Calculus1-11

Definite integral

The Riemann integral

Definition. A partition of an interval [a, b] is a finite set P = {xq, x1, ... X,} such that

A=Xg<X{<..<Xp1<X,=b.

Definition. Assume that f : [a, b]—R is bounded and P = {xq, x1, ... x,} is a partition of [a, b]. Let
my = inf{f(x): x € X1, Xx]}
My = sup {f(x) : x & [Xy_1, X}

n
The lower Darboux sum of f with respect to Pis sp = ka(xk - Xp_1)-
k=1

The upper Darboux sum of f with respect to Pis Sp = ZMk(xk - X_1)-
k=1

n
The Riemann sum of f with respectto Pis gp = Zf(ck) (Xk = Xk_1), Where
k=1
Cx € [Xk_1, x¢] is arbitrary. The points ¢, are called the evaluation points.
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Statement. s, < gp < Sp for all partitions P.

Proof. It follows from the fact that m, < f(c,) < My on each subinterval [x,_1, x].

Definition. Let P, and P, be partitions of [a, b]. If P, contains all points of P;
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and some additional points then P, is a refinement of P;.

Theorem. If P, is a refinement of P; then sp, <sp, and Sp, < Sp,,
that is, by refining a partition, the lower Darboux sum cannot
decrease and the upper Darboux sum cannot increase.

Proof. Let P, be the partition that is obtained from P; = {xq, x1, ..., X,} by adding
the point xy_; < y < xx. We prove sp, < sp,.
Let A=inf{f(x):xe[x1, Y]} and B=inf{f(x):x e[y, x}.
Then my (X = Xk-1) = Mi(y = Xk-1) + My(Xi = y) S AQY = Xi1) + B(xy = )
= Sp, = Sp, = A(Y = Xk-1) + B(Xk = y) = My (X = Xk-1) 2 0.
\ \

Xo Xk-1Y Xk Xp Xo Xk-1Y Xk Xp

Theorem. sp < Sp, for any partitions P; and P, of [a, b], thatis,
any lower Darboux sum is less than or equal to any upper Darboux sum.

Proof. Let P; =P, UP, = P;isarefinementof Py and P, = sp <sp, <Sp, < Sp,

Definition. Assume that f : [a, b]—R is bounded.

b
The lower Darboux integral of f is J f=sup{sp:Pis a partition of [a, b]}.

b
The upper Darboux integral of f is [ f =inf{Sp:Pis a partition of [a, b]}.
a

b b
Consequence:JfSJf
Ja_ a

b (b
Definition. If f : [a, b]— R is bounded and | = [ f= f f then f is Riemann integrable on [a, b].
a a

In this case the Riemann integral of f on [a, b] is denoted as

b b
Izjf(x)dx or /=Jf. (fis called the integrand.)

Notation. R[a, b] denotes the set of those functions that are Riemann integrable on [a, b]

b b
Remark. If f : [a, b]—R is not bounded on [a, b] or bounded but j f< j f then f is not

Riemann integrable on [a, b].

Example: Let f(x)=ceR, fc dx=7?
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Sp= ) M(Xi—Xe1) = ) C(Xk = Xpet) = (b - @),

k=1 k=1

Sp= ZMk(xk - Xj1) = Zc(xk - X4_1) = ¢(b - a) for all partitions P.
k=1 k=1

b b b
Jf=sup{sp}=c(b—a)=inf{$p}=Jf = chx:c(b—a)

1 ifxe[0,1]nQ
0 ifxel0,1]\Q
partitions Pof[0, 1], sp=0and Sp=1

b b
E ff:Oande:l

Example: The Dirichlet function f(x) = { is bounded, and for all

= fisnotintegrable on [0, 1].

Necessary and sufficient conditions for Riemann integrability

Definition. The mesh or norm of a partition is the maximal distance between

adjacent points in the partition: AP= max (X — Xk_1)-
ke{l,...,n}

Statement. Assume that f : [a, b] >R s bounded and (P,) is a sequence of partitions of [a, b].

N—>o0 N—oo N—>o0

If imAP,=0 then limspn_ fand lim Sp, -jf

b
Statement. a) If 3 J f(x) dx = for all partition sequences (P,) for which lim A P, = 0:

N—>c0

limsp, _llmsp _[fx)dx

N—>co0

b) If (P,) is a partition sequence for which imA P, =0 and limsp, = limSp, =/

N—>c0 N—oco N—>co0

b
=3 jf(x)dx:l.

Definition. Assume that f : [a, b]—R is bounded and P = {xg, x1, ... x,} is a partition of [a, b].
Then the oscillation sum of f related to the partition Pis

Op = > (M= my) (Xi = X-1) = Sp = Sp.
k=1

Theorem (Riemann’s criterion for integrability). Assume that f : [a, b]— R is bounded.
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fisintegrable on [a, b] < forall € > 0 there exists a partition P such that Op = Sp-sp < €.

Proof. = : Assume that f is integrable and ¢ > 0. Then there exist partitions P; and P, such that

b ¢ b I
OSSPZ—LRE andOst—sPl<E.

Let P =P, UP, (Pisacommon refinement of P; and P,). Thensp <sp<Sp<Sp,, s0

b b E £
OSOPZSP—SPSSPZ—SPIZ(SPZ—f +(jf_SPl)<E+E=£
a 2a_

b b
< For any partition P, spsjfsffssp,so
a a

b b b b
Ost—jfsSP—sp=Op<£forall£>0 = Jf=jf,thatis,fisintegrable.

Remark. Recall that the Riemann sum of f with respect to the partition P is
n
Op= Zf(ck) (Xx — Xk_1), where the evaluation points ¢, € [x,_1, X«] are arbitrary and

k=1
sp < dp < Sp for all partitions P.

Theorem. Assume that f :[a, b]— R is bounded. Then

b
1.3 J f(x)dx =1 = for all partition sequences (P,) for which lim A P, = 0:

N—o0

b
lim gp, = J f(x) dx =1 (independent of the choice of the evaluation points).

b
2.3 J f(x)dx =/ < there exists a partition sequence (P,) for which limAP, =0
a

N->oco

and 3 lim gp, =/ (independent of the choice of the evaluation points).

N—o0

Remark. The proof of part 1. is obvious, since sp, < gp, <Sp, and limsp =limSp =1.
nN—-oo

N—>co

Remark. It is important that the limit exists independent of the choice of ¢, € [x,_1, xx] in the
Riemann sum. For example, assume that f is the Dirichlet function on [a, b] and
(P,) is a sequence of partitions for which limA P, = 0.

If ¢y is rational: gp, = Zl-(xk -X1)=1-(b-a)—b-a

k=1

n
If ¢ is irrational: gp, = > 0 (X = Xy1) = 0—0
k=1
= the Dirichlet function is not integrable on any interval.

Sufficient conditions for Riemann integrability
Theorem. If f is monotonic and bounded on [a, b] then f is Riemann integrable on [a, b].

Proof. Assume that f is monotonically increasing.
1) If f(a) = f(b) then f is constant, so f € R[a, b].
2) If f(a) < f(b) then we show that for all £ > 0 there exists a partition P such that
the oscillation sum Op = Sp-sp < &.
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3) Let P ={xo, X1, ..., X,} be a partition with mesh

AP= max (Xx—-Xy_1)<6=——>0
oy e X} < 0=

4) Then for the oscillation sum we get that

n

Op=Sp=5p= > (Mi=my) (Xi— 1) = ) (F(Xk) = F(Xe1)) (X = Xpoa) <

k=1 k=1

<6 ) (f(x) - fxi1)) = 6(F(b) - f(a)) = .
k=1

Theorem. If f : [a, b]— R is continuous then f is Riemann integrable on [a, b].

Proof. 1) We prove that for all € > 0 there exists a partition P such that
the oscillation sum Op=Sp-sp < &.
2) f is continuous on [a, b] = f is bounded and also uniformly continuous on [a, b].

&
= for b_ > 0 there exists 6 > 0 such thatV x, y € [a, b],
-a

|x-y| <6 = |f)-f0 | <—

3) Let P ={xq, X1, ..., X,} be a partition W|th mesh AP= max (X, —Xx1) <.

ke{l,..,n}

4) f is continuous on [x,_1, xx] = by the extreme value theorem f has a
minimum for some ¢, € [x,_1, X] and a maximum for some dj € [xx_1, Xx],
let f(cy) = my, f(dy) =M.

5) Then obviously | dx—cx | <6, so for the oscillation sum we get that

Op=Sp-sp= Z(Mk = my) (X = Xk-1) = Z(f(dk) = f(ck)) (X = Xi1) =

k=1 k=1
n n £
= | fe-f e | (%= X2) < ) —— (X =x41) =
k=1 k-1b-a
£ i )=
— > (Xk=Xy.1)=—— (b-a)=¢.
= 2 k= Xk-1 —a

Theorem. If f : [a, b]— R is bounded and continuous except finitely many points then
f is Riemann integrable on [a, b].

Proof. 1) We prove it in the case of one point. Let c € [a, b] and assume that f is continuous on
[a, b]\{c}. Let K> 0 be such that | f(x) | <K forallxe][a, b]. We show that forall € >0
there exists a partition P such that Op < €.

& & &
2)Ifc-— >athenletc;=c- _K and let P, be a partition of [a, ¢;] such that Op < -.
8K 8 4

Such a partition exists since f is continuous on [a, ¢;].

&
Ifc-— <athenletc; =aand P, ={a}.
8K

& & &
3) If c+ — < bthenletc, =c+— and let P, be a partition of [c,, b] such that Op, < —.
8K 8K 4

Such a partition exists since f is continuous on [c5, b].

&
Ifc+8—K 2 bthenletc, =band P, ={b}.

4) Then P =P; U P, is a suitable choice.



6 | calculus1-11.nb

Remark. Iff, g: [0, b] >R, f is Riemann integrable and f(x) = g(x) except finitely many points

b b
in [a, b] then g is Riemann integrable and J = J g.

Newton-Leibniz formula

Theorem (First fundamental theorem of calculus, Newton-Leibniz formula).
Iff:[a, b]—Ris Riemann integrable and F : [a, b]— R is an antiderivative of f,
thatis, F' (x) = f(x) for all x € [a, b], then

f F(x) dx = F(b) - F(a) = [FOOL

Proof. Let (P,) be a partition sequence of [a, b] such that imA P, =0.
N—oo

Forallke{1, 2, ..., n}, Fis continuous on [x,_;, x,] and differentiable on (x,_1, k), so

by Lagrange’s mean value theorem there exists x,_; < ¢, < X, such that

F(Xi) = F(Xk-1)
T S 00 = 0 = F) = FOer) = F(Ck) (- X41)
Xk = Xk-1

= F(b) - F(a) = (F(x1) = F(X0)) + (F(X) = F(x1)) + we. + (F(Xa) = F(X1)) =
= > (FX) = Fxc1)) = ) F(ck) (Xk=Xk1) = O,

k=1 k=1
= F(b) - F(a) = 0p,
Taking the limits of both sides: lim (F(b) - F(a)) = lim gp,

N—>c0 N—oco

The left-hand side is independent of n and since f is integrable then the limit of the
right-hand side is the integral of f, so

F(b)-F(a) = rf(x)dx.
b
Remark. The geometrical meaning of J fis the signed area under the graph of f on [a, b].

Remark. Both conditions of the theorem are important as the following examples show.

Examples
2 6in ifx+0 2xsi L2 : ifx+0
Example 1. LetF(x)={X sm; if x then F'(X)=f(x)={ X sin XZ—Xcos = if x ‘
0 ifx=0 0 ifx=0

1
f has an antiderivative, however, J f(x) dx doesn’t exist, since f is not bounded.
0

5
Example 1. j sign (x* = 5 x + 6) dx exists, since f is continuous except 2 points. However,
0

by Darboux’s theorem, f doesn’t have an antiderivative, since f has jump discontinuities.
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Properties of Riemann integrable functions

a b a
Definition. If f € R[a, b] f F(x) dx := - f F(x) dx, j F(x)dx:= 0
b a a

Theorem. Let f, g € R[a, b]and A e R. Then
b b b b b
(1) Af, f+g, f-geRla, b] and JAf:AJf, J(ftg):ffifg
a a a a a
(2) [a, Bl ca, b] = feR[a, Bl
b C b
(3)a<c<b = jf:jhjf

b b
(4)f(x)<g(x) Vxela, b] = jf(x)defg(x)dx

Lbf(x)dx| < J;b

1 b
(6) infffs—— | f<supf
[a,b] b-a Ja [a,b]

(5) | f| €R[a, b] =

f(x) | dx

Integration by parts

b b
Theorem. If f and g are continuously differentiable on [a, b] then f frg=[fgl°- j fg'

Integration by substitution

Theorem. If g is continuously differentiable, strictly monotonic, [a, b] € D4 and

b (b)
f is continuous on [a, b] then j f(x)dx = F f(g(t)) g' (t)dt.
a 970

n2

Example. /= f e-1dx=?
0

Solution. Substitution: t= ye*-1 = x=x(t)=In(t? +1)

dx 1 2t

x'()=— = 2t = dx=

dt 2+1 t?+1

dt

The bounds will change: x; =0 = t; = Ye’-1 =0

X2=ln2:t2= Velnz— =42-1=1

2t 2t 2(tP+1)-2
n2 1 1
I= [, eX-1dx=ft‘ft-—2+ dt= fi— dt= ff———

2
dt:fol(2— )dt:
t2+1 2+1

=[215-2arctgt]g=(2-1-2arctg1)-(o-0)=2-7—2T

Lebesgue’s theorem

Definition. We say that the set A c R has Lebesgue measure 0 if for all £ > 0 there exist
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sequences (x,) and (y,) such that x, < y,, Ac U[X”’ yn] and Z(y,, - Xp) <E.

n=1 n=1
(That is, A can be covered with countably many intervals such that their total
length is less than ¢.)

Examples. 1) Any countable set of R has Lebesgue measure 0, for example N, Z or Q.

2) The Cantor set is defined in the following way. Let o = [0, 1].

C, is obtained from C, by deleting the open middle third from Cy, that is,
1 2

C;=10,—-|u|-,1]|.

=[o.2]o[%1)

C, is obtained from C, by deleting the open middle thirds from Cy, that is,

1 21 27 8
U
2= UG SIUG SIS A
Continuing this process, C,.; is obtained from C, by deleting the open middle thirds
of each of these intervals. The Cantor setis C = ﬂ Cp.

neN
It can proved that the Cantor set is uncountable but has Lebesgue measure 0.

Theorem (Lebesgue). The function f : [a, b]— R is Riemann integrable if and only if it is bounded
and the set of discontinuities of f has Lebesgue measure 0.

Remark. If f : [a, b]—R is monotonic then f has at most countably many discontinuities (and they are
jump discontinuities), so by Lebesgue’s theorem f is Riemann integrable.

Example*. The Riemann function is defined as

0 ifxeR\@Q

fiR—R, f(x) = if x = P wherep e Z, and g € N* are coprimes
q q

Prove that

a)limf(x)=0 VaeR;
X=>a

a) f is continuous at all irrational numbers;
b) f is discontinuous at all rational numbers.

1 k
Solution. If g e N* is fixed then the set Z- — = {— ke Z} does not have any real limit points.
q q

Therefore a finite union of such sets, A, = {_p :peZ,qe{l, 2, .., n}} does not have any
q

1
limit points either. If x e R\ A, the | f(x) | <—,soforall x, eR, lim f(x) = 0.

n X=X
= fis continuous at all irrational points and has a removable discontinuity

at all rational points.

The Riemann function is bounded and the set of discontinuities is countable, so it has
Lebesgue measure 0 = f is Riemann integrable and f:f(x) dx=0.
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The integral function

Definition. Assume that f is Riemann integrable on [a, b]. Then the function
F(x) = f “f(tydt, xela, b]

is called the integral function of f.

Theorem (Second fundamental theorem of calculus).
Assume that f is Riemann integrable on [a, b] and F(x) = fo(t) dt, x e[a, b]. Then

1. Fis Lipschitz continuous on [a, b].
2. If fis continuous at xy € [a, b] then F is differentiable at xy and F' (xg) = f(xg).

Proof. 1. Let K =sup | f(x) | .IfK=0 thenf=0so0F=0is Lipschitz continuous.
[a,b]

&
IfK+0then0<KeR.Lete>0and 6(5):}—(.Ifx,ye[a,b]suchthat | x-y| <6then
| F)=F(y) | = | rf(t)dt-[yf(t)dt| - | Ff(t)dt| < | f f(t)|dt| < |FKdt| <
a a y y y

<K |x-y| <K6=¢ = FisLipschitz continuous.

. F()-F(xo) . .
2. F'(xp) = lim ————— =f(xp) if for all £ > 0 there exists 6 > 0 such that
X-Xo X=X
F(x)-F
|M—f(xo)| <eif 0< | x=x| <6.
X = Xo

Let € > 0. Since f is continuous at xo then 3 6 > 0 such that | f(x) - f(xo) | <€if | x=-xo| <0.
Then with this 6

| F(x) = F(xo) F(x) = F(xo) - f(Xo) (X = Xo) | i} | L:f(t)dt_[:)f(xo)dt | _
X—=Xo

~f() | = |

X =Xp X =Xo

f«m—ﬂm»m

“edt
Lf |_|€U-%H_

< < = =E&.
X=Xo | X=xo| | X=xo | [ X=X |

fﬂfm-ﬂmndu

Consequence.
1. If fis continuous on [a, b] and F(x) = [Xf(t) dt, x e[a, b] then F' (x) =f(x) V x €[a, b].

2. Every continuous function has an antiderivative.

Examples

Example 1. Calculate the derivatives of the following functions:

a) F(X)=Lxsint2dt, X#0 b) G(x):jx sin2dt o) H(X):ﬁ sin 2 dt

0 X
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Solution. a) F' (x) = sin x?, since f(t) = sin(t?) is continuous.
b) G(x)=F(x}) = G'(x)=F'(x*)-3x*= sin((x3)2) -3x%=sin(x®)-3x

) H(x) = stin 2 dt- J;XZsin 2 dt=F(x*)- F(x*) = H'(x) =sin(x®)-3x* - sin(x*)- 2 x

foxarctan t2 dt

Example 2. [m—— =7
x-0 X2

Solution. The limit has the form % and the numerator is differentiable since
f(t) = arctan t? is continuous

~ [arctant’dt ., arctanx® iy
= lim————— = lim———— = lim—— =0
P X2 x-0 2X x-0 2

Applications

Area

Example. Calculate the area of the unit circle.

Solution. The equation of the circle with radius r = 1 centered at the origin is
X+yl=1l= y?’=1-x> = y=+41-x°

1
The area of the unit circle is A=2J \jl—x2 dx
-1

Substitution: x = x(t) =sint = t=arcsinx

dx
x‘(t):d— =cost = dx=costdt
t
The bounds will change: x, = -1 = t; = arcsin(-1)= -7

X,=1= t2=arcsin1=’—2T

1 /2 12
=>A=2J V1-x2 dx=J’n 241-(sint)* costdt=2 | cost-costdt
-1 —-71/2

—-71/2

2 ) 12 sin2t
=f 2cos?tdt= (1+coszt)dt=[t+ ]
n2 2 2 A2
7T sint 7T Sin(-71) T T
:(—+ )—(——+ ):(—+0)—(——+0)=7T
2 2 2 2 2 2

Arc length
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Theorem. Assume that f : [a, b]— R is continuously differentiable. Then the arc length of the
graphoffis L= J +(f' (x))? dx.

Remark. Let a = Xy < X; < X; <... < X, = b be a partition. If f is differentiable then by Lagrange’s

mean value theorem there exists ¢ € (xx_1, Xx) such that m =f"'(c,), where mis the slope of
the secant line connecting the points (xx_1, f(xk_1)) and (xk, f(Xx))-

So the arc length can be approximated by the sum Z \/ 1+(f' (ck))? (Xk - Xk-1), Which is

k=1

the Riemann sum of the function \/ 1+(f' (x))?.
If f is continuously differentiable then the arc length of the graph of f is

L= fb 1+ (F ()2 dx.

M(Xk—Xk-1)

Example. Calculate the arc length of the unit circle.

Solution. Letf(x)_ V1- x2 ifxe[-1, 1].
f! (X)‘—( x*): ( 2x)=-

1+ (f' (x))?

l x?
The arc length of the unit circle is

L=2J:l N1+ (F ()2 dx=2J:l

=2 lim lim [arcsmx]a_z lim lim (arcsmb arcsina) =
a--1+p>1- a->-1+b>1-

=2(arcsinl-arcsin(-1))=2 (7—; —(—g)) =277

b 1
dx=2 lim limj dx =
a

a--1+ b->1- ,l _ X2

Volume of solids of revolutions

Theorem. Assume that f : [a, b]— R is continuous and nonnegative and the graph of f is rotated
b
about the x axis. Then the volume of this solid of revolution is V = 1t J’ 2(x) dx.
Remark. If a = xy < x; < x; <... < X, = b is a partition then the volume can be approximated by the

sum Z(xk — Xi_1) TTF2(cx) where ¢, € [xy_1, Xi] is arbitrary.
k=1
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(Geometrically it means that the volume can be approximated by the sum of volumes of
cylinders.)
This is the Riemann sum of the function 7t f2(x), so if f is continuous then the volume is

b
V=rrj 2(x) dx.

Surface area of solids of revolutions

Theorem. Assume that f : [a, b]— R is continuously differentiable and nonnegative and the graph
of f is rotated about the x axis. Then the surface area of this solid of revolution is

A:ZHbe(x) 1+(f' (x))? dx.

Remark. If a = xy < x; < x; <... < X, = b is a partition then the surface area of the solid of revolution
can be approximated by the sum

S r(f(e2) + Fx)) YL+ (F () (= Xi0)
k=1

where ¢y € [x)_1, Xx] exists by the Lagrange intermediate value theorem if f is differentiable.
(Geometrically it means that the surface area can be approximated by the sum of lateral
surfaces of truncated cones.)

If f is continuously differentiable then f(x,_1) + f(xx) = 2 f(ck), s0 the above sum will be the
Riemann sum of the function 2 7t f(x) 4/ 1+ (f' (x))?. Therefore if f is continuously

b
differentiable then the surface areaisA=2 J fox) N1+ (F' (x))? dx.
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A
f(x)
| | | | -
X0= =Xn
Exercise

Let f(x) = \r> = x?, —r < x <r. Rotating the graph of f about the x axis, we get a sphere
with radius r. Calculate the volume and surface area of the sphere.

b
Solution: 1. The volume can be calculated as V = rrj 2(x) dx
Theintegrandis (f(x))? =r?-x?

. X3 r
The volumeis V = Trf_r,(fz-xz)dx = "[rzx_;]_r -

3]

b
2. The surface area can be calculatedas A=2 7t j fx) A1+ (F' (x))? dx

1 1 1 X
The derivative of fis f'(x) = ((r2 - xz)'z)‘ =—(rP-x*)2(-2x)=-
2 2_ 2
X x? r? = x%+ x? r?
= 1+(f'(x))°'=1+ = =
P22 22 22

.
The surface area is A=2nJ rdx=2r-[rx]", =2m(r* = (-r?))=4r’m
-r

Additional exercises: Chapter 5, from page 86:
https://math.bme.hu/~tasnadi/merninf_anal_1/anall_gyak.pdf



