0 and
 if x > x0 then x - x0 > 0 and f (x) - f (x0) ≥ 0.)

 Since f  is differentiable at x0 then f ' (x0) = lim
xx0

f (x) - f (x0)

x - x0
≥ 0.

     (2) Similar to case (1).

     (3) If f ' (x0) = lim
xx0

f (x) - f (x0)

x - x0
> 0, then there exists δ > 0 such that 

if 0 < x - x0 < δ  then  
f (x) - f (x0)

x - x0
> 0.

⟹  if 
x0 < x < x0 +δ

x0 -δ < x < x0
  then 

f (x) > f (x0)

f (x) < f (x0)

⟹  f  is strictly locally increasing at x0.
     (3) Similar to case (4).
     

Remarks. Assume that f  is differentiable at x0.
(1) If f  is strictly locally increasing at x0 then it doesn’t imply that f ' (x0) > 0.  
      If f  is strictly locally increasing at x0 then f ' (x0) ≥ 0, since ∃ δ > 0 such that

      0 < x - x0 < δ  ⟹  
f (x) - f (x0)

x - x0
> 0, but for the limit lim

xx0

f (x) - f (x0)

x - x0
≥ 0.

      For example f (x) = x3 is strictly locally increasing at x0 = 0, but f ' (0) = 3 x2
x=0 = 0.

      

1.  f (x) = x3 2. f (x) = -x3           3. f (x) = x + x2 sin
10

x
if x ≠ 0

0 if x = 0

calculus1-09.nb     3



-2 -1 1 2

-2

-1

1

2

     
-2 -1 1 2

-2

-1

1

2

     

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

     
(2) If f ' (x0) ≥ 0 then it doesn’t imply that f  is locally increasing at x0.
      For example f (x) = -x3 is not locally increasing at x0 = 0, but f ' (0) = ≥ 0.   

(3) If f ' (x0) > 0 then it doesn't imply that f  is monotonically increasing on an interval
      containing x0. 
      For example, let f  be a function such that x - x2 ≤ f (x) ≤ x + x2 ∀ x  ⟹  f (0) = 0.

      If x > 0 then 1- x ≤
f (x)

x
=
f (x) - f (0)

x - 0
≤ 1+ x,

      If x < 0 then 1- x ≥
f (x) - f (0)

x - 0
≥ 1+ x, so by the sandwich theorem 

      f ' (0) = lim
xx0

f (x) - f (x0)

x - x0
= 1 > 0. For example, let f (x) = x + x2 sin

10

x
if x ≠ 0

0 if x = 0
      

Darboux’s theorem

Theorem. Assume that f : [a, b]⟶ is differentiable and f ' (a) < y < f ' (b) or f ' (b) < y < f ' (a).
 Then there exists c ∈ (a, b) such that f ' (c) = y.

Remark. We say that f ' has the intermediate value property of Darboux property.

Proof. 1) Let g : [a, b]⟶, g(x) = f (x) - y · x     ⟹    g is differentiable and g ' (x) = f ' (x) - y.
    2) Assume that f ' (a) < y < f ' (b)   ⟹   g ' (a) = f ' (a) - y < 0 < f ' (b) - y < g ' (b)
    3) g is differentiable, so it is continuous on [a, b]
         ⟹  by Weierstrass extreme value theorem it has a minimum and a maximum on [a, b].
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    4) Since 
g ' (a) < 0
g ' (b) > 0

  then  
g is strictly locally decreasing ata
g is strictly locally increasing at b

         ⟹  g does not have a minimum at a and b but on the open interval (a, b)
         ⟹  there exists c ∈ (a, b) such that g has a local minimum at c
         ⟹  g ' (c) = 0 = f ' (c) - y  ⟹  f ' (c) = y for some c ∈ (a, b).
         

Example. The sign function or signum function is defined as   sgn x =
-1 if x < 0
0 if x = 0
1 if x > 0

.

          This function is not continuous at x0 = 0, so there is no function f : ⟶

          for which f ' (x) = sgn x  on  (or on any interval that contains x0 = 0).

Remark. From Darboux’s theorem it follows that if f ' is not continuous at a point then
f ' cannot have a discontinuity of the first type at that point, so at least one of the
one-sided limits doesn’t exist or exists but is not finite
⟹  f ' has an essential discontinuity at the given point.

Statement. If f  is differentiable on [a, a+δ)  (δ > 0) and f ' has a discontinuity at a then the limit
    lim
xa+0

f (x) doesn’t exist or ∃ lim
xa+0

f (x) ∉ .     

Continuously differentiable functions

Definition. Assume that I is a neighbourhood of a ∈ Df  and f  is differentiable on I⋂Df .
   Then f  is continuous differentiable at a if f ' is continuous at a.
   f  is continuously differentiable on A if f  is continuous differentiable ∀ x ∈ A.
   Notation: C1(A) = {f : f is continuously differentiable on A}.

Example: The function f (x) =
x2 sin

1

x
if x ≠ 0

0 if x = 0
  is differentiable but f ' is not continuous 

 at x0 = 0, since f ' (x) =
2 x sin

1

x
- cos

1

x
if x ≠ 0

0 if x = 0
.

f (x)

y = x2

y = -x2
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Higher order derivatives

Definition. If f ' is differentiable at x then we say that f  is twice differentiable at x and
    the second derivative or second order derivative of f  at x0 is f '' (x) = (f ') ' (x).
    Differentiating f  repeatedly, we get the third, ..., nth derivative of f .

    Notation:     f '' (x) = f (2)(x) =
d2 f (x)

d x2

f ''' (x) = f (3)(x) =
d3 f (x)

d x3

...

f (n)(x) =
dn f (x)

d xn

    By definition: f (0)(x) = f (x)    

Example: f (x) = sin x  ⟹  f ' (x) = cos x, f '' (x) = -sin x, f ''' (x) = -cos x, f (4)(x) = sin x, ...
 f (x) = ex  ⟹  f (n)(x) = ex ∀ n ∈ 

Investigation of differentiable functions

Monotonicity on an interval

Theorem. Assume that f : (a, b)⟶ is differentiable. Then
(1) f  is monotonically increasing  ⟺  f ' (x) ≥ 0 for all x ∈ (a, b)
(2) f  is monotonically decreasing  ⟺  f ' (x) ≤ 0 for all x ∈ (a, b)
(3) f  is constant  ⟺  f ' (x) = 0 for all x ∈ (a, b)
(4) f ' (x) > 0 for all x ∈ (a, b) ⟹  f  is strictly monotonically increasing
(5) f ' (x) < 0 for all x ∈ (a, b) ⟹  f  is strictly monotonically decreasing

Proof. (1) 
(i) If f  is monotonically increasing then f  is locally monotonically increasing for all x ∈ (a, b)

      ⟹ f ' (x) ≥ 0 ∀ x ∈ (a, b).
(ii) Assume that f ' (x) ≥ 0 for all x ∈ (a, b).  Let a < x1 < x2 < b and apply Lagrange’s 
      mean value theorem for [x1, x2]. Then there exists c ∈ (x1, x2) ⊂ (a, b) such that

     

     
f (x2) - f (x1)

x2 - x1
= f ' (c) ≥ 0  ⟹  f (x2) ≥ f (x1)

          Therefore if x1 < x2 then f (x1) ≤ f (x2), so f  is monotonically increasing on (a, b).
          
     (2) Similar to case (1).

(3) f  is constant  ⟺  f  is monotonically increasing and decreasing
      ⟺  f ' (x) ≥ 0 and f ' (x) ≤ 0   ∀ x ∈ (a, b)  ⟺  f ' (x) = 0 ∀ x ∈ (a, b)
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 (4) and (5): similar to case (1) (ii)

Remark. Statements (4) and (5) cannot be reversed.
          For example, f (x) = x3 is strictly monotonically increasing on , however f ' (x) > 0
          does not hold for all x ∈ , since f ' (x) = 3 x2 ⟹ f ' (0) = 0.
          

Remark. If the domain of f  is not an interval then the above theorem is not true, 
         as the following examples show.
         
         1) Let f :  \ ⟶, f (x) = {x} = x - [x]. Then f  is differentiable on  \ 

         and f ' (x) = 1 > 0 for all x ∈  \  but f  is not monotonically increasing.
         
         2) Let f :  \ ⟶, f (x) = [x]. Then f  is differentiable on  \ 

         and f ' (x) = 0 for all x ∈  \  but f  is not constant.
         
         
         

Local extremum, sufficient conditions

Definition. If f  is differentiable at x0 and f ' (x0) = 0 then x0 is a stationary point of f .
    If f ' (x0) = 0 or f  is not differentiable at x0 then x0 is a critical point of f .

Remark. Recall that if f  is differentiable at x0 ∈ intDf  and f  has a local extremum at x0 then f ' (x0) = 0.
          This is a necessary condition for the existence of a local extremum.
          The next two theorems formulate sufficient conditions.
          

Theorem (Sufficient condition for a local extremum, first derivative test). 
 Assume that f  is differentiable at x0 ∈ intDf .
 If f ' (x0) = 0 and f ' changes sign at x0, then f  has a local extremum at x0.
 

 Namely, if f ' (x0) = 0 and f ' is (strictly) locally 
increasing
decreasing

  at x0

 then f  has a (strict) local 
minimum
maximum

 at x0. 

Proof. Assume that f ' (x0) = 0 and f ' is locally increasing at x0 
    (that is, f ' changes sign from negative to positive)

    ⟹  ∃ δ > 0 such that 
f ' (x) ≤ 0 if x0 -δ < x < x0

f ' (x) ≥ 0 if x0 < x < x0 +δ

    

    ⟹ 
f is monotonically decreasing on (x0 -δ, x0)

f is monotonically increasing on (x0, x0 +δ)
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    ⟹  
f (x) ≥ f (x0) if x0 -δ < x < x0

f (x) ≥ f (x0) if x0 < x < x0 +δ
  ⟹  f  has a local minimum at x0.

    

Theorem (Sufficient condition for a local extremum, second derivative test).  
Assume that f  is twice differentiable at x0 ∈ intDf .
 If f ' (x0) = 0 and f '' (x0) ≠ 0 then f  has a local extremum at x0.

 If 
f '' (x0) > 0
f '' (x0) < 0

  then f  has a strict local 
minimum
maximum

  at x0.

Proof. f '' (x0) > 0  ⟹ f ' is locally increasing at x0 and f ' (x0) = 0
    ⟹ by the previous theorem f  has a local minimum at x0.
    

Remark. The sign change of f ' at x0 is only a sufficient but not a necessary condition 
      for the existence of a local extremum at x0.

          For example, if f (x) =
x2 2+ sin

1

x
if x ≠ 0

0 if x = 0
          then f  is differentiable for all x ∈ . At x = 0:          

f ' (0) = lim
x0

f (x) - f (0)

x - 0
= lim
x0

x2 2+ sin
1

x
x

= lim
x0

x 2+ sin
1

x
= 0  (since it is 0 ·bounded),

          so the necessary condition holds at x0 = 0.
          
          However, in any neighbourhood of x0 = 0:
          f  has strictly monotonic increasing and decreasing sections  ⟹ 
          f ' has both positive and negative values ⟹
          f ' doesn't change sign at x0 = 0.
          
          Yet f  has a local extreme value at x0 = 0, and it is even an absolute minimum here.          
         

f (x) = x22 + sin
1

x


y = x2

y = 3 x2
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0.01
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f ' (x)

-0.3 -0.2 -0.1 0.1 0.2 0.3

-1

1

2

Local extremum and higher order derivatives

Remark. If f ' (x0) = 0 and f '' (x0) = 0 then it cannot be decided whether f  has a local 
          extremum at x0. For example:

8     calculus1-09.nb



          1) f (x) = x3 does not have a local extremum at x0 = 0,
          2) f (x) = x4 has a local minimum at x0 = 0,
          3) f (x) = -x4 has a local maximum at x0 = 0, and in each case f ' (0) = f '' (0) = 0.         
          

Theorem. (1) Assume that f  is 2 k times differentiable at x0, k ≥ 1.

        If f ' (x0) =. .. = f (2 k-1)(x0) = 0  and 
f (2 k)(x0) > 0
f (2 k) (x0) < 0

        then f  has a strict local 
minimum
maximum

  at x0.

        
  (2) Assume that f  is 2 k + 1 times differentiable at x0, k ≥ 1.
        If f ' (x0) =. .. = f (2 k)(x0) = 0  and f (2 k+1)(x0) ≠ 0, then f  is strictly monotonic
        in a neighbourhood of x0, so f  doesn’t have a local extremum at x0.

Remark. Part (1) in other words: If the first non-zero derivative (after the first one) has an even 
order 

         then f  has a local extremum at x0. 
         
         

Proof. (1) We prove the statement for a strict local minimum by induction.
(i) If k = 1 then the statement is true.

         (ii) Assume that the statement holds for k - 1 and let g = f ''.
     (⟹ g ' = f ''', ..., g(2 k-3) = f (2 k-1), g(2 k-2) = f (2 k).)
     From the induction hypothesis it follows that
     if g' (x0) =. .. = g(2 k-3)(x0) = 0 and g(2 k-2)(x0) > 0 then the function
     g = f '' has a strict local minimum at x0.

       (iii) We want to prove that if 
     f ' (x0) = f '' (x0) = f ''' (x0) =. .. = f (2 k-1)(x0) = 0 and f (2 k)(x0) > 0 then 
     f  has a strict local minimum at x0.

            Since f '' (x0) = 0 and f '' has a strict local minimum at x0,
            then ∃ δ > 0 such that f '' (x) > 0,  ∀ x ∈ (x0 -δ, x0 +δ) \ {x0}

               ⟹ f ' is strictly monotonically increasing on (x0 -δ, x0 +δ)

               ⟹ f ' is strictly locally increasing at x0

               ⟹ f  has a strict local minimum at x0.
               
    (2) Assume that f ' (x0) = f '' (x0) =. .. = f (2 k)(x0) = 0  and f (2 k+1)(x0) ≠ 0.
          Let g = f ', then g' (x0) =. .. = g(2 k-1)(x0) = 0  and g(2 k)(x0) ≠ 0.
          ⟹ by part (1), g = f ' has a strict local extremum at x0.
          Since f ' (x0) = 0, then either f ' (x) > 0 or f ' (x) < 0,  ∀ x ∈ (x0 -δ, x0 +δ) \ {x0}

          ⟹  f  is strictly monotonic on (x0 -δ, x0 +δ)

          ⟹  f  doesn’t have a local extremum at x0.
          
          

Example. f (x) = xn is n times differentiable,

calculus1-09.nb     9



f (k)(x) = n(n- 1) (n- 2) ... (n- k + 1) xn-k, k = 1, 2, ..., n- 1
f (n)(x) = n !
⟹  if  x0 = 0,  then  f ' (0) = f '' (0) =. .. = f (n-1)(0) = 0,  f (n)(0) = n ! > 0
⟹  at x0 = 0  f  has a local minimum if n is even and f  doesn’t have a local
         extremum if n is odd.

f (x) = x2 n

-2 -1 1 2 3 4

-2

-1

1

2

3

f (x) = x2 n+1

-2 -1 1 2

-2

-1

1

2

Convexity / concavity on an interval

Theorem (Necessary and sufficient condition for convexity).
If f  is differentiable on the interval I, then the following statements are equivalent.
(1) f  is convex on I
(2) f (x) ≥ f (a) + f ' (a) (x - a)  if x, a ∈ I
(3) f ' is monotonically increasing on I

Remark. The geometrical meaning of (2) is that for all a ∈ I, the graph of f
          lies above the tangent line at a.          

Proof of  (1) ⟹ (2):

f

ha x

a xy

f (y)

ha x(y)    y = λ a + (1 - λ) x
ha x(y) = λ f (a) + (1 - λ) f (x)
f is convex ⟹ f (y) ≤ ha x(y)

    If a < x and y ∈ (a, x) then ∃ λ ∈ (0, 1) such that 
            y = λ a+ (1- λ) x   ⟹ y - a = (λ- 1)a+ (1- λ) x
      ⟹ y - a = (1 -λ) (x - a)
    f  is convex    ⟹  f (y) ≤ λ f (a) + (1- λ) f (x)
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y
             ⟹ f (y) - f (a) ≤ (λ- 1) f (a) + (1- λ) f (x)
             ⟹ f (y) - f (a) ≤ (1 -λ) (f (x) - f (a))

    Dividing both sides by y - a = (1 -λ) (x - a) > 0     ⟹      
f (y) - f (a)

y - a
≤
f (x) - f (a)

x - a

    If y⟶a+, then f ' (a) ≤
f (x) - f (a)

x - a
  ⟹  f (x) ≥ f (a) + f ' (a) (x - a)  if x, a ∈ I.

    If a > x then the proof is similar and if a = x then the statement is obvious.   

f

a

Ta(x) = f (a) + f ' (a) (x - a)

Proof of  (2) ⟹ (3):  Let Ta(x) = f (a) + f ' (a) (x - a).
   If a, b ∈ I, a < b  ⟹  Ta(a) = f (a) ≥ Tb(a)  and  Ta(b) ≤ f (b) = Tb(b)

⟹  f ' (a) =
Ta(b) - Ta(a)

b- a
=
Ta(b) - f (a)

b- a
≤
f (b) - Tb(a)

b- a
=
Tb(b) - Tb(a)

b- a
= f ' (b)

⟹  f ' is monotonically increasing on I

f

a b

Ta Tb

Ta(b)Tb(a)

Tb(b) = f (b)Ta(a) = f (a)

(2) ⟹ (3)

f

a b

Ta Tb

Ta(b)Tb(a)

Tb(b) = f (b)Ta(a) = f (a)

(2) ⟹ (3)

a bx

f

c1 c2

(3) ⟹ (1)

Proof of  (3) ⟹ (1):  Let a, b ∈ I, a < b, λ ∈ (0, 1) for which  x = λ a+ (1- λ)b
   ⟹  x - a = (1 -λ) (b - a)

b - x = λ(b - a)
   

Then by Lagrange’s mean value theorem there exist c1 ∈ (a, x)  and  c2 ∈ (x, b) such that
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 by Lagrange’s
f (x) - f (a)

x - a
= f ' (c1) and f ' (c2) =

f (b) - f (x)

b- x
.

f ' is monotonically increasing  ⟹  f ' (c1) ≤ f ' (c2)  

⟹    
f (x) - f (a)

x - a
≤
f (b) - f (x)

b - x
   ⟹    

f (x) - f (a)

(1 - λ) (b - a)
≤
f (b) - f (x)

λ(b - a)
    ⟹    f (x) ≤ λ f (a) + (1- λ) f (b)  

⟹  f  is convex on I.

Consequence (Necessary and sufficient condition for convexity). 
Assume that f  is twice differentiable on the interval I. Then
(1) f '' (x) ≥ 0 ∀ x ∈ I   if and only if   f  is convex on I.
(2) f '' (x) ≤ 0 ∀ x ∈ I   if and only if   f  is concave on I.

Consequence. 
Assume that f  is twice differentiable on the interval I. Then
(1) If  f '' (x) > 0 ∀ x ∈ I  then  f  is strictly convex on I.
(2) If  f '' (x) < 0 ∀ x ∈ I  then  f  is strictly concave on I.

Inflection point

Definition. Assume that f  is continuous at a ∈ intDf  and there exists δ > 0 such that
    f  is convex on (a-δ, a) and concave on (a, a+δ)

    or  f  is concave on (a-δ, a) and convex on (a, a+δ).
   Then a is called a point of inflection of the function f .

Theorem (Necessary condition for an inflection point, second derivative test).
If f  is twice differentiable at x0 and f  has an inflection point at x0 then f '' (x0) = 0.

Proof. If f  is convex on (x0 -δ, x0] and concave on [x0, x0 +δ) then
     f ' is monotonically increasing on (x0 -δ, x0] and monotonically decreasing on [x0, x0 +δ)

     ⟹  f ' has a local maximum at x0  ⟹  f '' (x0) = 0.
     

Theorem (Sufficient condition for an inflection point, second derivative test).
If f  is twice differentiable in a neighbourhood of x0,
f '' (x0) = 0 and f '' changes sign at x0, 
then f  has an inflection point at x0.
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Theorem (Sufficient condition for an inflection point, third derivative test).
If f  is three times differentiable in a neighbourhood of x0, 
 f '' (x0) = 0 and f ''' (x0) ≠ 0,
 then f  has an inflection point at x0.

Inflection point and higher order derivatives

Theorem. (1) Assume that f  is 2 k + 1 times differentiable at x0, k ≥ 1.
        If f '' (x0) =. .. = f (2 k)(x0) = 0  and f (2 k+1)(x0) ≠ 0
        then f  has an inflection point  at x0.
        
  (2) Assume that f  is 2 k times differentiable at x0, k ≥ 1.
        If f '' (x0) =. .. = f (2 k-1)(x0) = 0  and f (2 k)(x0) ≠ 0, then f  is strictly convex or concave
        in a neighbourhood of x0, so f  doesn’t have an inflection point at x0.

Remark. Part (1) in other words: If the first non-zero derivative (after the second one) has an 
         odd order then f  has a local extremum at x0. 

Linear asymptotes

Definition. The straight line x = a is a vertical asymptote of the function f  if 
    lim
xa+

f (x) = ±∞  or  lim
xa-

f (x) = ±∞.

Definition. The straight line g(x) = A x +B  is a linear asymptote of the function f  at ∞  or -∞ if
    lim
x∞

(f (x) - g(x)) = 0  or lim
x-∞

(f (x) - g(x)) = 0.

    g(x) is a horizontal asymptote if A = 0 and an oblique or slant asymptote if A ≠ 0.

Statement. g(x) = A x +B is a linear asymptote of f  at ±∞ if and only if

   A = lim
x±∞

f (x)

x
   and   B = lim

x±∞
(f (x) - A x)

Example. lim
xπ

2
±

tan x = ∓∞  ⟹  x =
π

2
 is a vertical asymptote of f (x) = tan(x).

Example. If f (x) = x + 2+
1

x
  then g(x) = x + 2 is a linear asymptote of f  at ±∞.
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f (x) = x + 2 +
1

x

-3 -2 -1 1 2 3

-5

5

10

   
f (x) = x e

2

x

-4 -2 2 4

5

10

15

Example. If f (x) = x e
2
x   then g(x) = x + 2 is a linear asymptote of f  at ±∞.

Solution. A = lim
x±∞

f (x)

x
= lim
x±∞

x e
2
x

x
= lim
x±∞

e
2
x = e0 = 1

B = lim
x±∞

x e
2
x - x = lim

x±∞

e
2
x - 1

1
x

. Let y =
2

x
, then B = lim

y0±

ey - 1
1
2
· y

= 2,

using that lim
x0

ex - 1

x
= 1. The limit can also be calculate with the L’Hospital’s rule.

So g(x) = x + 2.

Extreme values on a closed interval

Remark. If f  is continuous on a closed and bounded interval then by the 
          Weierstrass extreme value theorem f  has a minimum and a maximum.
          The possible points are:
          1) the points where f  is not differentiable
          2) the points where the derivative of f  is 0
          3) the endpoints of the interval 
          Finally the largest and smallest of the possible values must be selected.

Analyzing graphs of functions

Summary of the steps:
1) finding the domain of f
2) finding the zeros of f
3) parity, periodicity    
4) limits at the endpoints of the intervals constituting the domain
5) investigation of f '  ⟹  monotonicity, extreme values
6) investigation of f ''  ⟹  convexity/concavity, inflection points
7) linear asymptotes
8) plotting the graph of f , finding the range of f

Exercises

https://math.bme.hu/~nagyi/calculus1/functions.pdf

Examples
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1.  f (x) = x

x3 + 1

Df = (-∞, -1)⋃ (-1, ∞);  f (x) = 0 ⟺ x = 0;  
lim
x±∞

f (x) = 0,  lim
x -1+0

f (x) = -∞, lim
x -1-0

f (x) = +∞

Monotonicity, local extremum:

f ' (x) =
1- 2 x3

x3 + 1
2
= 0  ⟺  x =

1

2
3

≈ 0.79

x x<-1 -1<x<
1

2
3

x=
1

2
3

x>
1

2
3

f' + + 0 -

f ↗ ↗ max:
4

3

3
≈0.53 ↘

   

Convexity / concavity, inflection points:

f '' (x) =
6 x2 x3 - 2

x3 + 1
3

= 0  ⟺  x = 0 or x = 2
3

≈ 1.26

x x<-1 -1<x<0 x=0 0<x< 2
3

x= 2
3

x> 2
3

f'' + - 0 - 0 +

f ⋃ ⋂ ⋂ infl:
2

3

3
≈0.42 ⋃

The graph of f :

-6 -4 -2 2 4 6

-0.4

-0.2

0.2

0.4

0.6

0.8

  ⟹ Rf = 

2.  f (x) = 2 sin x + sin 2 x

Df = ;  f is odd;
f  is periodic with period 2 π   ⟹  it may be assumed that 0 ≤ x ≤ 2 π ;
⟹  on this interval f (x) = 0  ⟺  x = 0  or  x = π   or  x = 2 π

Monotonicity, local extremum:
f ' (x) = 2 cos x + 2 cos 2 x = 2 cos x + cos2 x - 1- cos2 x =

= 2 · 2 cos2 x + cos x - 1 = 0  ⟹  (cos x)1,2 =
-1± 3

4
  ⟹  cos x = -1  or  cos x =

1

2
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4 2

⟹  x1 =
π

3
, x2 = π , x3 =

5 π

3

x 0 0,
π

3

π

3

π

3
, π π π ,

5 π

3

5 π

3

5 π

3
, 2 π 2 π

f' + + 0 - 0 - 0 + +

f ↗ max:
3 3

2
↘ ↘ min:-

3 3

2
↗

Convexity / concavity, inflection points:
f '' (x) = -2 sin x - 4 sin 2 x = -2 sinx- 8 sin x cos x =

           = -2 sin x(1+ 4 cos x) = 0  ⟹  sin x = 0  or  cos x = -
1

4

           ⟹  x1 = 0, x2 = π , x3 = 2 π , x4 = arc cos -
1

4
≈ 1.82, x5 = 2 π - arc cos -

1

4
≈ 4.46

           
x 0 (0, 1.82) 1.82 (1.82, π) π (π , 4.46) 4.46 (4.46, 2

π)

2 π

f'' 0 - 0 + 0 - 0 + 0

f infl:0 ⋂ infl:\n

3 15

8

⋃ infl:0 ⋂ infl:\n

-

3 15

8

⋃ infl:0

The graph of f :

  
π

3
1.82 π 4.46

5π

3
2π

-2

-1

1

2

      ⟹  Rf = -
3 3

2
,

3 3

2


Implicitely given curve

Example. The curve y = y(x) is given by the following implicit equation:

x sinh x - y cosh y = 0

Study the properties of this curve in a neighbourhood of (0, 0).

Solution. The point (0, 0) is on the curve: y(0) = 0.
1) The first derivative of  x sinh x - y(x) cosh y(x) = 0 with respect to x:    
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sinh x + x cosh x -y ' (x) cosh y(x) -y (x) y ' (x) sinh y(x) = 0

If x = 0, y = 0  ⟹  0+ 0 ·1- y ' (0) ·1- 0 · y '(0) ·0 = 0  ⟹  y ' (0) = 0

2) The second derivative with respect to x:

cosh x + cosh x + x sinh x -y '' (x) cosh y(x) -y ' (x) y ' (x) sinh y(x)
-y ' (x) y ' (x) sinh y(x) - y(x) y '' (x) sinh y(x) - y(x) y ' (x) y ' (x) cosh y(x) = 0

If x = 0, y = 0  ⟹  1+ 1+ 0-y '' (0) -0-0-0-0 = 0  ⟹  y '' (0) = 2

Since y ' (0) = 0 and y '' (0) = 2 > 0 then the curve y = y(x) has local minimum at
x = 0 and it is convex in some neighbourhood of x = 0.

-4 -2 2 4

-1

1

2

3

4

5

       

calculus1-09.nb     17


