
Calculus 1 - 11

Definite integral

The Riemann integral

Definition. A partition of an interval [a, b] is a finite set P = {x0, x1, ... xn} such that
        a = x0 < x1 < ... < xn-1 < xn = b. 

Definition. Assume that f : [a, b]⟶ is bounded and P = {x0, x1, ... xn} is a partition of [a, b]. Let  
       mk := inf {f (x) : x ∈ [xk-1, xk]}
       Mk := sup {f (x) : x ∈ [xk-1, xk]}

       The lower Darboux sum of f  with respect to P is sP =
k=1

n

mk(xk - xk-1).

       The upper Darboux sum of f  with respect to P is SP =
k=1

n

Mk(xk - xk-1).

       The Riemann sum of f  with respect to P is  σP =
k=1

n

f (ck) (xk - xk-1), where

       ck ∈ [xk-1, xk] is arbitrary. The points ck are called the evaluation points.
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Statement.  sP ≤ σP ≤ SP  for all partitions P.

Proof. It follows from the fact that mk ≤ f (ck) ≤Mk  on each subinterval [xk-1, xk].   

Definition. Let P1 and P2 be partitions of [a, b]. If P2 contains all points of P1 



       and some additional points then P2 is a refinement of P1.

Theorem. If P2 is a refinement of P1 then sP1 ≤ sP2 and SP1 ≤ SP2,
 that is, by refining a partition, the lower Darboux sum cannot 
 decrease and the upper Darboux sum cannot increase.

Proof. Let P2 be the partition that is obtained from P1 = {x0, x1, ..., xn} by adding 
    the point xk-1 < y < xk. We prove sP1 ≤ sP2.
    Let  A = inf {f (x) : x ∈ [xk-1, y]}  and  B = inf {f (x) : x ∈ [y, xk]}.
    Then mk(xk - xk-1) =mk(y - xk-1) +mk(xk - y) ≤ A(y - xk-1) +B(xk - y)
    ⟹ sP2 - sP1 = A(y - xk-1) +B(xk - y) -mk(xk - xk-1) ≥ 0.

    

x0 xk-1 xk xny

  

x0 xk-1 xk xny

Theorem. sP1 ≤ SP2 for any partitions P1 and P2 of [a, b],  that is, 
 any lower Darboux sum is less than or equal to any upper Darboux sum.

Proof. Let P3 = P1 ⋃P2  ⟹  P3 is a refinement of P1 and P2  ⟹  sP1 ≤ sP3 ≤ SP3 ≤ SP2

Definition. Assume that f : [a, b]⟶ is bounded.

       The lower Darboux integral of f  is 
a

b
f = sup {sP :P is a partition of [a, b]}.

       The upper Darboux integral of f  is 
a

b
f = inf {SP :P is a partition of [a, b]}.

Consequence: 
a

b
f ≤ 

a

b
f

Definition. If f : [a, b]⟶ is bounded and I = 
a

b
f = 

a

b
f  then f  is Riemann integrable on [a, b].

    In this case the Riemann integral of f  on [a, b] is denoted as

    I = 
a

b
f (x)dx  or  I = 

a

b
f .       (f  is called the integrand.)

Notation. R[a, b] denotes the set of those functions that are Riemann integrable on [a, b]

Remark. If f : [a, b]⟶ is not bounded on [a, b] or bounded but 
a

b
f < 

a

b
f  then f  is not

         Riemann integrable on [a, b].          

Example: Let f (x) = c ∈ , 
a

b
cdx = ?
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a

sP =
k=1

n

mk(xk - xk-1) =
k=1

n

c(xk - xk-1) = c(b- a),

SP =
k=1

n

Mk(xk - xk-1) =
k=1

n

c(xk - xk-1) = c(b- a)  for all partitions P.


a

b
f = sup {sP} = c(b- a) = inf {SP} = 

a

b
f    ⟹  

a

b
cdx = c(b- a)

Example: The Dirichlet function f (x) =
1 if x ∈ [0, 1]⋂
0 if x ∈ [0, 1] \

  is bounded, and for all 

            partitions P of [0, 1],  sP = 0 and SP = 1  

            ⟹  
a

b
f = 0 and 

a

b
f = 1  

            ⟹  f  is not integrable on [0, 1].

Necessary and sufficient conditions for Riemann integrability

Definition. The mesh or norm of a partition is the maximal distance between
          adjacent points in the partition:   ΔP = max

k ∈ {1,...,n}
(xk - xk-1).

Statement. Assume that f : [a, b]⟶ is bounded and (Pn) is a sequence of partitions of [a, b]. 

             If lim
n∞
ΔPn = 0  then lim

n∞
sPn = 

a

b
f  and lim

n∞
SPn = 

a

b
f

Statement. a) If  ∃ 
a

b
f (x)dx  ⟹  for all partition sequences (Pn) for which lim

n∞
ΔPn = 0: 

          lim
n∞

sPn = lim
n∞

SPn = 
a

b
f (x)dx.

               b) If (Pn) is a partition sequence for which lim
n∞
ΔPn = 0  and lim

n∞
sPn = lim

n∞
SPn = I

                     ⟹ ∃ 
a

b
f (x)dx = I.

Definition. Assume that f : [a, b]⟶ is bounded and P = {x0, x1, ... xn} is a partition of [a, b]. 
             Then the oscillation sum of f  related to the partition P is

             OP =
k=1

n

(Mk -mk) (xk - xk-1) = SP - sP.

  

Theorem (Riemann’s criterion for integrability). Assume that f : [a, b]⟶ is bounded. 
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     f  is integrable on [a, b]  ⟺  for all ε > 0 there exists a partition P such that OP = SP - sP < ε.

Proof. ⟹ : Assume that f  is integrable and ε > 0. Then there exist partitions P1 and P2 such that

   0 ≤ SP2 - 
a

b
f <
ε

2
  and 0 ≤ 

a

b
f - sP1 <

ε

2
.

   Let P = P1 ⋃P2  (P is a common refinement of P1 and P2).  Then sP1 ≤ sP ≤ SP ≤ SP2, so

   0 ≤ OP = SP - sP ≤ SP2 - sP1 = SP2 - 
a

b
+ 

a

b
f - sP1 <

ε

2
+
ε

2
= ε

  ⟸ : For any partition P,   sP ≤ 
a

b
f ≤ 

a

b
f ≤ SP, so

   0 ≤ 
a

b
f - 

a

b
f ≤ SP - sP = OP < ε  for all ε > 0  ⟹  

a

b
f = 

a

b
f , that is, f  is integrable.

Remark. Recall that the Riemann sum of f  with respect to the partition P is  

         σP =
k=1

n

f (ck) (xk - xk-1), where the evaluation points ck ∈ [xk-1, xk]  are arbitrary and

         sP ≤ σP ≤ SP for all partitions P.

Theorem. Assume that f : [a, b]⟶ is bounded. Then

 1. ∃ 
a

b
f (x)dx = I  ⟹  for all partition sequences (Pn) for which lim

n∞
ΔPn = 0:

 lim
n∞
σPn = 

a

b
f (x)dx = I (independent of the choice of the evaluation points).

 2. ∃ 
a

b
f (x)dx = I  ⟸  there exists a partition sequence (Pn) for which lim

n∞
ΔPn = 0 

 and ∃ lim
n∞
σPn = I (independent of the choice of the evaluation points).

Remark. The proof of part 1. is obvious, since sPn ≤ σPn ≤ SPn   and  lim
n∞

sPn = lim
n∞

SPn = I.

Remark. It is important that the limit exists independent of the choice of ck ∈ [xk-1, xk] in the
          Riemann sum. For example, assume that f  is the Dirichlet function on [a, b] and
          (Pn) is a sequence of partitions for which lim

n∞
ΔPn = 0.

          If ck is rational: σPn =
k=1

n

1 · (xk - xk-1) = 1 · (b- a)⟶b- a

          If ck is irrational: σPn =
k=1

n

0 · (xk - xk-1) = 0⟶0

          ⟹ the Dirichlet function is not integrable on any interval.

Sufficient conditions for Riemann integrability

Theorem. If f  is monotonic and bounded on [a, b] then f  is Riemann integrable on [a, b].

Proof. Assume that f  is monotonically increasing.
    1) If f (a) = f (b) then f  is constant, so f ∈ R[a, b].
    2) If f (a) < f (b) then we show that for all ε > 0 there exists a partition P such that 
         the oscillation sum OP = SP - sP < ε.
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    3) Let P = {x0, x1, ..., xn} be a partition with mesh  

         ΔP = max
k ∈ {1,...,n}

(xk - xk-1) < δ =
ε

f (b) - f (a)
> 0.

    4) Then for the oscillation sum we get that 

        OP = SP - sP =
k=1

n

(Mk -mk) (xk - xk-1) =
k=1

n

(f (xk) - f (xk-1)) (xk - xk-1) <

        < δ
k=1

n

(f (xk) - f (xk-1)) = δ(f (b) - f (a)) = ε.

Theorem. If f : [a, b]⟶ is continuous then f  is Riemann integrable on [a, b].

Proof. 1) We prove that for all ε > 0 there exists a partition P such that 
          the oscillation sum OP = SP - sP < ε.
    2) f  is continuous on [a, b]  ⟹ f  is bounded and also uniformly continuous on [a, b].

    ⟹  for 
ε

b- a
> 0 there exists δ > 0 such that ∀ x, y ∈ [a, b],

          x - y < δ  ⟹  f (x) - f (y) <
ε

b - a
.

    3) Let P = {x0, x1, ..., xn} be a partition with mesh  ΔP = max
k ∈ {1,...,n}

(xk - xk-1) < δ.

    4) f  is continuous on [xk-1, xk]  ⟹  by the extreme value theorem f  has a 
        minimum for some ck ∈ [xk-1, xk] and a maximum for some dk ∈ [xk-1, xk], 
        let f (ck) =mk,  f (dk) =Mk.
    5) Then obviously dk - ck < δ,  so for the oscillation sum we get that 

         OP = SP - sP =
k=1

n

(Mk -mk) (xk - xk-1) =
k=1

n

(f (dk) - f (ck)) (xk - xk-1) =

         =
k=1

n

f (dk) - f (ck) (xk - xk-1) <
k=1

n ε

b - a
(xk - xk-1) =

         =
ε

b- a


k=1

n

(xk - xk-1) =
ε

b- a
(b- a) = ε.

Theorem. If f : [a, b]⟶ is bounded and continuous except finitely many points then
 f  is Riemann integrable on [a, b].

Proof. 1) We prove it in the case of one point. Let c ∈ [a, b] and assume that f  is continuous on
         [a, b] \ {c}. Let K > 0 be such that f (x) ≤ K for all x ∈ [a, b]. We show that for all ε > 0
         there exists a partition P such that OP < ε.

    2) If c-
ε

8K
> a then let c1 = c-

ε

8K
 and let P1 be a partition of [a, c1] such that OP1 <

ε

4
.

         Such a partition exists since f  is continuous on [a, c1].

         If c-
ε

8K
≤ a then let c1 = a and P1 = {a}.

    3) If c+
ε

8K
< b then let c2 = c+

ε

8K
 and let P2 be a partition of [c2, b] such that OP2 <

ε

4
.

         Such a partition exists since f  is continuous on [c2, b].

         If c+
ε

8K
≥ b then let c2 = b and P2 = {b}.

    4) Then P = P1 ⋃P2 is a suitable choice.
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Remark. If f , g : [a, b]⟶, f  is Riemann integrable and f (x) = g(x) except finitely many points

         in [a, b] then g is Riemann integrable and 
a

b
f = 

a

b
g.

Newton-Leibniz formula

Theorem (First fundamental theorem of calculus, Newton-Leibniz formula).
If f : [a, b]⟶ is Riemann integrable and F : [a, b]⟶ is an antiderivative of f ,
that is, F ' (x) = f (x) for all x ∈ [a, b], then


a

b
f (x)dx = F(b) - F(a) = [F(x)]a

b

Proof. Let (Pn) be a partition sequence of [a, b] such that lim
n∞
ΔPn = 0.   

    For all k ∈ {1, 2, ..., n}, F is continuous on [xk-1, xk] and differentiable on (xk-1, xk), so 
    by Lagrange’s mean value theorem there exists xk-1 < ck < xk such that

    
F(xk) - F(xk-1)

xk - xk-1
= F ' (ck) = f (ck)  ⟹  F(xk) - F(xk-1) = f (ck) (xk - xk-1)

    ⟹ F(b) - F(a) = (F(x1) - F(x0)) + (F(x2) - F(x1)) + ...+ (F(xn) - F(xn-1)) =

        =
k=1

n

(F(xk) - F(xk-1)) =
k=1

n

f (ck) (xk - xk-1) = σPn

    ⟹ F(b) - F(a) = σPn
    Taking the limits of both sides: lim

n∞
(F(b) - F(a)) = lim

n∞
σPn

    The left-hand side is independent of n and since f  is integrable then the limit of the
    right-hand side is the integral of f , so     

    F(b) - F(a) = 
a

b
f (x)dx.

Remark. The geometrical meaning of 
a

b
f  is the signed area under the graph of f  on [a, b].

Remark. Both conditions of the theorem are important as the following examples show.

Examples

Example 1. Let F(x) =
x2 sin

1

x2
if x ≠ 0

0 if x = 0
, then F ' (x) = f (x) =

2 x sin
1

x2
-

2

x
cos

1

x2
if x ≠ 0

0 if x = 0
.

    f  has an antiderivative, however,  
0

1
f (x)dx doesn’t exist, since f  is not bounded.

Example 1. 
0

5
sign x2 - 5 x + 6dx exists, since f  is continuous except 2 points. However, 

     by Darboux’s theorem, f  doesn’t have an antiderivative, since f  has jump discontinuities.
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Properties of Riemann integrable functions

Definition. If f ∈ R[a, b]  
b

a
f (x)dx := -

a

b
f (x)dx,   

a

a
f (x)dx := 0

Theorem. Let f , g ∈ R[a, b] and λ ∈ . Then

 (1) λ f , f + g, f - g ∈ R[a, b]  and  
a

b
λ f = λ 

a

b
f ,  

a

b
(f ± g) = 

a

b
f ± 

a

b
g

 (2) [α, β] ⊂ [a, b] ⟹ f ∈ R[α, β]

 (3) a < c < b  ⟹  
a

b
f = 

a

c
f + 

c

b
f

 (4) f (x) ≤ g(x) ∀ x ∈ [a, b]   ⟹   
a

b
f (x)dx ≤ 

a

b
g(x)dx

 (5) f ∈ R[a, b]   ⟹   
a

b
f (x)dx ≤ 

a

b
f (x) dx

 (6) inf
[a,b]

f ≤
1

b- a

a

b
f ≤ sup

[a,b]
f

Integration by parts

Theorem. If f  and g are continuously differentiable on [a, b] then  
a

b
f ' g = [f g]a

b - 
a

b
f g '

Integration by substitution

Theorem. If  g is continuously differentiable, strictly monotonic,  [a, b] ⊂ Dg and 

 f  is continuous on [a, b]  then  
a

b
f (x)dx = 

g-1(a)

g-1(b)
f (g(t)) g ' (t)dt.

Example. I = 
0

ln2
ex - 1 dx = ?

Solution. Substitution:    t = ex - 1   ⟹  x = x(t) = lnt2 + 1

                                                   x ' (t) =
dx

dt
=

1

t2 + 1
·2 t  ⟹  dx =

2 t

t2 + 1
dt

The bounds will change: x1 = 0  ⟹  t1 = e0 - 1 = 0

                                                    x2 = ln 2  ⟹  t2 = eln2 - 1 = 2- 1 = 1                                                              
                                                              

 I = ∫0
ln2 ex - 1 dx = ∫t1

t2t ·
2 t

t2 + 1
dt = ∫0

1 2 t2

t2 + 1
dt = ∫0

1 2 t2 + 1 - 2

t2 + 1
dt = ∫0

1 2-
2

t2 + 1
dt =      

 = [2 t - 2 arctg t]0
1 = (2 ·1- 2 arctg1) - (0- 0) = 2-

π

2
                                                                      

Lebesgue’s theorem

Definition. We say that the set A ⊂  has Lebesgue measure 0 if for all ε > 0 there exist
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   sequences (xn) and (yn) such that xn ≤ yn,  A ⊂ 
n=1

∞

[xn, yn]  and  
n=1

∞

(yn - xn) < ε.

   (That is, A can be covered with countably many intervals such that their total
   length is less than ε.)

Examples. 1) Any countable set of  has Lebesgue measure 0, for example ,  or .

   2) The Cantor set is defined in the following way. Let C0 = [0, 1].
             C1 is obtained from C0 by deleting the open middle third from C0, that is, 

             C1 = 0,
1

3
 ⋃ 

2

3
, 1.

             C2 is obtained from C1 by deleting the open middle thirds from C1, that is, 

             C2 =0,
1

9


2

9
,

1

3


2

3
,

7

9


8

9
, 1

             Continuing this process, Cn+1 is obtained from Cn by deleting the open middle thirds 
             of each of these intervals. The Cantor set is C = 

n ∈

Cn.

             It can proved that the Cantor set is uncountable but has Lebesgue measure 0.
             

Theorem (Lebesgue). The function f : [a, b]⟶ is Riemann integrable if and only if it is bounded
and the set of discontinuities of f  has Lebesgue measure 0.

Remark. If f : [a, b]⟶ is monotonic then f  has at most countably many discontinuities (and they are
         jump discontinuities),  so by Lebesgue’s theorem f  is Riemann integrable.
         

Example*. The Riemann function is defined as 

f : ⟶, f (x) =
0 if x ∈  \
1

q
if x =

p

q
where p ∈ , andq ∈ + are coprimes

Prove that
a) lim

xa
f (x) = 0  ∀ a ∈ ;

a) f  is continuous at all irrational numbers;
b) f  is discontinuous at all rational numbers.

Solution. If q ∈ + is fixed then the set  ·
1

q
= 

k

q
: k ∈  does not have any real limit points.

Therefore a finite union of such sets, An = 
p

q
: p ∈ , q ∈ {1, 2, ..., n} does not have any 

limit points either. If x ∈  \ An the f (x) <
1

n
, so for all x0 ∈ , lim

xx0

f (x) = 0.

⟹  f  is continuous at all irrational points and has a removable discontinuity
at all rational points.
The Riemann function is bounded and the set of discontinuities is countable, so it has 
Lebesgue measure 0 ⟹  f  is Riemann integrable and ∫a

bf (x)dx = 0.
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The integral function

Definition. Assume that f  is Riemann integrable on [a, b]. Then the function 

   F(x) = 
a

x
f (t)dt,  x ∈ [a, b]   

   
   is called the integral function of f .    

Theorem (Second fundamental theorem of calculus).

Assume that f  is Riemann integrable on [a, b] and F(x) = 
a

x
f (t)dt,  x ∈ [a, b]. Then

1. F is Lipschitz continuous on [a, b].
2. If f  is continuous at x0 ∈ [a, b] then F is differentiable at x0 and F ' (x0) = f (x0).

Proof. 1. Let K = sup
[a,b]

f (x) . If K = 0  then f = 0 so F = 0 is Lipschitz continuous. 

         If K ≠ 0 then 0 < K ∈ . Let ε > 0 and δ(ε) =
ε

K
. If x, y ∈ [a, b] such that x - y < δ then

         F(x) - F(y) = 
a

x
f (t)dt- 

a

y
f (t)dt = 

y

x
f (t)dt ≤ 

y

x
f (t) dt ≤ 

y

x
K dt ≤

         ≤ K x - y < K δ = ε   ⟹    F is Lipschitz continuous.
     

     2.  F ' (x0) = lim
xx0

F(x) - F(x0)

x - x0
= f (x0)  if for all ε > 0 there exists δ > 0 such that 

     
F(x) - F(x0)

x - x0
- f (x0) < ε  if  0 < x - x0 < δ.

     Let ε > 0. Since f  is continuous at x0 then ∃ δ > 0 such that f (x) - f (x0) < ε if x - x0 < δ.
     Then with this δ

     
F(x) - F(x0)

x - x0
- f (x0) =

F(x) - F(x0) - f (x0) (x - x0)

x - x0
=


x0

x
f (t)dt- 

x0

x
f (x0)dt

x - x0
=

     =

x0

x
(f (t) - f (x0))dt

x - x0
≤


x0

x
f (t) - f (x0) dt

x - x0
≤


x0

x
ε dt

x - x0
=

ε(x - x0)

x - x0
= ε.

Consequence. 

1. If f  is continuous on [a, b] and F(x) = 
a

x
f (t)dt, x ∈ [a, b] then F ' (x) = f (x)  ∀ x ∈ [a, b].

2. Every continuous function has an antiderivative. 

Examples

Example 1. Calculate the derivatives of the following functions: 

   a) F(x) = 
0

x
sin t2 dt, x ≠ 0 b) G(x) = 

0

x3

sin t2 dt c) H(x) = 
x2

x3

sin t2 dt
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Solution. a) F ' (x) = sin x2, since f (t) = sint2 is continuous.
           b) G(x) = Fx3   ⟹  G ' (x) = F ' x3 ·3 x2 = sinx3

2
 ·3 x2 = sinx6 ·3 x2

           c) H(x) = 
0

x3

sin t2 dt- 
0

x2

sin t2 dt = Fx3- Fx2  ⟹  H ' (x) = sinx6 ·3 x2 - sinx4 ·2 x

Example 2.  lim
x0

∫0
xarctan t2 dt

x2
= ?

Solution.  The limit has the form 0
0

 and the numerator is differentiable since 

  f (t) = arctan t2 is continuous

  ⟹  lim
x0

∫0
xarctan t2 dt

x2
=
L'H lim

x0

arctan x2

2 x
=
L'H

lim
x0

1
1+x4 ·2 x

2
= 0

Applications

Area

Example. Calculate the area of the unit circle.

Solution. The equation of the circle with radius r = 1 centered at the origin is

x2 + y2 = 1  ⟹  y2 = 1- x2     ⟹  y = ± 1- x2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 - x2

- 1 - x2

The area of the unit circle is     A = 2 
-1

1
1- x2 dx

Substitution:  x = x(t) = sin t  ⟹  t = arcsin x

                                   x ' (t) =
dx

dt
= cos t  ⟹  dx = cos t dt

The bounds will change: x1 = -1  ⟹  t1 = arcsin(-1) = -
π

2

x2 = 1  ⟹  t2 = arcsin 1 =
π

2

⟹ A = 2 
-1

1
1- x2 dx = 

-π /2

π /2
2 1- (sin t)2 cos t dt = 2 

-π /2

π /2
cos t ·cos t dt

          = 
-π /2

π /2
2 cos2 t dt = 

-π /2

π /2
(1 + cos 2 t) dt = t +

sin 2 t

2

-π /2

π /2

          =
π

2
+

sinπ

2
- -

π

2
+

sin (-π)

2
=
π

2
+ 0 - -

π

2
+ 0 = π                     

Arc length
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Theorem. Assume that f : [a, b]⟶ is continuously differentiable. Then the arc length of the 

 graph of f  is  L = 
a

b
1+ (f ' (x))2 dx.

Remark. Let a = x0 < x1 < x2 < ... < xn = b be a partition. If f  is differentiable then by Lagrange’s 
mean value theorem there exists ck ∈ (xk-1, xk) such that m = f ' (ck), where m is the slope of 
the secant line connecting the points (xk-1, f (xk-1)) and  (xk, f (xk)).

So the arc length can be approximated by the sum 
k=1

n

1+ (f ' (ck))2 (xk - xk-1), which is

the Riemann sum of the function 1+ (f ' (x))2 . 
If f  is continuously differentiable then the arc length of the graph of f  is 

L = 
a

b
1+ (f ' (x))2 dx.

a xk-1 xk b

f(x)

 

xk-xk-1

m(xk-xk-1)

1 +m2 (xk-xk-1)

Example. Calculate the arc length of the unit circle.

Solution. Let f (x) = 1- x2  if x ∈ [-1, 1].

f ' (x) =
1

2
1- x2

-
1
2 (-2 x) = -

x

1- x2

⟹  1+ (f ' (x))2 = 1+
x2

1- x2
=

1

1- x2
=

1

1- x2

The arc length of the unit circle is

L = 2 
-1

1
1+ (f ' (x))2 dx = 2 

-1

1 1

1- x2
dx = 2 lim

a-1+
lim
b1-


a

b 1

1- x2
dx =

= 2 lim
a-1+

lim
b1-

[arcsin x]a
b = 2 lim

a-1+
lim
b1-

(arcsin b- arcsina) =

= 2 (arcsin 1- arcsin (-1)) = 2
π

2
- -

π

2
= 2π

Volume of solids of revolutions

Theorem. Assume that f : [a, b]⟶ is continuous and nonnegative and the graph of f  is rotated 

 about the x axis. Then the volume of this solid of revolution is  V = π 
a

b
f 2(x)dx.

Remark. If a = x0 < x1 < x2 < ... < xn = b is a partition then the volume can be approximated by the 

          sum 
k=1

n

(xk - xk-1)π f 2(ck) where ck ∈ [xk-1, xk] is arbitrary. 
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         (Geometrically it means that the volume can be approximated by the sum of volumes of 
         cylinders.)
         This is the Riemann sum of the function π f 2(x), so if f  is continuous then the volume is 

         V = π 
a

b
f 2(x)dx.

x0=a b=xnx1 x2c2

f(x)

Surface area of solids of revolutions

Theorem. Assume that f : [a, b]⟶ is continuously differentiable and nonnegative and the graph 
           of f  is rotated about the x axis. Then the surface area of this solid of revolution is  

           A = 2π 
a

b
f (x) 1+ (f ' (x))2 dx.

Remark. If a = x0 < x1 < x2 < ... < xn = b is a partition then the surface area of the solid of revolution 
         can be approximated by the sum



k=1

n

π(f (xk-1) + f (xk)) 1+ (f ' (ck))2 (xk - xk-1)

         where ck ∈ [xk-1, xk] exists by the Lagrange intermediate value theorem if f  is differentiable. 
         (Geometrically it means that the surface area can be approximated by the sum of lateral 
         surfaces of truncated cones.)

         If f  is continuously differentiable then f (xk-1) + f (xk) ≈ 2 f (ck), so the above sum will be the 

         Riemann sum of the function 2π f (x) 1+ (f ' (x))2 . Therefore if f  is continuously 

         differentiable then the surface area is A = 2π 
a

b
f (x) 1+ (f ' (x))2 dx.
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x0=a x1 x2 b=xn

f(x)

Exercise

Let f (x) = r2 - x2 , -r ≤ x ≤ r. Rotating the graph of f  about the x axis, we get a sphere 
with radius r. Calculate the volume and surface area of the sphere. 

Solution: 1. The volume can be calculated as  V = π 
a

b
f 2(x)dx

The integrand is   (f (x))2 = r2 - x2

The volume is  V = π ∫-r
r
r2 - x2dx = πr2 x -

x3

3

-r

r
=

= π r3 -
r3

3
- -r3 +

r3

3
=

4 r3 π

3

2. The surface area can be calculated as A = 2π 
a

b
f (x) 1+ (f ' (x))2 dx

The derivative of f  is   f ' (x) = r2 - x2
1
2  ' =

1

2
r2 - x2

-
1
2 · (-2 x) = -

x

r2 - x2

⟹  1+ (f ' (x))2 = 1+
x2

r2 - x2
=
r2 - x2 + x2

r2 - x2
=

r2

r2 - x2

The integrand is   f (x) 1+ (f ' (x))2 = r2 - x2 ·
r2

r2 - x2
= r

The surface area is   A = 2π 
-r

r
r dx = 2π · [r x]-r

r = 2πr2 - -r2 = 4 r2 π

Additional exercises: Chapter 5, from page 86:
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf
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