Calculus 1

Practice exercises for the first midterm test

Complex numbers

1. Solve the following equation on the set of complex numbers: $|z|^2 + 2iz + \overline{z} = 0$

Solution. Let z = x + yi, where $x, y \in \mathbb{R}$. Then $|z|^2 = x^2 + y^2$, $\overline{z} = x - yi$.

$$|z|^2 + 2iz + \overline{z} = 0 \iff x^2 + y^2 + 2i(x + yi) + (x - yi) = 0$$

 $\iff x^2 + y^2 + 2ix - 2y + x - yi = 0$
 $\iff (x^2 + y^2 + x - 2y) + i(2x - y) = 0$

A complex number is equal to zero if and only if its real and imaginary parts are equal to zero, so the above equation is equivalent to the following equation system:

(1)
$$x^2 + y^2 + x - 2y = 0$$

$$(2) 2x - y = 0 \implies y = 2x$$

Substituting into (1): $x^2 + 4x^2 + x - 4x = 0 \implies 5x^2 - 3x = x(5x - 3) = 0$ From here $x_1 = 0$, $x_2 = \frac{3}{5}$ and $y_1 = 0$, $y_2 = \frac{6}{5}$

The solutions are: $z_1 = 0$, $z_2 = \frac{3}{5} + \frac{6}{5}i$

2. Find those solutions z of the following equation for which Re(z) > 0 and Im(z) < 0. Give these solutions in algebraic form.

$$z^6 + 7z^3 - 8 = 0$$

Solution. $z^6 + 7z^3 - 8 = (z^3 + 8)(z^3 - 1) = 0 \iff z^3 = -8 \text{ or } z^3 = 1.$

a) If
$$z^3 = -8 = 8 (\cos \pi + i \sin \pi)$$
 then $z_k = 2 \left(\cos \frac{\pi + k \cdot 2\pi}{3} + i \sin \frac{\pi + k \cdot 2\pi}{3}\right)$, where $k = 0, 1, 2$.

$$z_0 = 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right) = 1 + \sqrt{3} i$$

$$z_1 = 2(\cos \pi + i \sin \pi) = -2$$

$$z_3 = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right) = 1 - \sqrt{3}i$$

From here the condition Re(z) > 0, Im(z) < 0 holds for $1 - \sqrt{3}i$.

b) If $z^3 = 1 = (\cos 0 + i \sin 0)$ then $z_k = \cos \frac{k \cdot 2\pi}{3} + i \sin \frac{k \cdot 2\pi}{3}$, where k = 0, 1, 2. $z_0 = \cos 0 + i \sin 0 = 1$

$$z_1 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
$$z_3 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Definition of the limit

1. Let $a_n = \frac{4n^2 + 3n - 1}{2n^2 + n + 17}$. Find the limit of a_n and provide a threshold index N for $\varepsilon = 0.01$.

Solution.
$$a_n = \frac{4n^2 + 3n - 1}{2n^2 - n + 17} = \frac{4 + \frac{3}{n} - \frac{1}{n^2}}{2 - \frac{1}{n} + \frac{17}{n^2}} \longrightarrow \frac{4 + 0 - 0}{2 - 0 + 0} = 2$$

Let $\varepsilon > 0$. We have to find $N(\varepsilon) \in \mathbb{N}$ such that if n > N then $|a_n - A| < \varepsilon$. (A = 2)

$$|a_n - A| = \left| \frac{4n^2 + 3n - 1}{2n^2 - n + 17} - 2 \right| = \left| \frac{4n^2 + 3n - 1 - 2 \cdot (2n^2 - n + 17)}{2n^2 - n + 17} \right| = \left| \frac{5n - 35}{2n^2 - n + 17} \right| \stackrel{\text{if } n \ge 7}{=} \frac{5n - 35}{2n^2 - n + 17}$$

$$\frac{5n-35}{2n^2-n+17} \le \frac{5n+0}{2n^2-n^2+0} = \frac{5n}{n^2} = \frac{5}{n} < \varepsilon \iff n > \frac{5}{\varepsilon}$$

so with the choice $N(\varepsilon) \ge \max \left\{ 7, \begin{bmatrix} 5 \\ - \end{bmatrix} \right\}$ the definition holds.

If
$$\varepsilon = 0.01$$
 then $N \ge \left[\frac{5}{0.01} \right] = 500$.

2. Let $a_n = \frac{3n^4 - 5n}{n^4 + n + 2}$. Find the limit of a_n and provide a threshold index N for $\varepsilon = 0.001$.

Solution.
$$a_n = \frac{3n^4 - 5n}{n^4 + n + 2} = \frac{3 - \frac{5}{n^3}}{1 + \frac{1}{n^3} + \frac{2}{n^4}} \longrightarrow \frac{3 - 0}{1 + 0 + 0} = 3$$

Let $\varepsilon > 0$. We have to find $N(\varepsilon) \in \mathbb{N}$ such that if n > N then $|a_n - A| < \varepsilon$. (A = 3)

$$|a_n - A| = \left|\frac{3n^4 - 5n}{n^4 + n + 2} - 3\right| = \left|\frac{3n^4 - 5n - 3\cdot(n^4 + n + 2)}{n^4 + n + 2}\right| =$$

$$= \left| \frac{-8\,n - 6}{n^4 + n + 2} \right| = \frac{8\,n + 6}{n^4 + n + 2} \le \frac{8\,n + 6\,n}{n^4 + 0 + 0} = \frac{14}{n^3} < \varepsilon \iff n > \sqrt[3]{\frac{14}{\varepsilon}} \,,$$

so with the choice $N(\varepsilon) \ge \left[\frac{14}{\varepsilon}\right]$ the definition holds.

If $\varepsilon = 0.001$ then $N \ge 14\,000$.

Calculating the limit

1. Find the limit of the following sequence: $a_n = \frac{1}{3n+1-\sqrt{9n^2+5n}}$

Solution.
$$a_n = \frac{1}{3n+1-\sqrt{9n^2+5n}} \cdot \frac{3n+1+\sqrt{9n^2+5n}}{3n+1+\sqrt{9n^2+5n}} =$$

$$= \frac{3n+1+\sqrt{9n^2+5n}}{(3n+1)^2-(9n^2+5n)} = \frac{3n+1+\sqrt{9n^2+5n}}{9n^2+6n+1-(9n^2+5n)} = \frac{3n+1+\sqrt{9n^2+5n}}{n+1}$$

$$= \frac{n}{n} \cdot \frac{3+\frac{1}{n}+\sqrt{9+\frac{5}{n}}}{1+\frac{1}{n}} \longrightarrow \frac{3+0+\sqrt{9+0}}{1+0} = 6$$

2. Find the limit of the following sequence: $a_n = n(\sqrt{n^4 + 8n} - \sqrt{n^4 - 1})$.

Solution.
$$a_n = n\left(\sqrt{n^4 + 8n} - \sqrt{n^4 - 1}\right) \cdot \frac{\sqrt{n^4 + 8n} + \sqrt{n^4 - 1}}{\sqrt{n^4 + 8n} + \sqrt{n^4 - 1}} =$$

$$= n \cdot \frac{(n^4 + 8n) - (n^4 - 1)}{\sqrt{n^4 + 8n} + \sqrt{n^4 - 1}} = n \cdot \frac{8n + 1}{\sqrt{n^4 + 8n} + \sqrt{n^4 - 1}} =$$

$$= \frac{n^2}{n^2} \cdot \frac{8 + \frac{1}{n}}{\sqrt{1 + \frac{8}{n^3}} + \sqrt{1 - \frac{1}{n^4}}} \longrightarrow \frac{8 + 0}{\sqrt{1 + 0} + \sqrt{1 - 0}} = 4$$

3. Find the limit of the following sequence:
$$a_n = \frac{1}{\sqrt{4n^2 + 3n} - 2n}$$

Solution.
$$a_n = \frac{1}{\sqrt{4n^2 + 3n} - 2n} \cdot \frac{\sqrt{4n^2 + 3n} + 2n}{\sqrt{4n^2 + 3n} + 2n} =$$

$$= \frac{\sqrt{4 n^2 + 3 n} + 2 n}{(4 n^2 + 3 n) - 4 n^2} = \frac{n}{n} \cdot \frac{\sqrt{4 + \frac{3}{n}} + 2}{3} \longrightarrow \frac{\sqrt{4 + 0} + 2}{3} = \frac{4}{3}$$

4. Find the limit of the following sequence:
$$a_n = \sqrt[n]{\frac{7^n + 5^n}{n^3 + 2}}$$

Solution. Because of the Sandwich Theorem, $\lim_{n\to\infty} \sqrt[n]{\frac{7^n+5^n}{n^3+2}} = 7$ (2p), since

$$7 \stackrel{(\mathbf{1p})}{\leftarrow} \frac{7}{\sqrt[n]{3} \left(\sqrt[n]{n}\right)^3} \stackrel{(\mathbf{1p})}{=} \sqrt[n]{\frac{7^n}{3n^3}} \stackrel{(\mathbf{2p})}{\leq} \sqrt[n]{\frac{7^n + 5^n}{n^3 + 2}} \stackrel{(\mathbf{2p})}{\leq} \sqrt[n]{\frac{2 \cdot 7^n}{n^3}} \stackrel{(\mathbf{1p})}{=} \frac{7\sqrt[n]{2}}{\left(\sqrt[n]{n}\right)^3} \stackrel{(\mathbf{1p})}{\to} 7$$

5. Find the limit of the following sequence:
$$a_n = \sqrt[n]{\frac{7n^2 - n}{n^3 + 3}}$$

Solution.

$$a_n = \sqrt[n]{\frac{7\,n^2 - n}{n^3 + 3}} \leq \sqrt[n]{\frac{7\,n^2 + 0}{n^3 + 3\,n^3}} = \sqrt[n]{\frac{7}{4\,n}} = \sqrt[n]{\frac{7}{4}} \cdot \frac{1}{\sqrt[n]{n}} \longrightarrow 1 \cdot \frac{1}{1} = 1$$

Lower estimation:

$$a_n = \sqrt[n]{\frac{7 \, n^2 - n}{n^3 + 3}} \geq \sqrt[n]{\frac{7 \, n^2 - n^2}{n^3 + 3 \, n^3}} = \sqrt[n]{\frac{6}{4 \, n}} = \sqrt[n]{\frac{3}{2}} \cdot \frac{1}{\sqrt[n]{n}} \longrightarrow 1 \cdot \frac{1}{1} = 1$$

So by the Sandwich theorem, $a_n \rightarrow 1$.

The limit $(1 + \frac{x}{n})^n \longrightarrow e^x$

1. Find the limit of the following sequences:

a)
$$a_n = \left(\frac{3n^2 + 4}{3n^2 + 1}\right)^n$$
 b) $b_n = \left(\frac{3n + 2}{4n + 3}\right)^{n+3}$

Solution. a)
$$a_n^n = \left(\frac{3n^2+4}{3n^2+1}\right)^{n^2} = \frac{\left(1+\frac{4}{3n^2}\right)^{n^2}}{\left(1+\frac{1}{3n^2}\right)^{n^2}} \longrightarrow \frac{e^{\frac{4}{3}}}{e^{\frac{1}{3}}} = e.$$

Since 2 < e < 3 then $2 < a_n^n < 3$ if n is large enough. Then $\sqrt[n]{2} < a_n < \sqrt[n]{3}$, and since $\sqrt[n]{2} \longrightarrow 1$ and $\sqrt[n]{3} \longrightarrow 1$, then by the sandwich theorem $a_n \longrightarrow 1$.

b)
$$b_n = \left(\frac{3n+2}{4n+3}\right)^{n+3} = \frac{\left(3n\left(1+\frac{2}{3n}\right)\right)^{n+3}}{\left(4n\left(1+\frac{3}{4n}\right)\right)^{n+3}} = \left(\frac{3}{4}\right)^{n+3} \cdot \frac{\left(1+\frac{2}{3n}\right)^n}{\left(1+\frac{3}{4n}\right)^n} \cdot \frac{\left(1+\frac{2}{3n}\right)^3}{\left(1+\frac{3}{4n}\right)^3} \longrightarrow 0 \cdot \frac{e^{\frac{2}{3}}}{e^{\frac{3}{4}}} \cdot \frac{1}{1} = 0$$

2. Find the limit of the following sequences:

a)
$$a_n = \left(\frac{n^2 + 1}{n^2 + 4}\right)^{n^2}$$
 b) $b_n = \left(\frac{n^2 + 1}{n^2 + 4}\right)^n$ c) $c_n = \left(\frac{n^2 + 1}{n^2 + 4}\right)^{n^3}$

Solution. a)
$$a_n = \left(\frac{n^2 + 1}{n^2 + 4}\right)^{n^2} = \frac{\left(1 + \frac{1}{n^2}\right)^{n^2}}{\left(1 + \frac{4}{n^2}\right)^{n^2}} \longrightarrow \frac{e}{e^4} = \frac{1}{e^3}$$

b) $b_n = \sqrt[n]{a_n}$. Since $a_n \to \frac{1}{e^3}$ and $0 < \frac{1}{e^3} < 1$ then there exists $N \in \mathbb{N}$ such that if n > N then $\frac{1}{2e^3} < a_n < 1 \implies \sqrt[n]{\frac{1}{2e^3}} < b_n < 1$. Since $\sqrt[n]{\frac{1}{2e^3}} \to 1$ then by the sandwich theorem $b_n \to 1$.

c) $c_n = a_n^n$. Let $\frac{1}{e^3} < q < 1$. Since $a_n \longrightarrow \frac{1}{e^3}$ then there exists $N \in \mathbb{N}$ such that if n > N then $0 < a_n < q \implies 0 < c_n < q^n$. Since $q^n \longrightarrow 0$ then by the sandwich theorem $c_n \longrightarrow 0$.

3. Find the limit of the following sequences:

a)
$$a_n = \left(\frac{2n^2 + 3}{2n^2 + 1}\right)^n$$
 b) $b_n = \left(\frac{2n + 3}{3n + 4}\right)^{n+3}$

Solution. a)
$$a_n^n = \left(\frac{2n^2 + 3}{2n^2 + 1}\right)^{n^2} = \frac{\left(1 + \frac{3}{2n^2}\right)^{n^2}}{\left(1 + \frac{1}{2n^2}\right)^{n^2}} \longrightarrow \frac{e^{\frac{3}{2}}}{e^{\frac{1}{2}}} = e.$$

Since 2 < e < 3 then $2 < a_n^n < 3$ if n is large enough.

Then $\sqrt[n]{2} < a_n < \sqrt[n]{3}$, and since $\sqrt[n]{2} \longrightarrow 1$ and $\sqrt[n]{3} \longrightarrow 1$,

then by the sandwich theorem $a_n \rightarrow 1$.

b)
$$b_n = \left(\frac{2n+3}{3n+4}\right)^{n+3} = \frac{\left(2n\left(1+\frac{3}{2n}\right)\right)^{n+3}}{\left(3n\left(1+\frac{4}{3n}\right)\right)^{n+3}} = \left(\frac{2}{3}\right)^{n+3} \cdot \frac{\left(1+\frac{3}{2n}\right)^n}{\left(1+\frac{4}{3n}\right)^n} \cdot \frac{\left(1+\frac{3}{2n}\right)^3}{\left(1+\frac{4}{3n}\right)^3} \longrightarrow 0 \cdot \frac{e^{\frac{3}{2}}}{e^{\frac{4}{3}}} \cdot \frac{1}{1} = e^{\frac{1}{6}}$$

Recursive sequences

1. Let
$$a_1 = 2$$
 and $a_{n+1} = 5 - \frac{4}{a_n}$ for all $n \in \mathbb{N}$.

(Then $a_2 = 3$, $a_3 \approx 3.67$,...). Prove that (a_n) is convergent and calculate its limit.

Solution. If
$$\exists \lim_{n \to \infty} a_n = A$$
 then $A = 5 - \frac{4}{A} \iff A^2 - 5A + 4 = (A - 1)(A - 4) = 0$

$$\iff$$
 $A_1 = 1$, $A_2 = 4$.

Boundedness: we prove by induction that $1 < a_n < 4$ for all $n \in \mathbb{N}$.

- (1) $1 < a_1 = 2 < 4$
- (2) Assume that $1 < a_n < 4$

(3) Then
$$1 > \frac{1}{a_n} > \frac{1}{4} \implies -4 < -\frac{4}{a_n} < -1 \implies 1 < a_{n+1} = 5 - \frac{4}{a_n} < 4$$

So (a_n) is bounded above.

Monotonicity: we prove by induction that (a_n) is monotonically increasing, that is, $a_n < a_{n+1} \ \forall \ n \in \mathbb{N}$.

- (1) $a_1 = 2 < a_2 = 3$
- (2) Assume that $a_n < a_{n+1}$

(3) Then
$$\frac{1}{a_n} > \frac{1}{a_{n+1}}$$
 (since $a_n > 1 > 0$) $\Longrightarrow \frac{-4}{a_n} < \frac{-4}{a_{n+1}} \Longrightarrow a_{n+1} = 5 - \frac{4}{a_n} < 5 - \frac{4}{a_{n+1}} = a_{n+2}$

So (a_n) is monotonically increasing.

Since (a_n) is monotonically increasing and bounded above then it is convergent.

Since $a_1 = 2$ and the sequence is monotonically increasing then A = 1 cannot be the limit.

So
$$\lim_{n\to\infty} a_n = 4$$
.

- **2.** Let $a_1 = 5$ and $a_{n+1} = \sqrt{10} a_n 21$ for all $n \in \mathbb{N}$.
- a) Prove that $3 < a_n < 7$ for all $n \in \mathbb{N}$.
- b) Prove that the sequence is monotonically increasing.
- c) Calculate the limit of the sequence (a_n) .

Solution. a) Boundedness: we prove by induction that $3 < a_n < 7$ for all $n \in \mathbb{N}$.

- (1) 3 < a_1 = 5 < 7
- (2) Assume that $3 < a_n < 7$. We need to show that this implies $3 < a_{n+1} < 7$ $(n \in \mathbb{N})$.
- (3) Then $30 21 < 10 a_n 21 < 70 21 \implies 9 < 10 a_n 21 < 49 \implies 3 < \sqrt{10 a_n 21} < 70$ So (a_n) is bounded above.

b) Monotonicity: we prove by induction that (a_n) is monotonically increasing, that is, $a_n < a_{n+1} \ \forall$ $n \in \mathbb{N}$.

(1)
$$a_1 = 5 < a_2 = \sqrt{50 - 21} = \sqrt{29}$$

- (2) Assume that $a_n < a_{n+1}$
- (3) Then $10 a_n 21 < 10 a_{n+1} 21 \implies a_{n+1} = \sqrt{10 a_n 21} < \sqrt{10 a_{n+1} 21} = a_{n+2} \implies a_{n+1} < a_{n+2}$ So (a_n) is monotonically increasing.
- c) Since (a_n) is monotonically increasing and bounded above then it is convergent.

Let
$$\lim_{n \to \infty} a_n = A$$
. Then $A = \sqrt{10A - 21} \iff A^2 - 10A + 21 = (A - 3)(A - 7) = 0 \iff A_1 = 3, A_2 = 7$.

Since $a_1 = 5$ and the sequence is monotonically increasing then A = 3 cannot be the limit. So $\lim a_n = 7$.

3. Let $a_1 = 3$ and $a_{n+1} = \frac{10}{7 - a_n}$ for all $n \in \mathbb{N}$. Prove that (a_n) is convergent and calculate its limit.

Solution. If
$$\exists \lim_{n \to \infty} a_n = A$$
 then $A = \frac{10}{7 - A} \iff A(7 - A) - 10 = 0 \iff A^2 - 7A + 10 = (A - 2)(A - 5) = 0$ $\iff A_1 = 2, A_2 = 5.$

Boundedness: we prove by induction that $2 < a_n < 5$ for all $n \in \mathbb{N}$.

- (1) 2 < a_1 = 3 < 5
- (2) Assume that $2 < a_n < 5$

(3) Then
$$-2 > -a_n > -5 \implies 5 > 7 - a_n > 2 \implies \frac{1}{5} < \frac{1}{7 - a_n} < \frac{1}{2} \implies 2 < a_{n+1} = \frac{10}{7 - a_n} < 5$$

So (a_n) is bounded above.

Monotonicity: we prove by induction that (a_n) is monotonically decreasing, that is, $a_n > a_{n+1}$ for all $n \in \mathbb{N}$.

(1)
$$a_1 = 3 > a_2 = \frac{10}{7 - 3} = \frac{10}{4} = 2.5$$

- (2) Assume that $a_n > a_{n+1}$
- (3) Then $-a_n < -a_{n+1} \implies 7 a_n < 7 a_{n+1}$. Since $2 < a_n < 5$ then $7 a_n > 0$ $\implies a_{n+1} = \frac{10}{7 - a_n} > \frac{10}{7 - a_{n+1}} = a_{n+2}$

So (a_n) is monotonically decreasing.

Since (a_n) is monotonically decreasing and bounded below then it is convergent. Since $a_1 = 3$ and the sequence is monotonically decreasing then A = 5 cannot be the limit. So $\lim a_n = 2$.

Accumulation points